
Temporal-Channel Topology Enhanced Network
for Skeleton-Based Action Recognition

Jinzhao LuoB1,2, Lu Zhou1, Guibo Zhu1,2, Guojing Ge1, Beiying Yang1,2, and
Jinqiao Wang1,2

1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese
Academy of Sciences, No.95, Zhongguancun East Road, Beijing 100190, China

2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing
100049, China

luojinzhao2020@ia.ac.cn, {lu.zhou, gbzhu, guojing.ge, beiying.yang,
jqwang}@nlpr.ia.ac.cn

Abstract. Skeleton-based action recognition has become popular in re-
cent years due to its efficiency and robustness. Most current methods
adopt graph convolutional network (GCN) for topology modeling, but
GCN-based methods are limited in long-distance correlation modeling
and generalizability. In contrast, the potential of convolutional neural
network (CNN) for topology modeling has not been fully explored. In
this paper, we propose a novel CNN architecture, Temporal-Channel
Topology Enhanced Network (TCTE-Net), to learn spatial and tem-
poral topologies for skeleton-based action recognition. The TCTE-Net
consists of two modules: the Temporal-Channel Focus module, which
learns a temporal-channel focus matrix to identify the most important
feature representations, and the Dynamic Channel Topology Attention
module, which dynamically learns spatial topological features, and fuses
them with an attention mechanism to model long-distance channel-wise
topology. We conduct experiments on NTU RGB+D, NTU RGB+D
120, and FineGym datasets. TCTE-Net shows state-of-the-art perfor-
mance compared to CNN-based methods and achieves superior per-
formance compared to GCN-based methods. The code is available at
https://github.com/aikuniverse/TCTE-Net.
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1 Introduction

Action recognition is a crucial task with applications in various fields such as
human-robot interaction and virtual reality. With the continuous development
of depth sensors and pose estimators, obtaining high quality 3D skeletal data has
become easier. As a result, skeleton-based action recognition received increasing
attention in recent years, thanks to the compactness and robustness of human
skeletal data against complicated backgrounds.

Graph Convolutional Networks (GCNs) [1–3] have become one of the most
popular skeleton-based action recognition methods due to its ability to handle
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irregular topological information in skeletons [4, 5]. Specifically, GCNs model
skeleton sequences as spatio-temporal graph topologies. They use a handcrafted
graph, which represents physically connected edges among human skeleton, to
extract the spatial features representing the relationships between joint nodes in
the human skeleton. ST-GCN [5], the first well-known GCN-based method, con-
structs spatial and temporal correlations in skeletal data via graph convolution.
Subsequently, Li et al. [6] expands the receptive field based on the self-attention
mechanisms to learn topology between joints, while Wang et al. [7] aggregates
the spatio-temporal topological feature representations to improve the modeling
capacity. However, GCN-based methods have limitations. Joint nodes in skeleton
are treated equally, which means important nodes and edges cannot be identi-
fied [20]. Furthermore, GCNs struggle to model the complicated correlations
between distant unnaturally connected joint nodes. However, for human action
recognition, relationships between structurally distant joints are as important as
between adjacent joints. Besides, GCN-based methods require complex network
structure designs to fuse skeleton and other modalities [8]. Different from the
previous GCN methods, in this paper, we attempt to alleviate the disadvantage
of GCN methods that cannot identify the relationships between distant joint
nodes.

Compared with GCN, Convolutional Neural Network(CNN) can model topo-
logical features more effectively with powerful local convolution characteristics
and self-attention mechanism [9, 10]. They can also be easily fused with other
modalities [11]. Caetano et al. [12] converts the skeleton coordinates to a three
channels pseudo image input, and then classifies the features extracted through
the network. Such input cannot exploit the locality nature of convolution net-
works. Shi et al. [18] modeling spatial-temporal dependencies between joints
without the requirement of knowing their positions or mutual connections by
building the attention blocks. PoseC3D [11] generates 3D heatmap volumes
from skeleton coordinates as input, and then classifies with a 3D-CNN. How-
ever, existing CNN-based methods do not utilize the natural topology of the
bones. Processing in the temporal and spatial dimensions leads to the sepa-
ration of spatio-temporal attributes of actions respectively, without forming a
unified spatio-temporal feature representation. In addition, using the attention
mechanism simply to assign different weights to each joint node cannot extract
the relationship between joint nodes effectively.

In order to solve the above problems, in this paper, we propose a novel
Temporal-Channel Topology Enhanced Network (TCTE-Net), which models the
topological information of skeleton data effectively. Specifically, we propose a
novel Temporal-Channel Focus (TCF) module, which emphasizes vital features
to force the model focus on the critical joint nodes in action classification. And
we propose a Dynamic Channel Topology Attention (DCTA) module, which can
identify the relationships between distant joint nodes effectively and model the
correlation between distant joint nodes dynamically.

Our contributions are summarized as follows:
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1. We present a novel TCTE-Net for skeleton-based action recognition equip-
ping with TCF and DCTA modules, which attempt to identify the critical
joint nodes and relationships between distant joint nodes in action classi-
fication. The TCF module emphasizes the critical joint nodes with a focus
matrix. DCTA learns distant channel-wise topology modeling based on the
dynamic channel distance matrix and attention mechanism.

2. The extensive experiments verify the effectiveness of TCF and DCTA mod-
ules. The proposed TCTE-Net outperforms state-of-the-art CNN methods
significantly and achieves remarkable performance compared to GCN-based
methods on three skeleton-based action recognition datasets.

2 PROPOSED METHOD

In this section, we first propose the detailed architecture of TCTE-Net in Sec. 2.1.
Then, the Temporal-Channel Focus Module and the Dynamic Channel Topology
Attention Module are introduced in Sec. 2.2 and Sec. 2.3.

Fig. 1. (a) Pipeline of the proposed TCTE-Net, which consists of L TCF blocks and
one DCTA module. We instantiate TCTE-Net with the SlowOnly backbone, where L
is 3. (b) The detailed architecture of TCF module.

2.1 Network Architecture

Joint nodes in different body parts contribute to action classification differently.
For example, in the case of a ‘shaking hands’ action, the weight of arm part
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is much higher than the body part. However, existing CNN-based methods are
limited in identifying critical joint nodes, and CNNs cannot model the natural
topology of the bones directly without an adjacency matrix, which is widely
used in GCNs. To address these limitations, we propose the Temporal-Channel
Topology Enhanced Network (TCTE-Net).

The TCTE-Net is illustrated in Fig. 1.(a), which consists of three TCF blocks
and one DCTA module. TCTE-Net adopts lightweight SlowOnly 3D-CNN [11,
13] as the backbone. Our approach focuses more on feature representation and
topology modeling. Specifically, a set of 2D skeleton coordinates (x, y, c) is
represented as a heatmap of size K × H × W by composing K gaussian maps
centered at joint:

Jkij = e−
(i−xk)2+(j−yk)2

2∗σ2 ∗ck , (1)
where σ controls the variance of gaussian maps, (xk, yk) and ck are respectively
the location and confidence score of the k-th joint, and K is the number of joints,
H and W are the height and width of the frame respectively. All heatmaps are
stacked along the temporal dimension T . We adopt the 3D heatmap volumes as
input. The input joints dimension can be viewed as image channels dimension.
In this case, a joint node in the original 2D skeleton is represented as a heatmap
of size H ×W .

The 3D heatmap volumes are fed directly into the network directly and are
converted into high level features through ResNet backbones. Next, we extract
vital joints feature representations through TCF modules and model the topo-
logical relationship between distant joint nodes through the DCTA module. Fi-
nally, a classifier is followed to predict action labels. Based on TCF and DCTA
module, TCTE-Net can model the local actions finely, and extract long-distance
information between non-local joint points under different actions flexibly.

2.2 Temporal-Channel Focus Module

To enhance the critical joint nodes, we propose TCF module, which is illustrated
in Fig. 1.(b). Before being fed into TCF module, the input features are trans-
formed into high level representations X ∈ RC×T×H×W . The features X are
then fed into a two-stream structure of temporal and channel dimensions, which
is implemented along the temporal dimension and channel dimension with a
Global average pooling (GAP) layer and followed with a FC layer. The features
X are downsampled and linearly transformed along the temporal and channel
dimensions respectively. Through the above operations, we get the weighted vec-
tors of joint node features in channel and temporal dimensions. The weighted
vectors are then fused by element-wise multiplication. Activation function is ap-
plied to get the temporal-channel focus matrix.

In the early stages of the network, the heatmaps of different channels repre-
sent skeleton joint features of different body parts, which has different weights
in classification. The proposed TCF module can distinguish critical local joint
nodes, and extract the spatio-temporal local features that are more effective for
action recognition adaptively. This makes the model pay more attention to the
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Fig. 2. The detailed architecture of DCTA module.

most discriminative local features, and addresses the difficulties of recognizing
subtle and similar movements.

Finally, the joint node features X are strengthened by temporal-channel focus
matrix. The overall process of TCF can be formulated as:

X ′ = σ
(
F1

(
GAP (X) ∗ F2(GAP (X)

))
∗X, (2)

where X ∈ RC×T×H×W and X ′ ∈ RC′×T×H′×W ′ are the input and output of the
TCF module respectively. F1 and F2 mean FC layers. σ is activation function.

2.3 Dynamic Channel Topology Attention Module

To eliminate the weakness of CNN in modeling the irregular skeletal topology, we
introduce the Dynamic Channel Topology Attention module (DCTA). As shown
in Fig. 2, the self-attention matrix is used to extract global shared topology for



6 Jinzhao Luo et al.

all channels. Meanwhile, we learn specific relationships between joint nodes of
different channels.

We utilize convolution and pooling operations on input feature X ′ ∈ RC′×T×H′×W ′

to generate new feature representations Q, K, V , and reshape to Q, K ∈ RC′×N

and V ∈ RC′×T×N , where N = H ′×W ′ . Then we calculate the spatial attention
map S ∈ RN×N :

Sji =
eqi·kj∑N
i=1 e

qi·kj

, (3)

where Sji measures the correlation between position qi and kj . CNN is capable
of modeling the topology of joints implicitly [14]. Thus S are adopted to rep-
resent the global shared topological relationship between features of different
joint nodes. Meanwhile, we calculate the channel-specific correlations between
different features M ∈ RC′×N×N , which can be formulated as:

M(xi, xj) = σ
(
Q(xi)−K(xj)

)
, (4)

where σ(·) is activation function. M(xi, xj) is dynamic channel distance matrix,
which calculates distances between features xi and xj along channel dimen-
sion. Different channels represent different types of motion features in classifi-
cation [1]. Therefore, M(xi, xj) essentially models the topological relationship
between joint nodes under different motion features. For distant unnaturally
connected joint nodes, the dynamic channel distance matrix is able to capture
their specific correlations under different motion features dynamically. The final
topological relation R ∈ RC′×N×N is formulated as:

R = S + α ·M. (5)

The dynamic channel distance matrix M(xi, xj) is utilized to enhance the
global shared topological representation S with a trainable scalar α . The addi-
tion is conducted in a broadcast way. Finally, we perform a matrix multiplica-
tion between R and V , and reshape the result to RC′×T×H′×W ′ . The output
of DCTA module is formulated as:

Zj = X ′
j +

N∑
i=1

rjivi, (6)

where rji and vi represent the corresponding elements in the matrix respectively.
The Equation (6) shows that the output feature Z is the sum of the final

topological relation and original features, which models the long-range correla-
tions between joint nodes dynamically.

3 EXPERIMENTS

3.1 Datasets and Implementation Details

NTU RGB+D NTU RGB+D is a large-scale human action recognition dataset.
It contains more than 56k video samples of 60 human action classes performed
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by 40 distinct human subjects. Each sample is captured from different views
by three Microsoft Kinect v2 cameras at the same time. The dataset has two
benchmarks: Cross-subject (X-Sub), Cross-view (X-View), for which are split by
action subjects, camera views in training and validation.

NTU RGB+D 120 NTU RGB+D 120 extends NTU RGB+D with 57k video
samples of additional 60 action classes, which contains 113k samples over 120
human action classes performed by 106 human subjects. The authors recommend
two benchmarks: Cross-subject (X-Sub) and Cross-setup (X-Set, split by camera
setups).

FineGYM FineGYM is a fine-grained action recognition dataset. It contains
29K videos of 99 fine-grained action classes collected from 300 professional gym-
nastics competitions. The characteristic of this dataset is that the behaviors are
divided according to the level from fine-grained actions to coarse-grained events,
and the human skeleton of gymnastics moves has a large deformation.

Implementation details. TCTE-Net is implemented via Pytorch and trained
with 8 RTX 2080 TI GPUs, where each GPU has 11 video clips in a mini-batch.
The model is trained for 30 epochs with SGD optimizer. The initial learning rate
is set to 0.1375 and decayed with Cosine Annealing scheduler [21]. The weight
decay is set to 0.0003. For all datasets, we report the results of 10-clip testing.

3.2 Ablation Study

Table 1. Ablation study on NTU RGB+D. FM represents Focus Matrix.

Method Param. X-Sub (%) X-View (%)
Baseline 2.03M 93.3 96.2

+TCF (3) +0.25M 93.7 96.5

+TCF (3) w/o FM +0.25M 93.5 96.4

+DCTA +0.30M 93.6 96.5

+ TCF (3) + DCTA +0.53M 93.8 96.6

Effectiveness of TCF. Table 1 illustrates the performance gains brought
about by TCF and DCTA on the NTU RGB+D dataset. We use SlowOnly as
the baseline model and add the TCF module to it. Our results show that TCF
boosts accuracy by 0.4% on X-view benchmark, with little parameter increase,
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thus validating the effectiveness of TCF. To verify the validity of the Focal Ma-
trix in the TCF module, we then remove the Focus Matrix (FM) from TCF. The
TCF without FM module parallels the weighted channel and temporal vectors.
Compared to TCF, the performance of TCF without FM drops by 0.2%, indi-
cating that the weighted focus matrix can identify classification-vital features
efficiently, thereby assigning different attention weights to all spatio-temporal
joint nodes.

Effectiveness of DCTA. By introducing the DCTA module, we further im-
prove accuracy by 0.3%. DCTA dynamically models the relationship between
long-distance joint points under different action characteristics based on the
dynamic channel distance matrix, so that the model has a better recognition ef-
fect on actions with large deformation and fast movement speed. Our proposed
TCTE-Net achieves an accuracy of 93.8% with the X-Sub benchmark, which
improves the baseline accuracy by 0.5% with an efficient model.

3.3 Comparison with the State-of-the-Art

Table 2. Comparative Experiment of TCTE-Net and SOTA Model on NTU RGB+D
Dataset.

Type Method X-Sub (%) X-View (%)

CNN
DSTA-Net [18] 91.5 96.4

Ta-CNN+ [14] 90.7 95.1

PoseConv3D+ [11] 93.7 96.6

GCN
MS-G3D+ [3] 91.5 96.2

STF [9] 92.5 96.9

HD-GCN+ [20] 93.0 97.0
Ours TCTE-Net 93.8 96.6

In the experimental results section, we evaluate the effectiveness of TCTE-
Net on three benchmark datasets: NTU RGB+D, NTURGB+D 120, and Fin-
eGYM. Many state-of-the-art methods employ multi-stream fusion models [20,
22, 23], joint, bone. For a fair comparison, we compare our model with the state-
of-the-art methods obtained by the best single models on each dataset, and our
model significantly outperforms the other methods.

On the NTU RGB+D dataset, the results shown in Table 2 demonstrate
that our model is effective. Although the performance of X-View benchmark
is nearly saturated, our model still obtains remarkable performance. Moreover,
TCTE-Net achieves an accuracy rate of 93.8% in the X-Sub benchmark test,
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outperforming other state-of-the-art single-model methods, and achieves a per-
formance improvement of 0.1% compared with advanced multi-stream fusion
methods. Compared with the state-of-the-art GCN model, TCTE-Net achieves
0.8% performance improvement on X-Sub benchmark test.

Table 3. Comparative Experiment of TCTE-Net and SOTA Model on NTU RGB+D
120 Dataset.

Type Method X-Sub (%) X-View (%)

CNN
DSTA-Net [18] 86.6 89.0

Ta-CNN+ [14] 85.7 87.3

PoseConv3D [11] 86.0 89.6

GCN
Shift-GCN [24] 85.9 87.6

InfoGCN [25] 85.1 86.3

HD-GCN+ [20] 85.7 87.3
ours TCTE-Net 86.6 89.9

On the challenging NTU RGB+D 120 dataset, our model achieves excellent
performance, as shown in Table 3. Compared with the state-of-the-art single
model, TCTE-Net achieves 0.6% and 0.3% performance improvements on the
X-Sub and X-View benchmarks respectively, achieving comparable performance
to the state-of-the-art multi-stream fusion methods, and outperforming the pre-
vious state-of-the-art CNN method. Compared with the most advanced GCN
method, TCTE-Net achieves 0.7% and 2.3% performance improvements on the
X-Sub and X-View benchmarks respectively, which verifies the effectiveness of
the proposed method in the skeleton action recognition task.

Table 4. Comparative Experiment of TCTE-Net and SOTA Model on FineGYM
Dataset.

Type Mean Top-1 Accuracy (%)
MS-G3D+ [3] 92.6
PoseConv3D [11] 93.2
TCTE-Net 93.8

Furthermore, we evaluate TCTE-Net on the FineGYM dataset. The results
shown in Table 4 demonstrate that our model achieves state-of-the-art perfor-
mance on the FineGYM dataset. Our model obtains an accuracy of 93.8%,
which outperforms the state-of-the-art GCN-based method by 1.2%. Notably,
the GCN-based methods are weak in modeling non-connected joint relation-
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ships, while our model is able to capture long-range correlations of non-directly
connected joints in the skeleton. Therefore, for FineGYM with large movement
and deformation, TCTE-Net achieves higher performance than the GCN-based
methods.

4 CONCLUSION

This paper proposes TCTE-Net, a novel framework for skeleton-based action
recognition that addresses the limitations of CNN in modeling the irregular
topology of the skeletal data. Through the proposed Temporal-Channel Focus
module and Dynamic Channel Topology Attention module, we enhance the abil-
ity of TCTE-Net to identify critical joint nodes and model the correlation be-
tween joints under different motion features. Experiments on three benchmark
datasets show that TCTE-Net outperforms the previous state-of-the-art models.
Our work contributes to exploring the potential of CNNs for modeling skeletal
data, and we hope that this will inspire further investigations in this direction.
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