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Abstract—The ability of reasoning over evidence has re-
ceived increasing attention in question answering (QA). Recently,
natural language database (NLDB) conducts complex QA in
knowledge base with textual evidences rather than structured
representations, this task attracts a lot of attention because
of the flexibility and richness of textual evidence. However,
existing text-based complex question answering datasets fail
to provide explicit reasoning process, while it’s important for
retrieval effectiveness and reasoning interpretability. Therefore,
we present a benchmark ReasonChainQA with explanatory
and explicit evidence chains. ReasonChainQA consists of two
subtasks: answer generation and evidence chains extraction,
it also contains higher diversity for multi-hop questions with
varying depths, 12 reasoning types and 78 relations. To obtain
high-quality textual evidences for answering complex question.
Additional experiment on supervised and unsupervised retrieval
fully indicates the significance of ReasonChainQA. Dataset and
codes will be made publicly available upon accepted.

Index Terms—Questions and Answers, Reason chain, Explain-
able

I. INTRODUCTION

Developing systems that can reason over explicit knowledge
has attracted substantial attention in current AI research [1].
Complex Question Answering (Complex QA) tasks provide
a comprehensive and quantitative way to measure these abil-
ities, with evidence provided by structured knowledge bases
(e.g.WikiData) [2] or natural language texts (e.g. Wikipedia)
[3]. Considering the high cost of constructing structured
knowledge bases, this paper focuses on complex QA over
textual evidence.

In textual complex QA tasks, prevailing datasets focus on
multi-hop reasoning that requires the aggregation of evidence
across multiple paragraphs to answer a question [4]. In order
to test the ability of reasoning over text in a more fine-grained
way, WIKINLDB dataset [5] constructing knowledge triples to
sentence level evidence and introducing database queries into
complex text QA task. These datasets have sparked significant
progress in textual complex QA. However, existing complex
text QA datasets lack explicit, high-quality and in-depth rea-
soning process. Some datasets provide supporting passage sets
without ordered evidence [4], [6] or organize evidence chains
by overlap spans in passages [7]. This limitation will hinder
the further advancement of reasoning over texts.
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Reason:

Poles's language is Polish.

Jesse Eisenberg is a Poles.

The language of Spain is Spanish

Jesse Eisenberg is at the airport in Spain

Question

Question: What language is used by the ethnic group of 
Jesse Eisenberg?

Poles are a minority ethnic group. 

Fig. 1. An example of the ReasonChainQA. Each sample contains a question,
a set of textual evidence, a unique answer, and a chain of textual evidence
with a complete path.

In this work, we propose a step in this direction by intro-
ducing a new benchmark ReasonChainQA. Given a complex
question based on textual evidence databases, models need to
conduct two subtasks: (1) extracting evidence chains; (2) gen-
erating correct answer. questions. In ReasonChainQA dataset,
knowledge facts were expressed as natural language sentences.
An evidence chain is a logically connected sentence sequence
from question to answer. For example (as shown in figure 1),
the evidence chain of question “What language is used by
the ethnic group of Jesse Eisenbe?” is sentence 4 → 1 → 7.
Evidence chains provide systems with strong meaningful and
explainable reasoning supervision about how the answer is
derived.

In contrast to WIKINLDB dataset where queries are one-
hop or two-hops with 4 reasoning types and 25 relations,
and HotpotQA [4], where each query is answered over two
passages with two reason types, ReasonChainQA not only



expresses knowledge as NLDB, but also makes progress in
questions’ diversity and complexity. Specifically, our explicit
reasoning chain depths vary from 1 to 7 (Table I) with 12
inference types (Table V) and much more correlative relations.

In summary, our contributions are as follows:
1. We present ReasonChainQA, the first textual database

QA dataset with explicit evidence chains that covers diversified
reason depths, relations and inference types.

2. We evaluated the performance of existing methods. It can
more comprehensively reveal the prediction effect of different
methods in the reasoning path, because our data set provides
sequential annotation information

3. We conducted detailed experiments for reasonchain,
providing a robust baseline method for subsequent research.

II. RELATED WORK

Complex Textual QA Tasks. There is vast prior research
on complex textual QA. Open-domain QA (OpenQA) tasks
retrieve passages from large corpora [8]–[10]. Complex QA
requires to deal well with passage structures, and infer an-
swers from few paragraphs by deep reasoning. For example,
DROP [11] needs to perform discrete numerical reasoning.
HotpotQA [4] covers multi-hop questions answered by col-
lecting multiple documents. BeerQA [6] integrates the datasets
of different reasoning steps. RuleTaker [1] reasons based on
the rules. However, these tasks do not have evidence chains,
and the impact of evidence chains on QA tasks has not been
studied.
Natural language databases is a special textual QA task.
It considers the questions similar to database queries, where
system needs to reason and filter on a large number of textual
evidence sentences. The bAbI [12] needs to find the answer
of one evidence from less than 20 evidences. WIKINLDB
[5] transforms knowledge triples to factual sentences, and
answers can be discretely distributed in all corners of the
database. These NLDBs represent knowledge without prede-
fined schemas, and modular architectures on these datasets
need to perform discrete reasoning over hundreds or thousands
of textual evidence. ReasonChainQA provides explainable
evidence chains after them, which can perform correct text
reasoning.
Complex Textual QA Methods. Many complex textual QA
methods focus on the efficiency of documents retrieval [13]
or the pseudo-tags of documents sequence modelling [14],
[15]. GRR [15] recursively retrieves correct evidence in each
step until the end-of-evidence token is generated. In previous
textual QA tasks, retrieve-and-reading QA systems (open
domain question answering) with pseudo chain tag indicate
that a complete and sequential evidence path is vital in knowl-
edge reasoning [15]–[17]. However, most of these methods
lack global evidence chain modeling, and their performance
in long-chain is insufficient. Therefore, the introduction of
reasoning chain with indefinite length can evaluate the per-
formance of different methods more finely.

III. TASK DESCRIPTION

A. Problem Definition

ReasonChainQA refers to natural language sentences (tex-
tual evidence) as database, each sentence containing one or
multiple knowledge facts. An example application of text
databases is personal assistant. For example, for answering
the query “Among the feature films with a publication date
after 2003, which one has the smallest duration?”, QA models
require set filter(e.g.,year, concept, duration), numeric compar-
ison and facts’ bridge over textual database.

For a question QI in ReasonChainQA, it could be answered
on a large-scale unsequenced factual texts database. To solve
complex questions often requires specific logical reasoning
path over multiple facts, we provide reasoning chains EI ,
consisting of correct reasoning evidence eIj .

EI =

n⋃
j=1

eIj (1)

For example, the evidence set of EI in Figure 1 is the evidence
chain RI=[1,4,7].

We propose a benchmark ReasonChainQA, and set two sub-
tasks: (1) Learning to extract reasoning chains. (2) Generating
corrects answers for complex questions. We believe that a
more fine-grained evaluation of multi-hop question answering
system can improve QA performance and make the prediction
explainable.

B. Challenge

Mainstream systems developed with complex question an-
swering over textual database tasks follow the retriever-and-
reader architecture [18], where the efficiency and effectiveness
of evidence chain retrieval still remain to be great challenges.

Retrieval Stopping Strategy. To advance an efficient iter-
ative retriever without dropping accuracy is still a challenge
for evidence chain retrievers. Some existing work chooses to
determine a fixed number of iterations [7] or a maximum
number of retrieved passages [19], which can barely handle
queries of varying depths in ReasonChainQA. Therefore, it’s
necessary to consider an iterative retrieval stopping strategy.

Evidence Chains Extraction. DPR [13], MDR [7] and SSG
[5] use maximum inner-product search (MIPS) retrievers. GRR
[15] compares evidence with currently hidden state embedding
independently, and fails to consider the context. These methods
ignore the modelling of evidence chain in deep reasoning,
which badly damages the overall performance of evidence
chain retrieval.

IV. EVIDENCE CHAIN GRAPH

We remodel each evidence chain as a directed acyclic
graph, and filter the samples containing multiple parent nodes
or multiple child nodes, and filter the samples containing
multiple parent nodes or multiple child nodes. We redefined
the relationship of each evidence node, including: Parent node
means that this node needs to be inferred from these nodes.



TABLE I
STATISTICS OF REASONCHAINQA

Type Train Dev Test Total
Number 9505 1220 1268 11993

Avg. Question Token length 11.11 11.28 11.08 11.12
Avg. Evidence Token length 9.88 9.88 9.85 9.87

Avg. Depth of Evidence Chain 2.13 2.12 2.13 2.13
Depth of Evidence Chain = 1 3231 (33.99%) 420 (34.43%) 425 (33.52%) 4076 (33.99%)
Depth of Evidence Chain = 2 2376 (25.00%) 295 (24.18%) 336 (26.50%) 3007 (25.07%)
Depth of Evidence Chain = 3 3352 (35.27%) 439 (35.98%) 424 (33.44%) 4215 (35.15%)

Depth of Evidence Chain >= 4 546 (5.74%) 66 (5.41%) 83 (6.54%) 695 (5.79%)
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Fig. 2. Percentage of each program in ReasonChainQA

Child node means that these nodes can be obtained by
reasoning based on this node.

Sibling node means that these two nodes are deduced by
their parent nodes at the same time, which belongs to the
parallel evidence relationship.

No-cross node means that in the process of reasoning, there
is no relationship.

V. DATASET COLLECTION

In this section we introduce ReasonChainQA dataset, a
diverse and explainable textual evidence-based complex ques-
tion answering dataset with explicit reasoning chains. We first
transform knowledge base triples from Wikidata [20] to natural
language sentences, which providing us with abundant texts
to get different size of databases. Then, to generate each
example, we acquire texts evidence chains from structured
triples according to query and program from KQA-Pro dataset
[21].

A. Textural Evidence

We employ several methods to generate databases evidence
grounded in Wikidata identifiers. For language diversity, we

extend triples with same subject ones to generate more nat-
ural and informative facts as knowledge triple graphs. Then
we train a text generation model by aligned corpus from
KELM [22], which could generate a natural language evidence
according to a knowledge triples graphs. For example, for
a knowledge triple “{Winna, Lives in, London}”, We find
“{Winna, husband, Mike}” that related to Winna from the
knowledge base. After combining them as a knowledge triple
graph and inputing into the text generation model (based on
T5), we can get “Winna’s husband is Mike and she lives in
London”. In this way, factual information of database evidence
can be enriched. We also repeatedly utilize generation and
post-processing methods to ensure faithfulness and diversity
of evidence. Moreover. To avoid generation uncertainty [23],
string matching is taken to ensure all triples appear in gener-
ated evidence. Data quality will be shown in V.C. Besides, we
mainly collect irrelevant evidence from two aspects to enlarge
database, facts with same subject and facts similar to queries.

B. QA and Evidence Chains

To get complex natural language questions and explicit rea-
soning process, we take over the questions and the correspond-
ing answers in KQA Pro, which is a large-scale KBQA dataset
with programs and SPARQLs. In order to transform logical
queries to evidence chains, firstly, we select programs of KQA-
Pro as the processing objective functions of fact reasoning,
which contain 12 types. Secondly, we locate corresponding
knowledge triples through the programs. Finally, we redefine
the relationship of each evidence node by filtering samples
containing multiple parent nodes or multiple child nodes. The
relationships between its different nodes include parent node,
child node, sibling node and no-cross node. The details are
shown in IV.

C. Analysis of ReasonChainQA

Dataset Statistics. ReasonChainQA is a challenging large-
scale OpenQA dataset composed of 11,993 QA pairs. The
details are shown in Table I. The reasoning length of the
evidence chains is not fixed and the average length is 2.13.
After that, to evaluate the generalization ability of the model
on data sets of different scales, we construct three data sets
of different sizes by randomly searching unrelated fact triples.



TABLE II
PROCESSING OBJECTIVE FUNCTION DESCRIPTION FOR ENTITY INFERENCE IN REASONCHAINQA (FOLLOWING KQA-PRO)

Program Number Example Example Output
QueryAttr 8688 QueryAttr(height) 185cm

FilterConcept 8313 FilterConcept(athlete) Kobe Bryant
FilterStr 5057 FilterStr(gender,male) (Entities, Facts)
FindAll 4837 FindAll() All Entities
Relate 3476 Relate(capital, forward) Beijing
What 2562 What(KobeBryant) Kobe Bryant

VerifyStr 2319 VerifyStr(male) True
VerifyYear 1641 VerifyYear(1980, >) False

Count 743 Count(Entities) 8
VerifyNum 479 VerifyNum(20000dollars,>) False
FilterDate 421 FilterDate(birthday, 1980/06/01, <) (Entities, Facts)
FilterYear 90 FilterYear(birthday, 1980,=) (Entities, Facts)

Following setting in WIKINLDB, each of them has a database
of 25, 250 and 1000 samples, respectively.
Dataset Quality. To measure the quality of generating factual
texts from knowledge base triples, we randomly select 100
samples and manually evaluate factual accuracy, text fluency
and complexity. 100/100 sentences can accurately be mapped
to according to triples, 27/100 sentences are mapped to
multiple triples, and some sentences mapped to one triple
are companied with qualifiers. 88/100 sentences can clearly
understand the meaning. 99/100 of the samples can infer the
correct answer.

VI. EXPERIMENTAL RESULTS

A. Setup

In order to evaluate the performance of different methods
in Reasonchain in a more comprehensive way, we divide
them into two categories. The first one does not need to use
sequence information as an unsupervised experiment, and the
second one uses sequence information for supervision, which
we regard as a supervised experiment.

In the unsupervised experiments, model is trained without
the evidence chains’ supervision, but evaluated with correct
evidence chains. It is compared with some baseline systems
without multi-hop retrieval.

B. Evaluation Metrics

ReasonChainQA contians two subtasks, evidence chains
extracting and complex question answering. The former sub-
task is the foundation for the latter, and can also provide
interpretability for QA task.

For sequential reasoning tasks, we divide them into unsuper-
vised tasks and supervised tasks to evaluate the system. We use
exact match and edit distance [24] to evaluate the effect of a
system in multi-hop reasoning. Specifically, for unsupervised
tasks, we do not provide relevant evidence chain labels but
follow the setting of the original paper. For supervised tasks,
we take our evidence chain tag as training, generate an
evidence chain according to a model we require, and then
calculate the matching degree between this evidence chain and
the RI tag we provide. In addition, in order to more accurately
evaluate the performance of the model on larger scale data,

we provide additional test sets of n = 250 and n = 1000. For
these, we compute recall (@k), which measures the fraction of
times the correct document is found in the top-k predictions.

C. Experimental Details

We train the model using the PyTorch(1.8.2) 1 [25] on
the NVIDIA RTX3090 GPU and use the hugging-face2 [26]
framework. For all methods, the bert-base-uncased 3 model
are chosen for feature extraction. The pretrained contextual
encoders are of base size with 12 layers. We input the output
vector of BERT into the average pooling layer to obtain the
text vector. We use the AdamW [27] as the optimizer with the
warm-up [28], and fine tune the whole model with a learning
rate of 1e-5. A bidirectional single-layer LSTM is randomly
initialized as the Decoder, hidden state is 384, to obtain a new
V t+1
H with dimension 768 from input [VQ, V t

E , V t
H ]. We set the

maximum length of 40, delete the excess. We use linear decay
of learning rate and gradient clipping of 1e-6. The dropout [29]
of 0.1 is applied to prevent overfitting. When calculating the
prediction time, Random and BM25 are performed on the CPU
and the rest of the systems uniformly use the GPU RTX3090
for prediction time statistics.

To ensure fairness, all hyperparameters are adjusted in the
dev set. In all our experiments, at the end of each epoch of
training, we will test in the Dev dataset, and select the highest
model (Mainly depends on F1) to predict in the Test dataset.
We report the results in the Test dataset. All the experimental
results are repeated three times, and the highest and lowest
scores are removed.

D. Performance of Benchmarks

Following previous work [5], [15], we report Exact Match
(EM), Edit Distance (ED), and F1 in Table III. We can
observe that: Firstly, when the evidence chain information of
the training set [15] is limited as an unsupervised situation.
Almost all methods cannot show excellent performance.

Secondly, for all methods, with the improvement of chain
level accuracy, the accuracy of retrieval is also improving,

1https://pytorch.org
2https://github.com/huggingface/transformers
3https://huggingface.co/bert-base-uncased



TABLE III
PERFORMANCE COMPARISON OF THE VARIANTS OF SOTA METHODS ON REASONCHAINQA DATASET. WE WILL USE PATH SEQUENCE AS A SUPERVISED

COMPARISON AND NOT USE PATH SEQUENCE AS AN UNSUPERVISED COMPARISON. WE HIGHLIGHT THE BEST SCORE IN EACH COLUMN IN BOLD, AND
THE SECOND BEST SCORE WITH UNDERLINE.

System 25 250 1000 Time↓EM↑ ED↓ F1↑ EM↑ ED↓ F1↑ EM↑ ED↓ F1↑
Random 1.10% 2.05 8.24% 0.15% 2.12 0.81% 0.08% 2.13 0.26% 0.01X

Unsupervised
BM25 29.65% 1.38 58.89% 24.68% 1.52 47.38% 22.32% 1.57 42.81% 0.03X
DPR 40.93% 0.59 66.77% 34.78% 0.65 61.94% 25.32% 0.75 60.05% 0.9X
SSG 37.85% 0.93 79.39% 38.72% 0.85 31.91% 37.38% 0.84 11.10% 43X

Supervised GRR 50.55% 1.03 97.86% 46.77% 1.15 87.66% 43.06% 1.27 81.37% 1.1X
MDR 54.50% 0.45 85.43% 51.74% 0.48 82.58% 51.03% 0.49 81.73% 3X

TABLE IV
EXACT MATCH PERFORMANCE FOR QA TASKS. WE UNIFORMLY USE THE

RETRIEVED TOPK EVIDENCE AS INPUT TO THE READER FOR RESULT
GENERATION.

QA Exact Match 25 250 1000
Random 33.44% 29.57% 28.71%

Unsupervised
BM25 57.10% 52.37% 50.95%
DPR 69.72% 63.09% 54.50%
SSG 79.42% 64.51% 34.34%

Supervised GRR 90.38% 81.62% 78.15%
MDR 70.27% 68.45% 68.69%

TABLE V
HYPER-PARAMETER SETTINGS.

Hyper-parameter Value
Encoder Hidden Size 768

Dropout 0.1
Learning Rate 1e-5

Batch size 24
Num Epochs 10

Beam 5

which proves that improving the reasoning performance of
the evidence chain can further assist retrieval.

E. The Effectiveness of QA

We follow the standard Retriever-Reader architecture [18]
and evaluate the effectiveness of different searchers in QA
tasks through fixed readers. In Table IV, we employ T5 models
fine-tuned on golden evidence as a Reader. We uniformly use
the same fine-tuned T5 [30] model with a learning rate of 1e-4
for the final question and answer accuracy. It as the reader for
fairness consistency and report the EM scores of reader results
from different systems.

The retrieval evidence chains or sets from different systems
are input to the reader. For the unsupervised system, we
uniformly extract the results from Top-k retrieval evidence
where k = length of evidence chains. For the supervised
system, we take the retrieval model for generation (this means
that k is judged by the model), after which the generated
results are used as input to the reader model. We train five

readers with different random numbers and take the average
score as the reported result.

We can find that a more orderly reasoning chain can help
readers better understand the structure of evidence and further
find the correct answer.

VII. CONCLUSIONS

In this study, we propose a diverse and explainable complex
question answering database with explicit reasoning chain.
ReasonChainQA provides accurate path retrieval information
to help the system learn interpretable evidential reasoning. We
evaluate six baseline methods on three benchmark datasets
at different scales. In the experiment, we evaluated in detail
the modeling ability of different methods of evidence chain
sequence, which was lacking in previous experiments. We fur-
ther showed the importance of the evidence chain to question
and answer tasks.
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