
LEARNING TO BUILD REASONING CHAINS BY RELIABLE PATH RETRIEVAL

Minjun Zhu*†, Yixuan Weng*†, Shizhu He†, Kang Liu†, Jun Zhao†

† National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy Sciences

ABSTRACT
Question answering (QA) systems have long pursued the abil-
ity to reason over explicit knowledge credibly. Recent work
has incorporated knowledge into fine-grained sentences and
constructed natural language database (NLDB) task, and con-
ducts complex QA with explicit reasoning chains. Existing
models focus on retrieving evidence by combining multiple
modules or discretely. However, these models ignore uti-
lizing path information, Eg. order, which is proven to be
important for evidence retrievers. In this work, we propose
a ReliAble Path-retrieval (RAP) to generate varying length
evidence chains iteratively. It comprehensively models rea-
soning chains and introduces loss from two views. The ex-
perimental results show that our model demonstrates state-
of-the-art performance on both evidence chain retrieval and
question-answering tasks. Additional experiments on sequen-
tial supervised and sequential unsupervised retrieval fully in-
dicate the significance of RAP1.

Index Terms— Textual Question Answering, Natural
Language Database, Reasoning process.

1. INTRODUCTION

The ability to retrieve and reason about world knowledge is
the core of question answering (QA) [1]. Prevailing textual
QA tasks focus on answering a question given a large collec-
tion of documents, each question-answer pair involves long
passages (e.g. SQuAD[2], HotpotQA[3], trivalQA[4]) with-
out order. Recent work propose natural language database
(NLDB) [5], that similar to database queries and each query
requires reasoning over hundreds or thousands of facts. In
NLDB task, models are required to perform detailed and spe-
cific reasoning over fine-grained knowledge facts to answer
complex queries such as join, max, set et al. To take a closer
step of knowledge reasoning, ReasonchainQA dataset [6] in-
troduce explicit reasoning chain for each query, and the ex-
plicit reasoning chains depths vary from 1 to 7 with 12 infer-
ence types and much more correlative relations. As is shown
in Fig. 1, model needs to retrieve evidence set {4, 1, 7} from
a database and construct as a reasoning chain 4 → 1 → 7
(length =3). The reasoning evidence chain can be used to ex-
plain why the answer ”Polish” is correct.

1Dataset and codes will be made publicly available upon accepted. Now,
they are in the supplementary material.
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Fig. 1. Illustration of natural language database (NLDB) Rea-
sonChainQA dataset.

Besides these benchmarks, previous models has also
sparked significant progress in reasoning over text. In NLDB,
introduce a modular architecture to support database rea-
soning, divide complex questions into sub-questions and
combine sub-answers by a predefined aggregation module.
Based on most popular retriever-reader architecture of textual
Open-Domain QA systems [7], complex textual QA needs
to retrieve multiple related evidence simultaneously. And
the typical multi-hop retrieval models [8, 9] retrieve the ev-
idences by iterative computation, MDR [10] design a fixed
two-hop retrieval, GRR [9] discretely and iteratively retrieves
evidence until a stop character [EOE] is selected. However,
explicit reason process is of great importance for models to
learn about the underlying reasoning process and make ex-
plainable predictions [9]. But these models do not make full
use of the complete information of the evidence chains, espe-
cially for questions with long reasoning path. To make full
use of evidence chain information for executing reasoning
retrieval and answering complex question in an interpretable
way, we propose to iteratively model path information and
extract evidence chains with ReliAble Path-retrieval (RAP).
The RAP can both support sequential unsupervised and se-
quential supervised training.

The RAP uses dense retrieval score and conditional prob-
ability to score the path, introduces two loss functions to cal-
culate the similarity loss dynamically, and use penalty index
decoding mechanism to realize path decoding in the decoding
stage. We conducted detailed experiments on three dataset of
ReasonChainQA (database size = 25, 250, 1000). The ex-
perimental results show that RAP achieves competitive per-



formance compared with traditional path retriever textual QA
models. The RAP obtain the state-of-the-art QA accuracy,
with 7.73% improvement on sequential unsupervised meth-
ods, and 3.15% on sequential supervised methods on 25 evi-
dence databases, and even performs better (QA accuracy im-
provement up to 7.88% and 8.13%) on larger (size = 1000)
size datasets.

In summary, our contributions are as follows: 1) We pro-
pose a reliable path retrieval model called RAP, which sig-
nificantly outperforms all the previous results in both extract-
ing reasoning chains and generating correct answers. 2) We
propose a retrieval to learn evidence chains from global re-
spect, and visualize predicted evidence chains’s prediction,
which proves the importance of evidence sequential reason-
ing in complex textual QA tasks.

2. PROPOSED METHODOLOGY

2.1. Task Definition

Given a problem Q and a database E = {Ej}nj=1 with n
pieces of evidence. Model needs to search target evidence
from E and build evidence chain C = {C1, C2, · · · , Cl},
where l ∈ N+ and l is the path length. Evidence chain C is
the sequential ordered evidence reasoning process from ques-
tion to an answer. In path sequential supervised Training, we
provide an ordered evidence chain C as label. In Path with-
out Sequential Supervised Training, we input evidence of un-
ordered evidence set as label.

2.2. Path Modeling

We take two pre-trained transformers encoders [11] (MQ

and ME)to separately model question representation VQ =
MQ(Q), VQ ∈ Rd and evidence representations VE =

{V j
E}nj=1, V

j
E = ME(E

j), V j
E ∈ Rd. Then they were in-

put into a randomly initialized bi-directional LSTM [12] as
a path encoder to retrieve evidence iteratively. For each step
t ∈ {1, 2, . . . }, the path encoder retrieves evidence based on
the current path hidden vector V t

H , the question vector VQ

and evidence set VE . And RAP uses this path encoder layer
to predict the hidden vector of the next step.

V t+1
H = RAPDecoder([VQ, V

t
H , V t

E ]) (1)

2.3. Path Training With Sequential Supervised

To make full use of sequential order, we propose two losses
to make evidence space representation alignment from two
views, adjacent nodes and the evidence chain.

The retrieval task is a metric learning problem [13] where
we need to make the similarity between the path hidden vector
V t
H and the next evidence vector V t

E higher in a vector space.
We introduce the Contrastive loss function LCloser, to bring
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Fig. 2. The RAP retrieves evidence chain iteratively. Two
loss function are introduced to increase retrieve effeciency.
LCloser narrows down the distance between the present node
and the next node to ensure retrieval efficiency of each step.
LPull extends the distance among evidence nodes with the last
evidence of the reasoning path, aiming to modelling stopping
mechanism.

the V t
H close to the next evidence node vector V t

E and keep
V t
H away from irrelevant evidence. For each batch, the other

evidence were set as negative samples.

LSup
Closer =

T∑
t=0

(− log(
eSim(V

t
H ,V t

E)

eSim(V
t
H ,V t

E) +
∑N

j=1 e
Sim(VH ,V ̸=t

Ej )
))

(2)
To model global information of the whole path, and estab-

lish the automatic stop mechanism. We propose a loss func-
tion LPull to keep the last hidden vector V T

H of the path away
from all previous evidence vectors

∑
VE , and require that the

similarity of V T
H and V T

E which have the next node is greater
than the similarity of V −1

H and
∑n

j=1 V
j
E .

LPull =

T−1∑
t=0

log(1 + eℓ×Sim(V t
H ,V t

E)−max(
∑n

j=0 Sim(V −1
H ,V j

E)))

Finally, we combine above two loss as the total loss function,
where the λ is the hyper-parameter for tuning the total loss.
The LCloser is used to make hidden vector in the path closer.
The LPull is used to draw the hidden vectors at the end of the
path farther away.

Lsup = LSup
Closer + λsup × LPull (3)

2.4. Path Training Without Sequential Supervised

It is well known that since the annotation of data is diffi-
cult, few-shot and zero-shot performance is important. On
the premise that there is only an evidence support set but no
evidence chain (like HotpotQA, BeerQA, WIKINLDB), we
require RAP to retrieve the evidence set and even generate an
explainable evidence chain.



System
25 250 1000

Time↓
EM↑ ED↓ F1↑ EM↑ ED↓ F1↑ EM↑ ED↓ F1↑

Random 1.10% 2.05 8.24% 0.15% 2.12 0.81% 0.08% 2.13 0.26% 0.01X

without sequential

BM25 29.65% 1.38 58.89% 24.68% 1.52 47.38% 22.32% 1.57 42.81% 0.03X
DPR 40.93% 0.59 66.77% 34.78% 0.65 61.94% 25.32% 0.75 60.05% 0.9X
SSG 37.85% 0.93 79.39% 38.72% 0.85 31.91% 37.38% 0.84 11.10% 43X
RAP 60.02% 0.40 71.14% 36.44% 0.64 68.47% 31.15% 0.69 64.51% 1X

with sequential
GRR 50.55% 1.03 97.86% 46.77% 1.15 87.66% 43.06% 1.27 81.37% 1.1X
MDR 54.50% 0.45 85.43% 51.74% 0.48 82.58% 51.03% 0.49 81.73% 3X
RAP 93.06% 0.07 97.65% 84.94% 0.15 91.99% 81.07% 0.19 88.70% 1X

Table 1. Performance comparison of the variants of SOTA methods on ReasonChainQA dataset. We will use path sequence as
a sequential supervised comparison and not use path sequence as an sequential unsupervised comparison. We highlight the best
score in each column in bold, and the second best score with underline.

To solve this problem, we require RAP to retrieve the last
evidence of unordered C, which only computes LCloser at one
step. And we still retain LPull for precious setting.

LUnsup
Closer = − log(Closer(T − 1)) (4)

LUnsup = LUnsup
Closer + λunsup × LPull (5)

2.5. Path Generation

In autoregressive generation tasks, it is difficult for the system
to search the whole space. Beam search is a common algo-
rithm used for decoding [14]. Beam search is more efficient
than traditional dynamic programming algorithms such as the
Viterbi algorithm [15]. Although Beam search does not find
the highest-scoring hypothesis, it does provide a better search
bias than the exact search [16].

Because the hidden vector V t
H by the decoder may have

high similarity with the evidence vector V t−1
E in the previ-

ous stage, to avoid the reasoning deviation caused by repeated
retrieval, we propose the Penalize Path Search (PPS), which
helps RAP better grasp the global path information. Specif-
ically, we penalize repeated evidence retrieval scores and set
their scores to zero. Then we compute the similarity score
between the hidden vectors and the correct evidence. If that
similarity score falls below a pre-set threshold, the retrieval
operation will stop in this round. The threshold is calculated
using Powell’s method [17].

STOP:Sim(V t
H , V j

E)∀j≤t−1 ≧̸ hSTOP (6)

3. EXPERIMENTAL RESULTS

3.1. Setup

We consider the suitability of RAP on three ReasonChainQA
datasets (database size = 25/250/1000) for both sequential su-
pervised learning and supervised learning without sequential.
In supervised learning without sequential experiments, the

QA Exact Match 25 250 1000
Random 33.44% 29.57% 28.71%

sequential Unsupervised

BM25 57.10% 52.37% 50.95%
DPR 69.72% 63.09% 54.50%
SSG 79.42% 64.51% 34.34%
RAP 87.15% 69.01% 62.38%

sequential Supervised
GRR 90.38% 81.62% 78.15%
MDR 70.27% 68.45% 68.69%
RAP 93.53% 89.04% 86.28%

Table 2. Exact Match performance for QA tasks. We uni-
formly use the retrieved Topk evidence as input to the Reader
for result generation.

model is trained with only evidence set, but evaluated with
correct evidence chains. BM25 [18], DPR [19], and SSG [5]
can be trained without using chain structure, so they belong to
the sequential unsupervised method of evidence chain. MDR
and GRR are a multi-hop retrieval method, which requires se-
quential supervised.

We evaluate RAP’s ability on both retrieving evidence
correctness and question answering accuracy. For retrieving
evidence correctness, following previous work [9, 5], we re-
port Exact Match (EM), F1 and Edit Distance (ED) of the
predicted evidence chain. Following the previous work [6],
we used the trained T5 model to test the impact of the accu-
racy of the evidence chain on the QA task. This is a main-
stream method that Retrieval search for a small amount of
candidate evidence from a large number of evidence sets, and
then Reader to query the answers to a small amount of evi-
dence [7].

For all methods, we chose the bert-base-uncased 2 model
for feature extraction. And we use the AdamW [20] as the
optimizer, and finetune the whole model with a learning rate
of 1e-5 with warm-up [21], epoch=10, d=768, batch size=24 .
All the experimental results are repeated three times, and the
highest and lowest scores are removed.

2https://huggingface.co/bert-base-uncased
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3.2. Comparison with Baselines

For retrieving correctness, as depicted in Table 1, Firstly,
RAP shows comparative even better performance both in with
or without sequential supervision information. This illustrates
the ability of RAP to adequately extract pathway information
when a valid chain of evidence is not provided. Secondly,
given the sequence label, the GRR and MDR only achieve
50% accuracy in the evidence chains exact matching task,
while our RAP is substantially ahead of them. Especially
in the dataset of 1,000, our method still maintains a large
advantage, which fully demonstrates that RAP’s path mod-
elling is reliable for efficient retrieval. Thirdly, RAP shows
a substantial improvement in retrieval accuracy compared se-
quential supervised with sequential unsupervised in the three
different sizes of evidence sets (26.51%, 23.82% and 24.19%
increase in F1). This proves that evidence chains provided by
ReasonChainQA are meaningful and can enhance the model’s
interpretability for path retrieval.

The performance in the QA task is shown in Table 2. We
note that: 1) RAP’s QA performance is significantly outper-
forms all baselines. RAP can provide a good candidate evi-
dence chain for QA task; 2) QA performance of sequential su-
pervised models are significantly better than supervised mod-
els without sequential label, which proves evidence order is
of great beneficial to improve the capability of the reader.

We also compare the consumed time to infer each sample,
see in Table 1. RAP encodes all text vectors in advance. Each
reasoning only requires using the decoder layer for one sim-
ple calculation to obtain target vector. Therefore, RAP can
greatly improve the prediction speed on the premise of main-
taining high performance.

3.3. Ablation Study and Case Study

We carry out an ablation study to show if two loss and Penal-
ize Path Search (PPS) is significant. Table 3 shows that re-
moving any of these three method gives notable performance
drop. Lpull and Lcloser are both critical in our retrieve
model, dropping retrieved evidence set EM by 91.8% and
87.54%, and dropping QA by 50.71% and 55.52%. And RAP
will retrieve duplicate evidence if PPS is not used. That is

Technique Retrieve QA
EM↑ ED↓ F1↑ EM ↑

W/O LPull 1.26% 0.99 51.13% 42.82%
W/O LCloser 5.52% 0.94 16.9% 38.01%

W/O PPS 50.87% 0.49 77.6% 73.26%
RAP 93.06% 0.07 97.65% 93.53%

Table 3. Ablation study of different modules in the dataset
of 25. In this case, W/O PS uses the same model weights as
RAP but uses a greedy search to decode the evidence chain.

because the associated evidence has similar semantics, RAP
retrievers without PS may output vectors similar to this stage
evidence rather than the next stage.

We also visualize attention of each step path hidden states
to next evidence to explore reasoning interpretability. Fig. 3
shows the results of RAP and missing two loss functions sep-
arately. RAP can retrieve the evidence chain 4 → 1 → 7
correctly in sequence.For the missing LPull, because the lan-
guage model has anisotropy, the predicted result vector will
be concentrated in closer space. This will make it difficult for
RAP to stop in the retrieval process and easy to retrieve irrele-
vant evidence. If deleting LCloser, RAP will not retrieve target
label of current evidence path, which results in the model’s
failure to learn the relationship between evidence and corre-
sponding question.

4. CONCLUSIONS

In this study, we propose an efficient and reliable method
for evidence chains path reasoning (named as RAP), which
models path information by autoregressive prediction and
learn evidence chains from global respect by two loss. We
evaluate our model on three benchmark datasets at different
scales. It consistently outperforms all comparatively strong
baselines in chains reasoning with or without providing se-
quential evidential retrieval path information, and also obtains
state-of-the-art results in final QA tasks. This model can im-
prove interpretability of evidence retrieveing. By predicted
evidence chains’s visualization prediction, which proves the
importance of evidence sequential reasoning in complex tex-
tual QA tasks.
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