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a b s t r a c t

Temporal knowledge prediction is a crucial task for early event warning, which has gained increasing
attention recently. It aims to predict future facts based on relevant historical facts using temporal
knowledge graphs. There are two main difficulties associated with the prediction task: from the
perspective of historical facts, modeling the evolutionary patterns of facts to accurately predict the
query and from the query perspective, handling the two cases where the query contains seen and
unseen entities in a unified framework. Driven by these two problems, we propose a novel adaptive
pseudo-Siamese policy network for temporal knowledge prediction based on reinforcement learning.
Specifically, we design the policy network in our model as a pseudo-Siamese network consisting of two
sub-policy networks. In the sub-policy network I, the agent searches for the answer to the query along
the entity-relation paths to capture static evolutionary patterns. In sub-policy network II, the agent
searches for the answer to the query along relation-time paths to deal with unseen entities. Moreover,
we develop a temporal relation encoder to capture the temporal evolutionary patterns. Finally, we
design a gating mechanism to adaptively integrate the results of the two sub-policy networks to
help the agent focus on the destination answer. To assess the performance of our model, we conduct
link prediction on four benchmark datasets, and extensive experimental results demonstrate that our
method achieves considerable performance compared with existing methods.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Knowledge graphs (KGs), which store numerous static triple
acts in the form of (subject, relation, object), have been widely
sed in many natural language processing applications, such as
uestion answering (Dong, Wei, Zhou, & Xu, 2015), recommen-
ation systems (Koren, Bell, & Volinsky, 2009), and retrieval sys-
ems (Xiong & Callan, 2015). However, owing to the increased
opularity of triple facts, many facts present dynamic attributes
hich only hold in a specific period or at a certain point in time.
herefore, temporal knowledge graphs (TKGs) and corresponding
emporal knowledge reasoning tasks have received increasing
cademic attention recently.
TKG reasoning has two forms: interpolation and extrapolation.

n a TKG with timestamps varying between [t0, tT ], interpolation
KG reasoning aims to infer the answer to a query within time t ∈

t0, tT ]. While the extrapolation setting employs only historical

∗ Corresponding author at: Department of Automation, Tsinghua University,
hina.
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htao@tsinghua.edu.cn (J. Tao).
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knowledge to predict future facts for time t (t > tT ), we adopt
he extrapolation setting temporal knowledge prediction here.
urthermore, this method is a crucial task for early event warn-
ng. In this study, we focus on addressing problems in temporal
nowledge prediction.
Recently, many temporal knowledge prediction methods (Jin,

u, Jin, & Ren, 2020; Trivedi, Farajtabar, Biswal, & Zha, 2019;
hu, Chen, Fan, Cheng, & Zhang, 2021) based on embedding
ave been presented. Moreover, only a few studies (Li et al.,
021; Sun, Zhong, Ma, Han, & He, 2021) have employed models
ased on reinforcement learning (RL) to predict temporal knowl-
dge. Although embedding-based approaches are convenient for
odeling knowledge with considerable performance, they fail to
onsider the symbolic compositionality of KG relations, which
imits their application to more complex reasoning tasks. RL-
ased approaches can allow the agent to obtain the answer to the
uery by traversing the path it interacts with a complex environ-
ent. Thus, they possess powerful adaptability. However, there
re two main difficulties experienced by an agent in the travers-
ng process. The first is modeling the evolutionary patterns of
istorical facts to accurately predict future facts. Queries are usu-
lly uncertain, containing seen or unseen entities. Consequently,

https://doi.org/10.1016/j.neunet.2023.01.004
https://www.elsevier.com/locate/neunet
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he second difficulty is addressing the two cases where the query
ontains seen and unseen entities in a unified framework. Many
elated studies have been conducted to address these two prob-
ems. In embedding-based approaches, to model the temporal
attern of facts, Know-Evolve (Trivedi, Dai, Wang, & Song, 2017)
nd its extension DyRep (Trivedi et al., 2019) model the occur-
ence of facts as a temporal point process, Re-NET (Jin et al.,
020) models the occurrence of a fact as a probability distribution
onditioned on temporal sequences of past knowledge graphs.
o cope with the second obstacle, XERTE (Han, Chen, Ma and
resp, 2021) develops a temporal relational attention mechanism
nd predicted the relevant substructure of TKGs by propagating
ttention. In addition, TITer (Sun et al., 2021) uses the inductive
ean representation of the trained entities with the same co-
ccurrence query relation to represent unseen entities, obtaining
better entity embedding distribution and answer score distribu-
ion. However, the unseen entity does not exist in historical facts
nd has no historical neighbors. Thus, for a query containing an
nseen entity, XERTE (Han, Chen et al., 2021) cannot propagate
ttention to entities of previous facts and TITer (Sun et al., 2021)
ails to select candidate temporal actions to search for the answer.

In this study, we propose a novel RL-based temporal knowl-
dge prediction model to address these two problems. Specifi-
ally, we design the policy network of the proposed model as a
seudo-Siamese network consisting of two sub-policy networks.
ub-policy network I is designed to capture the static evolution-
ry patterns so that agent I can search for the answer to the query
long the entity-relation paths instead of the time information.
n sub-policy network II, to deal with unseen entities, we add
emantic edges to the TKGs so that agent II can search for the
nswer to the query along the relation-time paths instead of the
ntity information. Furthermore, we develop a temporal relation
ncoder to capture the temporal evolutionary patterns. Finally,
o ensure that the two sub-policy networks compensate for each
ther, we employ a gating mechanism to adaptively integrate the
esults of the two sub-policy networks to help the agent focus
n the destination entity. Extensive experimental results indicate
hat our method performs considerably better than the existing
pproaches, which underlines the effectiveness and superiority of
ur method.
The contributions of this study are listed as follows:

• We develop a novel RL-based temporal knowledge predic-
tion approach to address the two cases where the query
contains seen and unseen entities in a unified framework.

• We advocate the importance of developing a more com-
prehensive modeling framework regarding the evolutionary
patterns of the facts. Therefore, we develop one sub-policy
network to capture static evolutionary patterns, while de-
signing another sub-policy network and temporal relation
encoder to model temporal evolutionary patterns. Finally,
we employ a gating mechanism to adaptively integrate the
results of two sub-policy networks.

• We propose a new edge type to establish the relationship
between the query containing the unseen entity and histor-
ical facts. Moreover, we design a novel method to handle the
special type of query.

• The experimental studies on four TKG datasets demonstrate
that our method achieves state-of-the-art performance.

. Related research

.1. Static KG reasoning

Static KG reasoning methods can be roughly grouped into
hree categories: embedding-based, RL-based, and logic rule-
ased. Embedding-based approaches are the most popular owing
193
to their high efficiency and outstanding effectiveness, which aim
to project the entities and relations in KGs into a vector space
and represent them as low-dimensional embeddings. This type
of method is broadly classified into three paradigms: (i) Trans-
lational distance-based models (Bordes, Usunier, Garcia-Durán,
Weston, & Yakhnenko, 2013; Ji, He, Xu, Liu, & Zhao, 2015; Wang,
Zhang, Feng, & Chen, 2014). (ii) Tensor factorization-based mod-
els (Balažević, Allen, & Hospedales, 2019; Nickel, Tresp, & Kriegel,
2011; Trouillon, Welbl, Riedel, Gaussier, & Bouchard, 2016; Yang,
Yih, He, Gao, & Deng, 2015). (iii) Neural network-based mod-
els (Dettmers, Pasquale, Pontus, & Riedel, 2018; Schlichtkrull
et al., 2017; Vashishth, Sanyal, Nitin, & Talukdar, 2020). Al-
though embedding-based approaches are simple and convenient
for modeling knowledge with considerable performance, they are
less sensitive to reasoning distance and ignore the logical rules
between relations and paths, which limits their application in
more complex reasoning tasks and limits their interpretability.
RL-based approaches allow the agent to find the answer to the
query by traversing the path on the KGs, which enables them
to learn reasoning rules from relation paths. DeepPath (Xiong,
Hoang, &Wang, 2017) is the first multi-hop reasoning work based
on RL, which aims to search for generic representative paths
between pairs of entities. MINERVA (Das et al., 2018) utilizes the
history path to help the agent searching for the answer entities
of a particular KG query in an end-to-end fashion. Based on
MINERVA, M-Walk (Shen, Chen, Huang, Guo, & Gao, 2018) and
Multi-HopKG (Lin, Socher, & Xiong, 2018) adopt a Monte Carlo
tree search and pre-trained embedding model to overcome the
problem of sparse rewards, respectively. However, none of these
methods can model the evolutionary patterns of the facts in TKGs.

2.2. Temporal KG reasoning

According to the relationship between query time points and
training temporal scope, TKG reasoning can be broadly classified
into two forms: interpolation and extrapolation. Interpolation
reasoning (Dasgupta, Ray, & Talukdar, 2018; García-Durán, Du-
mancic, & Niepert, 2018; Goel, Kazemi, Brubaker, & Poupart,
2020; Jiang et al., 2016; Lacroix, Obozinski, & Usunier, 2020)
aims to infer new facts at historical timestamps by employing
historical and future information. Corresponding extrapolation
reasoning aims to predict future facts based only on historical
information, accordingly, we call this reasoning task temporal
knowledge prediction. Considering its great practical value, espe-
cially in early event warning, many temporal knowledge predic-
tion studies have been presented recently. Know-Evolve (Trivedi
et al., 2017) and its extension DyRep (Trivedi et al., 2019) employ
a temporal point process to model the occurrence of temporal
facts in TKGs. Re-NET (Jin et al., 2020) models the occurrence
of temporal facts as probability distributions conditioned on the
temporal sequences of past knowledge graphs. To model repeti-
tive facts, CyGNet (Zhu et al., 2021) designs a copy mode to learn
from the known facts that appeared in history. XERTE (Han, Chen
et al., 2021) develops a temporal relational attention mechanism
and predicts future facts by focusing on the relevant substructure
of TKGs. CluSTeR (Li et al., 2021) and TITer (Sun et al., 2021)
are two prominent temporal knowledge prediction approaches
based on RL. CluSTeR (Li et al., 2021) first employs an agent to
induce relevant clues from historical facts and then adopts an
embedding model to deduce answers from the obtained clues.
TITer (Sun et al., 2021) forces the agent to travel on historical
knowledge graph snapshots and directly find the answer to the
query. Furthermore, to deal with unseen entities in the query,
TITer presents an inductive mean representation method to ob-
tain a more reasonable initial embedding for unseen entities,
implicitly improving the inductive inference ability of the model.
However, it fails to search for an answer to a query with an
unseen entity intuitively through self-loop edges. In this study,

we propose a novel method to address this problem.
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.3. Pseudo-Siamese network

Siamese network is a class of neural network architectures
ontaining two or more subnetworks with the same configura-
ion, i.e., the same parameters and architectures, and it is also a
ype of metric learning model used to measure two or more input
egrees of similarity. A Siamese network (Bromley, Guyon, LeCun,
äckinger, & Shah, 1993) is first proposed to verify whether the
ignature on a check is consistent with the reserved signature of
he bank. Recently, Siamese networks have been widely used in
omputer vision, such as in object tracking (Cen & Jung, 2018;
i et al., 2019) and face recognition (Wu, Xu, Zhang, Yan, & Ma,
017) tasks. Owing to their weight sharing capabilities, Siamese
etworks limit the difference between their inputs to a certain
xtent. In general, for inputs with large differences, such as im-
ges and text, we must use a pseudo-Siamese network. A pseudo-
iamese network has a similar network architecture to a Siamese
etwork. However, they differ in that their subnetworks do not
hare weights, that is, the subnetworks are different in each case.
or example, TPSN (TPSN, 2022) introduces a novel triple pseudo-
iamese network to encode the welding pool image, sound, cur-
ent, and voltage to detect different welding defects or actions.
SGMN (Wu, Chen, He, & Jiang, 2022) employs a pseudo-Siamese
etwork structure to learn the similarity between the 2-D image
eatures and the 3-D mesh model of on object. In contrast, in
his study, we design a novel pseudo-Siamese network using the
L framework to encode similar inputs for temporal knowledge
rediction.

. The proposed model

.1. Notations and problem formulation

The temporal facts in TKGs are defined by quadruples
s, r, o, t) ⊆ E × R × E × T , where E , R, and T denote finite
ets of entities, relations, and timestamps, respectively. TKGs can
lso be represented as graph snapshots over time, namely G =

Gt1 , Gt2 , . . . , GtT } = {(s, r, o, tl)}
|T |

tl=1, where s, o ∈ E , r ∈ R. Each
Gtl is static multi-relational KGs at time tl. Thus, TKG is a collection
of event facts at different timestamps, where the timestamps are
arranged in ascending order.

The task of temporal knowledge prediction is to conduct a link
prediction for future queries (i.e., (sq, rq, ?, tq)) based on the his-
torical facts G0:tq−1. However, not all historical facts are relevant
to the query in G0:tq−1. Thus, the historical facts that are directly
relevant to the query are represented as Es = {(sq, r, o, tl) ∈

Gtl |tl < tq}, which have the same subject entity sq as the query.
In addition, we denote the historical facts that are semantically
relevant to the query as Er = {(s, rq, o, tl) ∈ Gtl |tl < tq}, that
is, the facts in Er have the same relation rq as the query. The
relation of an entity reflects the roles of the entity. Thus, they
have similar semantic meanings. More specifically, our task is to
employ historical facts related to the query to answer a given
query.

3.2. Reinforcement learning system

The temporal knowledge prediction task is formulated as a
finite-horizon sequential decision-making problem, and the re-
inforcement learning system is described as a deterministic Par-
tially Observed Markov Decision Process (POMDP). The system
consists of an agent and environment. The agent starts from the
query entity sq, follows a relation path in G according to its policy,
and stops at the entity regarded as the correct answer to the
query. The environment is described in detail as follows:

States. Each state can be represented as sk = (ek, tk, sq, rq, oq, tq)
∈ S , where S denotes the state space, e denotes the entity visited
k
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at step k, tk denotes the timestamp of the action taken in the
previous step, (sq, rq, tq) can be seen as the global context shared
by all states for a given query, and oq is the answer. As the agent
starts from the query node sq and the default initial action is a
self-loop action, the initial state is s0 = (sq, tq, sq, rq, oq, tq).

Observations. When searching for answers, the agent cannot
observe all the states of the environment, except for the current
location and query information, the answer oq is invisible. There-
fore, the observation function is defined as:O((ek, tk, sq, rq, oq, tq))
= (ek, tk, sq, rq, tq).

Actions. Given the current state (ek−1, tk−1, sq, rq, oq, tq), the set
of possible actions Ak ∈ A at step k consists of the outgoing
edges of ek−1, where A is the action space. Here, we describe the
three types of outgoing edges of entity ek−1 at step k as follows:
(i) Self-loop Edges: The self-loop edges (i.e., (ek−1, rself , ek−1, tk−1))
not only allow the agent to stay in a place but also allow it to
stop adaptively when it searches for a certain number of steps
or states that it has found the final answer. (ii) Temporal Edges:
If there are related historical facts (ek, r, o, tl) for the current
entity ek at time tk, we build the temporal edge between etkk and
otl using the relation r . For example, as shown on the left of
Fig. 1, in the initial state, when the query contains the seen entity
sq and the related historical facts (sq, r1, o1, t0) are observed,
we build the temporal edges (stqq , r1, o1, t0). (iii) Semantic Edges:
When the query contains the unseen entity sq, we cannot find
the related historical facts (sq, r, o, tl) for the entity sq. Thus, in
this case, the agent can only stay in a place through the self-
loop edges. Fortunately, in the initial state, there exist historical
facts (sv, rq, o, tl) that are related to the query relation rq, as is
(sv, rq, o8, t1) shown on the right of Fig. 1. Therefore, we build
the semantic edges (sq, rq, o8, t1). Note that semantic edges only
exist in the first step to bridge the gap between the query and
historical facts. In summary, when the query contains a seen
entity, we can also build semantic edges through the relation so
that the agent can walk along the above three types of edges in
the first step, and then it walks along temporal edges or self-
loop edges to find answers. When the query contains an unseen
entity, the agent can only walk along the semantic edges in the
first step and arrive at the seen entity, and then it walks along
the temporal edges or self-loop edges to find answers. Therefore,
A0 = {(rself , sq, tq)} ∪ {(r ′, e′, t ′)|(sq, r ′, e′, t ′) ∈ G0:tq−1, t ′ < tq} ∪

{(rq, e′, t ′)|(su, rq, e′, t ′) ∈ G0:tq−1, (sq, r ′, e′, t ′) /∈ G0:tq−1, t ′ < tq}.
Ak = {(rself , ek, tk)} ∪ {(r ′, e′, t ′)|(ek, r ′, e′, t ′) ∈ G0:tk−1, t ′ < tk},
k > 0. Moreover, given action (r, e, t), we denote (r, e) and (r, t)
as static and temporal actions, respectively.

Transition. Given the current location sk−1, once action ak is
determined, the current location sk−1 is transferred to the next
location sk. Here, the transition function δ: S × A → S is
defined by δ(sk−1, ak) = sk = (ek, tk, sq, rq, oq, tq). Therefore, the
query information and answer remain unchanged, and the action
becomes ak = (rk, ek, tk).

Rewards. After K -hop navigation, the agent reaches its final state
sK = (eK , tK , sq, rq, oq, tq). Then, the agent receives a terminal
reward of 1 if eK = oq and 0 otherwise. The reward mechanism
is formally defined as : R(sK ) = I(eK == oq).

3.3. Policy network

The policy network πθ is parameterized using the action path
history and global context (query information). Moreover, it mod-
els the action of the agent in a continuous space, thus, we need
to calculate the similarity between the continuous value output
by the policy network and the candidate actions to determine
the probability of selecting each candidate action. To deal with
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Fig. 1. Illustration of the temporal edges and semantic edges.
Fig. 2. An overview of our model. Given the query (sq, rq, ?, tq), the agent starts from query subject sq , and then samples an outgoing edge (action) to walk and
each the next entity through the policy network πθ . For example, after k-1 hop navigation, the agent arrives at ek−1 (red node). Subsequently, we can obtain a
istorical path consisting of k-1 historical actions. Then, we use two sub-policy networks to encode the two variant paths of this historical path and obtain the
cores of each candidate action, respectively. Finally, we employ a gating mechanism to obtain the final scores of each candidate action adaptively and sample the
ext action. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
he cases of seen and unseen entities simultaneously in a unified
ramework and model the evolutionary patterns of the facts, we
esigned two similar sub-policy networks to encode the path
nd score the candidate actions, respectively. Subsequently, we
mploy a gating mechanism to obtain a final score for each
andidate action. An overview of our model is presented in
Fig. 2.

.3.1. Policy network I
The search history consisting of k actions is stated as hk =

(sq, tq), (rself , sq, tq), (r1, e1, t1), ..., (rk, ek, tk)
)
. To address the

eneral case in which the query contains a seen entity, we use
he policy network to encode the action path history hk as usual.
owever, to model the static and temporal evolutionary patterns,
ere, we use one policy network (policy network I) to encode the
tatic action path history hs

k =
(
(sq, tq), (rself , sq), . . . , (rk, ek)

)
and

employ another policy network (policy network II) to encode the
temporal action path ht

k =
(
(sq, tq), (rself , tq), (r1, t1), . . . , (rk, tk)

)
.

With this design, we can model both static and temporal evolu-
tionary patterns in the general case that the query contains a seen
entity. The static action path hs

k is encoded by policy network I as
follows:
hs
0 = LSTM(0, [rself , sq])

hs
1 = LSTM(hs

0, [r1, e1])
· · ·

s s

(1)
hk = LSTM(hk−1, [rk, ek])
195
Then, we calculate the probability of each candidate action in
policy network I. First, we denote N candidate actions at step k
as Ak = {(ri, ei, ti)}Ni=1. Similarly, the static candidate actions are
As
k = {(ri, ei)}Ni=1 and temporal candidate actions are represented

by At
k = {(ri, ti)}Ni=1. Thus, the probability distribution φs

θ (ak|sk−1)
of the candidate actions in the state sk−1 is calculated as follows:

φs
θ (ak|sk−1) = As

kW
s
2ReLU(W

s
1[h

s
k−1, sq, rq]) (2)

where Ws
1 and Ws

2 are the training parameters of MLP.

3.3.2. Policy network II
As mentioned above, policy network II is used to encode the

temporal action path history ht
k =

(
(sq, tq), (rself , tq), (r1, t1), . . . ,

(rk, tk)
)
to model the temporal evolutionary patterns in the case

that the query contains a seen entity. Here, note that when
the query contains an unseen entity, we bridge the gap be-
tween the query and historical facts through the semantic edges
defined by the query relation. Thus, we need to design a pol-
icy network to encode the temporal action path history ht

k =(
(sq, tq), (rself , tq), (r1, t1), . . . , (rk, tk)

)
instead of entity informa-

tion. Therefore, encoding the temporal action path ht
k can not

only model the evolutionary patterns in the general case but also
address the special case in which the query contains an unseen
entity.

Here, as the time difference between the facts can better
capture the temporal evolutionary patterns and express the dy-
namics of the facts, we first employ a temporal relation encoder
to encode ht to obtain the temporal relation path

(
(s , t ), rtq ,
k q q self
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Table 1
Dataset statistics.
Datasets Nentity Nrelation Ntimestamps Time granularity Ntrain Nvalidation Ntest

ICEWS2014 7128 230 365 24 h 63685 13823 13222
ICEWS2018 23033 256 304 24 h 373018 45995 49545
WIKI 12554 24 232 1 year 539286 67538 63110
YAGO 10623 10 189 1 year 161540 19523 20026
Table 2
Number of unseen entities and quadruples containing unseen entities in the test set.

Datasets Nunseen
entity Nunseen entity

quad Nunseen object
quad Nunseen subject

quad Nunseen subject&object
quad

ICEWS2014 496 862 (6.52%) 438 497 73
ICEWS2018 1140 1948 (3.93%) 975 1050 77
WIKI 2968 27079 (42.91%) 11086 22967 6974
YAGO 540 1609 (8.03%) 1102 873 366
rt11 , . . . , rtkk
)
. Subsequently, we use policy network II to encode the

obtained temporal relation path. Formally, the temporal action rtk
is encoded by the temporal relation encoder, as follows:

rtk = (σ (w∆t ) + b) ∗ rk (3)

where w and b are the training parameters and σ is an activation
function. ∆t is the timestamp difference between the temporal
facts, and ∆t = tq − tk. Likewise, we can learn the temporal
relation Atr

k = {rtii }
N
i=1 of the candidate temporal actions At

k
through Eq. (3) to score the candidate temporal actions.

Then, we use policy network II to encode the temporal relation
path as follows:

ht
0 = LSTM(0, rtqself )

ht
1 = LSTM(ht

0, r
t1
1 )

· · ·

ht
k = LSTM(ht

k−1, r
tk
k )

(4)

Afterward, the probability distribution φt
θ (ak|sk−1) of the candi-

date actions in the state sk−1 is calculated as follows:

φt
θ (ak|sk−1) = Atr

k W
t
2ReLU(W

t
1[h

t
k−1, rq]) (5)

where Wt
1 and Wt

2 are the training parameters of MLP.

3.3.3. Action scorer with gating mechanism
Future query events are usually uncertain and usually contain

seen or unseen entities. To address these two cases in a unified
RL framework and capture the evolutionary patterns of the facts
more fully in the general case that the query contains a seen
entity to predict the query accurately, we design a novel model
with two sub-policy networks. Therefore, given two probability
distributions of the candidate actions output by two sub-policy
networks, we design a gating mechanism to adaptively integrate
them to help the agent focus on the destination entity and ob-
tain the final probability distribution πθ (ak|sk−1) of the candidate
actions. This is expressed as follows:

πθ (ak|sk−1) = softmax
(
(1 − gt ) ∗ φs

θ (ak|sk−1) + gt ∗ φt
θ (ak|sk−1)

)
(6)

gt = sigmoid(Wg [ht
k−1, r

tk
k , rq]) (7)

where the gate function is parameterized by the temporal history,
candidate temporal actions, and query relations. Wg is a learnable
parameter.

3.4. Optimization

We set the length of the search path to K , and the K -hop
action path generated by the policy network π is defined as
θ

196
{a1, a2, . . . , aK }. Thus, the policy network is optimized by max-
imizing the expected reward over all queries in the training set
Dtrain:

J(θ ) = E(sq,rq,oq,tq)∼Dtrain [Ea1,...,aK∼πθ
[R(sK |sq, rq, tq)]] (8)

Then, we employ the policy gradient method to optimize the pol-
icy network. Specifically, Eq. (8) is optimized by the REINFORCE
algorithm (Williams, 1992), which iterates through all quadruples
in Dtrain and updates θ with the following stochastic gradient:

∇θ J(θ ) ≈ ∇θ

∑
k

R(sK |sq, rq, tq)logπθ (ak|sk−1) (9)

4. Experimental results

4.1. Datasets

We assess the performance of our model using four public TKG
datasets: ICEWS14 (Boschee et al., 2015), ICEWS18 (Boschee et al.,
2015), WIKI (Leblay & Chekol, 2018), and YAGO (Mahdisoltani,
Biega, & Suchanek, 2015). ICEWS14 and ICEWS18 are the two
subsets of the Integrated Crisis Early Warning System (ICEWS)
dataset that contain the events in ICEWS that occurred in 2014
and 2018, respectively. WIKI primarily extracts temporal events
from the Wikipedia dataset. Moreover, the temporal facts in
YAGO mainly come from Wikipedias, WordNet, and GeoNames.
The dataset is divided by timestamps in the form train time <

validation time < test time, and more data information is summa-
rized in Tables 1 and 2. In Table 1, Nentity, Nrelation, and Ntimestamps
denote the total number of entities, relations, and timestamps
in the dataset, respectively. Ntrain, Nvalidation, and Ntest denote the
number of quadruples in the training, validation, and test sets,
respectively. In Table 2, Nunseen

entity represents the number of new en-
tities in the test set. Nunseen entity

quad represents the number of quadru-
ples where the entities are unseen. Nunseen object

quad is the number of
quadruples in which object entities are unseen. Nunseen subject

quad de-
notes the number of quadruples in which the subject entities are
unseen. Nunseen subject&object

quad represents the number of quadruples in
which both the subject and object entities are unseen.

4.2. Evaluation metrics

We conduct a temporal knowledge-prediction task to evaluate
the proposed model. Specifically, we predict two types of queries
in the test set: qo = (sq, rq, ?, tq) and qs = (?, rq, oq, tq). We add
inverse facts to the training dataset and transform the prediction
of the subject entity for (?, rq, oq, tq) to predict the object entity
for (oq, r−1

q , ?, tq) without loss of generality. Given the ground-
truth o and s , we use Hits@1/3/10 and MRR (Nickel, Murphy,
q q
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Table 3
The results of link prediction on ICEWS14, ICEWS18, WIKI, and YAGO datasets. The compared metrics are filtered MRR and Hits@1/3/10. The best results are stated
in bold.
Method ICEWS2014 ICEWS2018 WIKI YAGO

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.224 0.133 0.256 0.412 0.124 0.058 0.128 0.251 – – – – – – – –
DistMult 0.276 0.181 0.311 0.469 0.101 0.045 0.103 0.212 0.496 0.461 0.528 0.541 0.548 0.473 0.598 0.685
ComplEx 0.308 0.215 0.344 0.495 0.210 0.118 0.234 0.398 – – – – – – – –
MINERVA* 0.322 0.254 0.363 0.475 0.210 0.153 0.275 0.330 0.572 0.540 0.593 0.604 0.759 0.727 0.768 0.783

T-TransE 0.134 0.031 0.173 0.345 0.083 0.019 0.085 0.218 0.292 0.216 0.344 0.423 0.311 0.181 0.409 0.512
TA-DistMult 0.264 0.170 0.302 0.454 0.167 0.086 0.184 0.335 0.445 0.399 0.487 0.517 0.549 0.481 0.596 0.667
De-simplE 0.326 0.244 0.356 0.491 0.193 0.115 0.218 0.348 0.454 0.426 0.477 0.495 0.549 0.516 0.573 0.601
TNTComplEx 0.321 0.233 0.360 0.491 0.212 0.132 0.240 0.369 0.450 0.400 0.493 0.520 0.579 0.529 0.613 0.666

RE-NET 0.382 0.286 0.413 0.545 0.288 0.190 0.324 0.475 0.496 0.468 0.511 0.534 0.580 0.530 0.610 0.662
CyGNet 0.327 0.236 0.363 0.506 0.249 0.159 0.282 0.426 0.338 0.290 0.361 0.418 0.520 0.453 0.561 0.637
TANGO-Tucker – – – – 0.286 0.193 0.321 0.470 0.504 0.485 0.514 0.535 0.578 0.530 0.607 0.658
TANGO-DistMult – – – – 0.267 0.179 0.300 0.440 0.511 0.496 0.521 0.533 0.627 0.591 0.603 0.679
XERTE 0.407 0.327 0.456 0.573 0.293 0.210 0.335 0.464 0.711 0.680 0.761 0.790 0.841 0.800 0.880 0.897
TITer 0.417 0.327 0.464 0.584 0.299 0.220 0.334 0.448 0.755 0.729 0.774 0.790 0.874 0.848 0.899 0.902

Ours 0.429 0.348 0.490 0.608 0.313 0.229 0.349 0.476 0.777 0.756 0.795 0.804 0.894 0.865 0.924 0.926
u
b
e
t
d
a
t
t
Y
r

Tresp, & Gabrilovich, 2016) to assess the performance of our
model. MRR is the average of the reciprocal of the mean rank
(MR) assigned to the true triple overall candidate triples, which
is defined as follows:

MRR =
1

2 ∗ |test|

∑
q∈test

(
1

rank(oq|qo)
+

1
rank(sq|qs)

) (10)

its@n measures the percentage of test set rankings where a
rue triple is ranked within the top n candidate triples, which is
efined as follows:

its@n =
1

2 ∗ |test|

∑
q∈test

(I{rank(oq|qo)} ≤ n + I{rank(sq|qs)} ≤ n)

(11)

Furthermore, in this study, we employ the time-aware filter-
ng (Han, Chen et al., 2021) scheme instead of the static filtering
pproach to filter out the quadruples that are genuine at the
imestamp, obtaining more reasonable results.

.3. Baselines

To comprehensively assess the performance of the proposed
odel, we compare it with static KG reasoning models, namely,
ransE (Bordes et al., 2013), DistMult (Yang et al., 2015), Com-
lEx (Trouillon et al., 2016), and MINERVA (Das et al., 2018),
nterpolation TKG reasoning models, namely, TTransE (Jiang et al.,
016), TA-DistMult (García-Durán et al., 2018), DE-SimplE (Goel
t al., 2020), and TNTComplEx (Lacroix et al., 2020), and several
xtrapolation TKG reasoning models, namely, RE-NET (Jin et al.,
020), CyGNet (Zhu et al., 2021), TANGO (Ding, Han, Ma, & Tresp,
021), XERTE (Han, Chen et al., 2021), and TITer (Sun et al., 2021).
In addition, to evaluate the importance of the different compo-

ents of our model, we propose several variants of our model by
djusting the use of its components. (1) Policy network I: We use
nly policy network I to obtain the final candidate action score.
2) Policy network II: We use only policy network II. (3) w/o TRE:
w/o’ refers to ‘without’, and TRE denotes the temporal relation
ncoder. (4) w/o GM: GM represents the gating mechanism. Here,
e use the mean results of policy networks I and II as the final
andidate action scores. (5) w/o Semantic Edges: This means
emoving the proposed semantic edges in TKGs.

.4. Implementation details

In our experiments, we conduct the proposed model in the
ytorch (Paszke et al., 2017) framework. The model is optimized
197
sing the Adam (Duchi, Hazan, & Singer, 2011) algorithm with a
atch size of 512 and a learning rate of 0.001. We set the entity
mbedding dimension to 100, the relation embedding dimension
o 100, the timestamp embedding dimension to 100, and the
iscount factor of the REINFORCE algorithm to 0.95. In addition,
t each hop, for all candidate actions of the given state, we sample
he N latest candidate actions to score. Here, N was 100 for
he ICEWS14 and ICEWS18 datasets, 90 for WIKI, and 100 for
AGO. The length of the search path K is 3. In the temporal
elation encoder, the activation function σ was tanh. Note that
we reproduce the results of MINERVA with N = 50 for all
datasets, and the results of some baseline models are taken from
those reported in TANGO* (Han, Ding, Ma, Gu and Tresp, 2021),
XERTE (Han, Chen et al., 2021), and TITer (Sun et al., 2021).

4.5. Results and analysis

4.5.1. Comparative study
Table 3 presents the temporal knowledge prediction results of

the proposed model and baseline models on four TKG datasets.
We have the following observations and analyses from the re-
sults. First, intuitively, our model outperforms all baseline models
on the four datasets, which justifies the feasibility of our method
based on the considerable results it achieves. Second, compared
with the related baseline model TITer, our model achieves 2.2%
and 2.7% improvements in MRR and Hits@1 on the WIKI dataset,
respectively, and obtains different degrees of improvement on
the other three datasets. Third, the static reasoning model TransE
is superior to its extended version T-TransE on the ICEWS2014
dataset. The main reason for this phenomenon is that TransE
and T-TransE are designed for static and interpolation TKG rea-
soning, respectively, and they cannot model the unseen future
timestamps in the query. Therefore, the training-time information
may affect the prediction performance of T-TransE. Fourth, the
performance of MINERVA is much higher than that of other static
models, all interpolation TKGs models, and part of extrapolation
TKG models on WIKI and YAGO datasets. This is mainly because
most entities in WIKI and YAGO have a small number of neighbor-
ing entities, which allows reinforcement learning-based neighbor
search algorithms to find answer entities quickly and accurately.
This is also one of the reasons why our method achieves a
considerable performance on these two datasets.

4.5.2. Ablation study
To verify the effectiveness of the different components of the

proposed model, we present the results of the five variants of
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Fig. 3. Temporal knowledge prediction results on the subset of ICEWS14 that contains seen entities. PN I and PN II represent policy network I and policy network
II, respectively.
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Table 4
Ablation study on the ICEWS14 dataset.
Model variant MRR Hits@1 Hits@3 Hits@10

Policy network I 0.391 0.290 0.441 0.590
Policy network II 0.415 0.328 0.460 0.578
w/o TRE 0.390 0.288 0.441 0.593
w/o GM 0.394 0.295 0.444 0.588
w/o semantic edges 0.418 0.336 0.475 0.592
Ours 0.429 0.348 0.490 0.608

ICEWS14 in Table 4. Policy networks I and II perform different
functions in our model, each of them can calculate the probability
distribution of candidate actions and predict the answer to the
query. From these results, we can see that our model outperforms
the component models policy networks I and II, which demon-
strates that our model can integrate these two component models
adaptively using the gating mechanism and achieve remarkable
results. In addition, we also observe that summing the outputs of
the two sub-policy networks directly instead of using the gating
mechanism leads to a drop of 3.5% in MRR. This indicates that
the gating mechanism can help our model adaptively focus on the
destination answer for the query. The temporal relation encoder
is a crucial component in our model, which is assessed by re-
moving the temporal relation encoder module in policy network
II and adopting the same encoding method as policy network I.
This model performance dropped by 3.9% on MRR compared with
that of the proposed model. Moreover, we propose integrating
semantic edges into TKGs to help the agent find the actions in the
case that the query contains an unseen entity. Accordingly, we re-
move the semantic edges here to evaluate their importance. From
these results, we observe that this variant model performance
dropped by 1.1% on MRR compared with that of the proposed
model. This also demonstrates the effectiveness of the temporal
relation encoder in temporal knowledge representation.

4.5.3. Ablation study II
Our motivation for designing such a novel model is to better

andle the two cases in which the query contains seen and
nseen entities in a unified framework. Specifically, when the
uery contains a seen entity, policy networks I and II can cooper-
tively capture the evolutionary patterns of the facts. When the

uery contains an unseen entity, policy network II can activate

198
its particular function. Therefore, in this section, we justify our
design from two perspectives.

We first verify our design from the first perspective that
policy networks I and II can capture the evolutionary patterns
of the facts cooperatively when the query contains a seen entity.
Therefore, we conduct link prediction on the subset of ICEWS14
that contains seen entities, the results of which are presented
in Fig. 3. From the results, we can conclude that the proposed
model is superior to the baseline models. Most importantly, the
proposed model outperforms two component models, namely,
policy network I and policy network II.

To justify our design from the second perspective that policy
network II can exert its particular function in the case where the
query contains the unseen entity, we also conduct link prediction
on the subset of ICEWS14 that contains unseen entities. The
results of which are shown in Fig. 4. Intuitively, we can observe
from the results that policy network II has explicit advantages in
handling the case in which the query contains an unseen entity,
and our model can absorb the advantages of policy network II to
achieve considerable performance. These results demonstrate the
effectiveness of our design and prove that our model can predict
events in complex scenarios.

4.5.4. Case study
Table 5 presents the specific reasoning paths of four queries

in the test set of ICEWS2014, the first two of which are queries
with a seen entity and the last two are queries with an unseen
entity. For a query with a seen entity (Ed Royce, Make pessimistic
comment, ?, 2014-11-23), the agent arrives at entity Nuri al-Maliki
through the temporal edge (Ed Royce, Criticize or denounce, Nuri
al-Maliki, 2014-2-6) starting from the entity Ed Royce in the first
step. After three steps, the agent reaches the answer entity Iran.
However, for a query with an unseen entity (Mehdi Hasan, Make
an appeal or request, ?, 2014-11-12), the entity Mehdi Hasan is
nseen in the historical facts. Accordingly, the agent cannot find
emporal edges to traverse, except for the self-loop edge. In this
ase, the agent first reaches the seen entity India Citizen through
he semantic edge (Shivraj,Make an appeal or request, India Citizen,
014-6-22), and then arrives at the answer through the temporal
dges or self-loop edges in the following two steps. From these
esults, we can observe that the semantic edge bridges the gap
etween the query with an unseen entity and historical facts,
hich exerts an important function in our method.
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Fig. 4. Temporal knowledge prediction results on the subset of ICEWS14 that contains unseen entities. PN I and PN II represent policy network I and policy network
II, respectively.
Fig. 5. Hits@10 on the validation set versus training epoch.
Table 5
Case study for two kinds of queries on ICEWS2014 dataset. (·)† represents the query with seen entity, and (·)‡
indicates the query with unseen entity.
Query Path Answer

(Ed Royce, Make pessimistic
comment, ?, 2014-11-23)†

(Ed Royce, Criticize or denounce,
Nuri al-Maliki, 2014-2-6) ⇒ (Nuri al-Maliki,
Make statement, Iran, 2014-1-25) ⇒ (Iran,
self-loop, Iran, 2014-1-25)

Iran

(Cabinet USA, Consult, ?,
2014-11-11)†

(Cabinet USA, Deny responsibility−1 ,
Sergey, 2014-11-9) ⇒ (Sergey, self-loop,
Sergey, 2014-11-9) ⇒ (Sergey, self-loop,
Sergey, 2014-11-9)

Sergey

(Mehdi Hasan, Make an appeal
or request, ?, 2014-11-12)‡

(Shivraj, Make an appeal or request,
India Citizen, 2014-6-22) ⇒ (India
Citizen, self-loop, India Citizen,
2014-4-7) ⇒ (India Citizen, self-loop,
India Citizen, 2014-6-22)

India Citizen

(India Chief, Threaten,
?, 2014-11-19)‡

(Australia Citizen, Threaten, India Citizen,
2014-7-30) ⇒ (India Citizen, self-loop,
India Citizen, 2014-8-20) ⇒ (India Citizen,
self-loop, India Citizen, 2014-6-30)

India Citizen
199
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.5.5. Convergence study
Fig. 5 plots the Hits@10 scores on the validation set against

he number of training epochs comparing our model with TITer.
otice that our model converges to a higher score than TITer
oes, which implies that our model exerts a positive function in
he proposed reasoning problems and justifies its effectiveness.
urthermore, note that at the initial stage of training (epoch 0),
ur model has a much higher performance than that of TITer.
his suggests that, in the initial stages, while our model and TITer
ould simply be performing random walks in the neighboring

acts, our model can provide more temporal edges for the agent
o find answers. Thus, our model has a much smarter strategy
han that of TITer when searching for the answer to the query.

. Conclusion

This study proposes a novel reinforcement learning model
or temporal knowledge prediction tasks for TKGs. The model is
resented mainly to address two problems: the modeling of the
volutionary patterns of facts and addressing uncertain queries
hat contain seen or unseen entities. Therefore, we design a novel
daptive pseudo-Siamese policy network to address these two
roblems in a unified framework. Policy network I is used to
apture the static evolutionary patterns of the facts, and policy
etwork II, designed with a temporal relation encoder, is em-
loyed to capture the temporal evolutionary patterns of the facts
nd address the special case in which the query contains an un-
een entity. Finally, we develop a gating mechanism to adaptively
ntegrate the results of the two sub-policy networks to help the
gent focus on the destination answer. The experimental results
n four public datasets explicitly demonstrate the effectiveness
nd superiority of the proposed model on temporal knowledge
rediction tasks.
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