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a b s t r a c t

Temporal knowledge graphs (TKGs) reasoning has attracted increasing research interest in recent years.
However, most of the existing TKGs reasoning models aim to learn a dynamic entity representation by
binding timestamps information with the entities, neglecting to learn adaptive entity representation that
is valuable to the query from relevant historical facts. To this end, we propose a Hierarchical Graph
Attention neTwork (HGAT) for the TKGs reasoning task. Specifically, we design a hierarchical neighbor
encoder to model the time-oriented and task-oriented roles of the entities. The time-aware mechanism
is developed in the first layer to differentiate the contributions of query-relevant historical facts at differ-
ent timestamps to the query. The designed relation-aware attention is used in the second layer to discern
the contributions of the structural neighbors of an entity. Through this hierarchical encoder, our model
can absorb valuable knowledge effectively from the relevant historical facts, and thus learn more expres-
sive adaptive entity representation for the query. Finally, we evaluate our model performance on four
TKGs datasets and justify its superiority against vaerious state-of-the-art baselines.

� 2023 Elsevier B.V. All rights reserved.ted
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1. Introduction

Knowledge graphs (KGs) are graph-structured representations
of facts, which are represented as a collection of triples ðs; r; oÞ,
with subject s, relation r, and object o. Due to the high cost of anno-
tating facts, most of the KGs are far from completion, thus KGs rea-
soning becomes an important task and attracts rising interest in
recent years. As its powerful expressiveness over structured
knowledge, KGs have widespread applications like recommenda-
tion system [1], question answering [2,3], and information retrie-
val [4].

With the continuous increase of structured data, however,
knowledge presents dynamic and temporal gradually, and most
of the facts are held in a specific period or a certain time point.
Therefore, reasoning over the TKGs becomes an increasingly
important task. On a TKGs with timestamps varying from t0 to tT ,
TKGs reasoning primarily has two settings - interpolation and
extrapolation. In the interpolation reasoning, new facts are inferred
out for time t (t0 6 t 6 tT) by using historical information and
future information. Corresponding extrapolation setting only
employs historical knowledge to predict future new facts for time
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t (t > tT). In this work, we focus on the extrapolation TKGs
reasoning.

Recently, many works have been accomplished on the TKGs
reasoning task. Interpolation methods DE-SimplE [5], TNTComplEx
[6], and TuckERTNT [7] aim to design a decoder that binds tempo-
ral information with entity or relation in score function. Extrapola-
tion models Know-Evolve [8] and its extension DyRep [9] model
the occurrence of the facts as a temporal point process, and predict
future facts assuming ground truths of the preceding events are
given at inference time. CyGNet [10] observes that many facts
often show a repeated pattern along the timeline, then presents
a copy mechanism that can learn from the known historical facts
and a generation mechanism to collaboratively predict future facts.
ReNET [11] models the occurrence of a fact as a probability distri-
bution conditioned on temporal sequences of past knowledge
graphs, and then designs an autoregressive architecture for pre-
dicting future facts. However, these models are devoted to devel-
oping a new decoder function to predict the answer, neglecting
to score the relevant historical facts which have different contribu-
tions to the query and learn a powerful encoder from the relevant
historical facts.

In this work, we design a Hierarchical Graph Attention neTwork
(HGAT) for TKGs reasoning. Fig. 1 presents an example of a query
and its relevant historical facts. The left part of Fig. 1 is the relevant
puting,

https://doi.org/10.1016/j.neucom.2023.126390
mailto:jhtao@tsinghua.edu.cn
https://doi.org/10.1016/j.neucom.2023.126390
http://www.sciencedirect.com/science/journal/09252312
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Fig. 1. The left is the query-relevant history subgraph. The right is the hierarchical structure of the subgraph.
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historical facts about the query. We find that the entity Trump has
six neighbors in three historical timestamps t1; t2, and t3. Then we
categorize the neighbors by timestamps and show them in the
right part of Fig. 1. Based on this hierarchical structure, we propose
an HGAT for TKGs reasoning. First, we present an assumption that
the events that are closer to the query in time distance have a
greater contribution to the query. Thus we design a graph convolu-
tional network (GCN) with time-aware attention mechanism in the
first layer to adaptively aggregate the neighbors Trump at historical
time t1; t2, and t3 into the central entity Trump at time t, and enable
a3 > a2 > a1. Second, the neighbors of an entity have different
impacts associated with different task relations. Thus we present
a relation graph convolutional network (RGCN) with relation-
aware attention mechanism in the second layer to adaptively learn
the representation of entity Trump at time t1; t2, and t3 from their
respective structural neighbors. In this case, the task relation
Threaten is more relevant with Accuse than Consult in semantic
aspect at time t3, that is, b3;2 > b3;1. Finally, we develop an informa-
tion aggregator to integrate the two independent graph attention
networks into a whole to learn an adaptive entity representation
for the query. The extensive experimental results show that our
method obtains considerable performance compared with existing
approaches and demonstrate the effectiveness and superiority of
our method. Overall, our contributions are as follows:

� To learn the valuable knowledge for the query from relevant
historical facts, we propose an assumption from the perspective
of time that the events that are closer to the query in time dis-
tance have a greater contribution to the query, thus designing a
graph convolutional network with time-aware attention mech-
anism to model this assumption and aggregate the temporal
neighbors into the central entity.

� From the perspective of semantics, we propose a second
assumption that the neighbors of an entity have different
impacts associated with different task relations, thus develop-
ing a relation graph convolutional network with relation-
aware attention mechanism to learn the structural representa-
tion of the entity adaptively.

� We design an information aggregator to integrate the two inde-
pendent graph attention networks into a whole to assign a rel-
atively reasonable weight to each historical fact and learn an
adaptive entity representation for the query.
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� Experimental studies on four TKGs datasets demonstrate that
our model achieves considerable performance compared with
existing models.

2. Related work

2.1. Static KGs reasoning

Recent years have witnessed increasing attention on the static
KGs reasoning. Overall, the static KGs reasoning methods can be
roughly classified into three categories: KGs embedding-based
approaches, path-based approaches, and logical rule-based
approaches.

Among these approaches, the most popular one is KGs
embedding-based approaches, its core idea is to project the entities
and relations in KGs into vector space, then model the relation
between the head and tail entity. This kind of method also broadly
falls into three paradigms: (i) Translational distance-based models,
the most representative method is TransE [12], which views rela-
tion as a translation operation from head entity to tail entity. Since
then, many improved versions have been proposed, such as TransD
[13], and TransH [14]. (ii) Tensor factorization-based models,
which are popular with their high efficiency and powerful function,
like RESCAL [15], DisMult [16], ComplEx [17], TuckER [18]. (iii)
Neural network-based models, the representative ConvE [19]
employs a deep neural network to enhance the interaction
between entity and relation, R-GCN [20] utilizes a relational graph
neural network to model KGs.

As for path-based approaches, they target at learning relational
paths in KGs. For instance, PRA [21,22] uses random walk with
restarts to conduct multiple bounded depth-first search processes
to learn relational paths. Different from PRA, DeepPath [23], M-
Walk [24], and MINERVA [25] frame the path-finding problem as
Markov decision process (MDP) and utilize reinforcement learning
to maximize the expected return. Moreover, DIVA [26] takes the
KGs reasoning problem as an inference problem in a probabilistic
graphical framework and resolves it from a variational inference
perspective.

Logical rule-based approaches are able to leverage domain
knowledge to boost reasoning performance, but the logical rules
are very ‘hard’ in the reasoning process, which makes the test facts
either right or wrong. Even worse, the logical rules may be contra-

ted
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dictory in some cases and have a certain amount of uncertainty.
Markov Logic Network (MLN) [27] is able to learn the weights of
logical rules in a probabilistic graphical framework to soften the
rules, which can effectively model the uncertainty. PLogicNet
[28] and ExpressGNN [29] which combines the advantages of
KGs embedding and MLN, can be efficiently optimized with the
variational EM algorithm in the reasoning process. RNNLogic [30]
learns logical rules which are viewed as latent variables and simul-
taneously predicts the answer in the EM framework.
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2.2. Temporal KGs reasoning

Most of the existing TKGs reasoning works primarily focus on
extending static KGs reasoning to TKGs, and the key idea of TKGs
reasoning is to model the dynamic nature of the facts. TKGs rea-
soning has two settings: interpolation [31,5–7] and extrapolation
[11,10,32]. For interpolation reasoning, the model aims to infer
new facts at history timestamps by employing historical informa-
tion and future information. For instance, t-TransE [31] integrates
the temporal constraints on relation into the object function of
TransE. HyTE [33] maps entity and relation into the hyperplane
space modeled by temporal information. TA-DistMult [34] lever-
ages recurrent neural networks to learn time-aware relation repre-
sentation to express the temporality of the fact. DE-SimplE [5],
TNTComplEx [6], and TuckERTNT [7] combine temporal informa-
tion with entity or relation to model the dynamic nature of the
facts. However, these methods model the facts at all timestamps
and predict the new facts at history timestamps, they can not pre-
dict the new facts at future timestamps. Corresponding extrapola-
tion reasoning aims to predict future new facts based on historical
information. Know-Evolve [8] and its extension DyRep [9] model
the occurrence of the facts as temporal point process to learn
evolving entity representations. Re-NET [11] models the occur-
rence of a fact as a probability distribution conditioned on tempo-
ral sequences of past knowledge graphs and designs an
autoregressive architecture for predicting future facts. CyGNet
[10] which is most related to our work argues that a reasoning
model is capable of learning much from the known historical facts
based on the observation that many facts occur repeatedly along
with history, and presents a copy-generation mechanism to predict
future facts collaboratively. In essence, the copy mechanism pro-
vides a candidate answer space to the generation mechanism to
predict future facts collaboratively. The answers in the space have
an equal impact on predicting future facts, which is not consistent
with human intuition. In this work, we design a hierarchical graph
attention network to assign an adaptive weight for each query-
relevant historical fact from human intuition.
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3. Problem formulation

Let E;R, and T denote a finite set of entities, relations, and
timestamps, respectively. The facts in TKGs are defined by quadru-
ples ðs; r; o; tÞ # E � R � E � T , and TKGs are built upon a sequence
of quadruples based on their timestamps, G = fGtlg

T
tl¼1 =

fðs; r; o; tlÞgjT j
tl¼1, where s; o 2 E; r 2 R. This represents a collection

of event facts at different timestamps in ascending order of their
timestamps. Given a query ðsq; rq; ?; tqÞ, the observed historical facts
O = fðs; r; o; tlÞ 2 Gtl jtl < tqg. The observed query-relevant historical
facts Or = fðsq; r; o; tlÞ 2 Gtl jtl < tqg, which have same head entity
with query, and Or # O. In addition, we denote the set of prior
neighbours of query node sq;tq as N pðsq;tq Þ = fðsq;tl Þjðsq;tl ; r;
o; tlÞ 2 Gtl ; tl < tqg;N sðsq;tl Þ = fðoÞjðsq;tl ; r; o; tlÞ 2 Gtl ; tl < tqg repre-
sents the structural neighbours of sq;tl . Our TKGs reasoning task is

Un
3

to predict the missing object o�
q based on the observed query-

relevant historical facts Or .

4. The proposed approach

In this section, we provide the technical details of our model.
Fig. 2 presents the framework of single-layer HGAT, which follows
the encoder-decoder pattern and can be easily generalized to
multi-layer networks. The details of the encoder and decoder are
presented as follows.

4.1. Encoder

The encoder includes two GCN with attention mechanisms and
an information aggregator that is used to integrate these two GCN
into a whole to learn the adaptive representation of entities.

GCN with Time-Aware Attention The designed GCN with time-
aware attention is employed to aggregate prior neighbours of the
query node into the central entity, and then incorporate the tem-
poral information into GCN to differentiate the importance of prior
neighbors. Specifically, given the query subject entity sq;tq , we aim
to learn valuable information from its prior neighbors N pðsq;tq Þ =
fsq;tlg

tq�1
tl¼1 by GCN. Furthermore, we argue that the facts that are clo-

ser to the query in time distance have greater contributions to the
query. That is, the facts at t3 should have a larger impact on pre-
dicting the query at t than the facts at t1 and t2 in Fig. 1. Thus
we incorporate the designed time-aware attention mechanism into
GCN to absorb valuable neighboring information, and the time-
aware attention is defined as follows,

atl ¼ softmaxðatl Þ ¼
eðtl�tqÞ=st

Xtq�1

tl¼1

eðtl�tqÞ=st

ð1Þ

where st is the temperature hyperparameter, tl represents the
timestamps of one of the relevant historical facts, and tl < tq. The
GCN with time-aware attention is described as follows,

sðkþ1Þ
q;tq ¼ r

Xtq�1

tl¼1

atls
ðkÞ
q;tl

þ sðkÞq;tq

 !
¼ r

Xtq
tl¼1

atls
ðkÞ
q;tl

 !
ð2Þ

where atq ¼ 1;rð�Þ is an activation function, sðkÞq;tq denotes the hidden
state of the query subject entity in the k-th layer of the neural net-
work, sq;tl represents the prior neighbours of query node sq;tq . Next,
we will utilize the structural neighbours information of sq;tl to learn
the representation of sq;tl , respectively.

RGCN with Relation-Aware Attention In this part, we present
RGCN with relation-aware attention to learn the prior neighbors
sq;tl of query node sq;tq . As the relation of an entity reflects the roles
of the entity, the structural neighbour of the sq;tl may make differ-
ent contributions to sq;tl , thus making different contributions to the
queries. Therefore, we design a relation-aware attention mecha-
nism to differentiate their contributions by task-relation rq. The
RGCN with relation-aware attention is illustrated as follows,

sðkþ1Þ
q;tl

¼
XjN sðsq;tl Þj

i¼1

btl ;i
/ðrðkÞtl ;i

; oðkÞtl ;i
Þ ð3Þ

where / : Rd � Rd ! Rd is a composition operator, which is used to
combine object and relation to obtain the subject, we use a simple
but effective multiplication operator here. rtl ;i and otl ;i are i-th neigh-
boring relation and object of sq;tl .

/ðrðkÞtl ;i
; oðkÞtl ;i

Þ ¼ rðkÞtl ;i
� oðkÞ

tl ;i
ð4Þ

ted
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Fig. 2. The framework of our end-to-end Hierarchical Graph Attention Network. For the encoder, a stack of multiple two-layer GCN with attention mechanism layers builds
an entity embedding. For the decoder, the learned entity embedding, initial relation embedding, and time embedding are fed into TuckERTNT to predict the missing object.
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of

bðkÞ
tl ;i

¼ expðwðkÞðrq; rtl ;iÞ=srÞXjN ðsq;tl Þj

i¼1

expðwðkÞðrq; rtl ;iÞ=srÞ

ð5Þ

here, sr is the temperature hyperparameter, and the metric function
wð�Þ is employed to compute the relevance score by a bilinear dot
product. That means, the relation is more related to the task rela-
tion, and the corresponding neighboring information would con-
tribute more to sq;tl .

wðrq; rtl ;iÞ ¼ rTqW
ðkÞ
s rtl ;i ð6Þ

where Ws 2 Rd�d are learnable parameters.
Information Aggregator RGCN with relation-aware attention

first aggregates the structural neighbor information into central
entity sq;tl , then GCN with time-aware attention differentiates the
contribution of sq;tl to query node based on timestamps informa-
tion, and incorporates prior neighborhood information sq;tl into
sq;tq . The information aggregator integrates the two independent
GCN into a whole to learn an adaptive representation for query
entity sq;tq .

sðkþ1Þ
q;tq ¼ r

Xtq
tl¼1

atl

XjN sðsq;tl Þj

i¼1

btl ;i
/ðrðkÞtl ;i

; oðkÞ
tl ;i
Þ

0
@

1
A ð7Þ

The total contribution of i-th relevant fact ðsq;tl ; r; o; tlÞ at time tl to
query is ltl ;i

= atl � btl ;i
. It is worth noting that this information

aggregator may omit valuable information from relevant facts in
the distance. For instance, we assume the relevant-query fact
ðst0 ; rt0 ; ot0 ; t0Þ in the distance have much impact on answering the
query ðsq; rq; ?; tqÞ, but the ato would pull down the contribution of
the fact to the query. To alleviate this problem, we present an
improved version of the information aggregator as follow,

sðkþ1Þ
q;tq ¼ r

Xtq
tl¼1

XjN sðsq;tl Þj

i¼1

ðatl þ btl ;i
Þ/ðrðkÞtl ;i

; oðkÞ
tl ;i
Þ

0
@

1
A ð8Þ

This information aggregator can be viewed as a composition opera-
tion of the two independent graph attention networks. To a certain
extent, the information aggregator mitigates the impact of the time-
aware attention mechanism on the valuable information in the dis-
tance. From another perspective, Eq. 8 can be viewed as a graph
attention network with a voting mechanism, that is, the time-
aware mechanism and the relation-aware attention mechanism
assign a weight to the query-relevant historical fact respectively
according to their own criteria, then the information aggregator
combines the two attention score and is more consistent with our

Unc
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ec
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real practice of scoring relevant historical facts from multiple per-
spectives. Intuitively, the importance of the two attention mecha-
nisms may be different, thus we add the importance factor to Eq.
8 and obtain Eq. 9 as follows,

sðkþ1Þ
q;tq ¼ r

Xtq
tl¼1

XjN sðsq;tl Þj

i¼1

ðc � atl þ ð1� cÞ � btl ;i
Þ/ðrðkÞtl ;i

; oðkÞtl ;i
Þ

0
@

1
A ð9Þ

where c controls the importance of each attention mechanism.

4.2. Decoder

Most of the existing TKGs reasoning models can be employed as
our decoder. In this work, we use TuckERTNT [7] as our decoder
model due to its powerful expressive ability. TuckERTNT is a
Tucker decomposition model of order-4 tensor for TKGs reasoning
task, the core tensor that contains a large number of parameters
contributes to increasing the interactions between input entities
and relations and fitting the large-scale discrete temporal data.
The scoring function of TuckERTNT is presented as follows,

f ðesq ; erq ; eoq ; etq Þ ¼ W; esq ; e
t
rq � etq þ erq ; eoq

D E
ð10Þ

where � denotes dot product,W 2 Rde�dr�de is core tensor. Given the
query ðsq; rq; ?; tqÞ, predicting the missing object can be viewed as a
multi-class classification task, where each class corresponds to one
object entity. Then we can minimize the following multi-class loss
function to train the proposed model,

L ¼ �
X
t2T

X
i2Y

XN
n¼1

oit ln yin ð11Þ

where y is the set of node indices that have labels, yin is the n-th
entry of the decoder output for the i-th labeled node, oit denotes
its respective ground truth label in the snapshot Gt . In practice,
we employ gradient descent techniques to train the proposed
model.

5. Experiments

5.1. Datasets

We evaluate the proposed model on four datasets: ICEWS2014,
ICEWS2018, WIKI, and YAGO. Among them, ICEWS2014 and
ICEWS2018 are subsets of the ICEWS dataset [35] which contains
information about political events with time annotations, and they
contain event facts in 2014 and 2018, respectively. The WIKI data-
set [36] consists of the temporal events from the Wikipedia data-

ted
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set. The YAGO [37] dataset is a TKGs base that incorporates infor-
mation from Wikipedias, WordNet, and GeoNames. Here, we also
use a subset of YAGO to evaluate our model. The detailed statistics
of the four datasets are presented in Table 1.

5.2. Evaluation metrics

For each quadruple ðsq; rq; oq; tqÞ in test set, we would predict
two kinds of queries: ðsq; rq; ?; tqÞ and ð?; rq; oq; tqÞ. However, the
query ð?; rq; oq; tqÞ can be transformed into ðoq; r�1

q ; ?; tqÞ to be pre-
dicted, so we apply data augmentation technique to generate train-
ing data ðo; r�1; s; tÞ for each quadruple ðs; r; o; tÞ in training sets. For
the answer o�q predicted by our model, we employ the Hits@1/3/10
scores and MRR [38] (mean reciprocal rank) to measure our model
performance. MRR is the average of the reciprocal of the mean rank
(MR) assigned to the true quadruple overall candidate quadruples,
which is defined as follows,

1
2 � jtestj

X
f¼ðs;r;o;tÞ2test

ð 1
Rf ;o

þ 1
Rf ;s

Þ: ð12Þ

Here, we denote Rf ;s and Rf ;o as the ranking for subject s and object o
for the two queries, respectively. Hits@n measures the percentage
of test set rankings where a true quadruple is ranked within the
top n candidate quadruples, that is,

1
2 � jtestj

X
f¼ðs;r;o;tÞ2test

ð1Rf;o6n þ 1Rf;s6nÞ ð13Þ

Where n = 1, 3, 10, 1x is 1 if x holds and 0 otherwise.
In this work, we perform the time-aware filtering [39] scheme

where all correct entities at the query timestamp except for the
true query object are filtered out from the answers. Furthermore,
the raw setting does not filter out the objects that have an impact
on the reasoning results of the query, and the static filtering setting
filters out all other objects that appear together with the query
subject and relation at any timestamp. Compared with them,
time-aware filtering obtains more reasonable results.

5.3. Implementation and hyperparameters

The proposed model is implemented in the Pytorch [40] frame-
work and is optimized by Adam algorithm [41] with batch size
128. We set entity, relation, and time embedding dimensionality
to 300. The temperature hyperparameter st and sr are 0.1 and 3,
respectively. Furthermore, we use batch normalization, input
dropout, and embedding dropout to speed up training. Detailed
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Table 1
Dataset statistics.

Datasets N ent N rel N time Time Span

ICEWS2014 7128 230 365 2014
ICEWS2018 23033 256 304 2018
WIKI 12554 24 100 –
YAGO 10623 10 189 –

Table 2
Hyperparameter settings.

Datasets lr input dropout e

ICEWS2014 0.01 0.3 0
ICEWS2018 0.001 0.3 0
WIKI 0.01 0.3 0
YAGO 0.01 0.3 0

5

Unc
hyperparameter settings are reported in Table 2, including learning
rate (lr), input dropout, embedding dropout, and importance factor
c. For fairness, we apply the above hyper-parameters to our base-
line model TuckERTNT [7]. In addition, we reproduce the results
marked (*) of some baseline models, and the results of other base-
line models are taken from reported results of [42,39,43].

5.4. Baseline methods

Static Reasoning Methods: To evaluate the performance of the
proposed model comprehensively, we compare the proposed
model against a large number of static KGs reasoning models. Note
that, we ignore the timestamps of the facts when conducting static
reasoning methods on the TKGs dataset. The static KGs reasoning
models to be compared include TransE [12], DistMult [16], Com-
plEx [17], TuckER [18].

Temporal Reasoning Methods: We also compare several state-
of-the-art TKGs reasoning methods based on embedding, including
interpolation and extrapolation TKGs reasoning methods. Interpo-
lation TKGs reasoning methods include TTransE [31], TA-DistMult
[34], DE-SimplE [5], TNTComplEx [6], TuckERTNT [7]. Extrapolation
TKGs reasoning methods include CyGNet [10], TANGO-Tucker [44],
TANGO-DistMult [44], ReNET [11].

Variants of HGAT: To evaluate the importance of different com-
ponents of HGAT, we propose four variants version of HGAT. (1)
HGAT-w/o-RTA, which removes relation-aware and time-aware
attention mechanism, and sets atl = 1 and btl ;i

= 1 simultaneously.
(2) HGAT-w-TA, it only equips with time-aware attention mecha-
nism, and sets btl ;i

= 1. (3) HGAT-w-RA, which equips with
relation-aware attention mechanism, and sets atl = 1. (4) HGAT-
dot, which takes the information aggregation method of Eq. 7 to
learn the representation of entities.

5.5. Experimental results and analysis

5.5.1. Comparative study
Table 3 and Table 4 present the link prediction results of the

proposed model and baseline models on four TKG datasets, and
we have the following observations and analyses.

First, the results in Table 3 and Table 4 indicate that our model
HGAT achieves considerable performance on these four datasets.
To be specific, on MRR, HGAT is superior to ReNET 0.7% on
ICEWS14, 6.5% onWIKI, 5.6% on YAGO. In addition, HGAT achieves
similar performance to ReNET on ICEWS18. TKGs reasoning meth-
ods including T-TransE, TA-DistMult, De-simplE, TNTComplEx, and
TuckERTNT, only learn the dynamic representation of entity or

ted
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Time granularity N tr N val N ts

24 h 63685 13823 13222
24 h 373018 45995 49545
1 year 539286 67538 63110
1 year 161540 19523 20026

mbedding dropout 1 embedding dropout 2 c

.4 0.5 0.5

.3 0.3 0.5

.4 0.5 0.7

.4 0.5 0.6
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Table 3
The results of link prediction on ICEWS14 and ICEWS18 datasets. Compared metrics are time-aware filtered MRR and Hits@1/3/10. The best results are in bold.

Method ICEWS14 ICEWS18

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.224 0.133 0.256 0.412 0.122 0.058 0.128 0.251
DistMult 0.276 0.181 0.311 0.469 0.101 0.045 0.103 0.212
ComplEx 0.308 0.215 0.344 0.495 0.210 0.118 0.234 0.398
TuckER 0.358* 0.267* 0.395* 0.533* 0.206 0.125 0.226 0.372

T-TransE 0.131 0.029 0.167 0.342 0.084 0.018 0.089 0.224
TA-DistMult 0.264 0.170 0.302 0.454 0.167 0.086 0.184 0.335
De-simplE 0.326 0.244 0.356 0.491 0.193 0.115 0.218 0.348
TNTComplEx 0.304 0.212 0.340 0.472 0.275 0.195 0.308 0.428
TuckERTNT 0.363* 0.272* 0.401* 0.542* 0.261* 0.164* 0.288* 0.447*
CyGNet 0.327 0.236 0.363 0.506 0.249 0.159 0.282 0.426
TANGO-Tucker – – – – 0.286 0.193 0.321 0.470
TANGO-DistMult – – – – 0.267 0.192 0.300 0.440
ReNET 0.382 0.286 0.413 0.545 0.288 0.190 0.324 0.475

HGAT 0.389 0.297 0.424 0.564 0.285 0.196 0.327 0.466

Table 4
The results of link prediction on WIKI and YAGO datasets. Compared metrics are time-aware filtered MRR and Hits@1/3/10. The best results are in bold.

Method WIKI YAGO

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.492* 0.588* 0.523* 0.544* 0.457* 0.422* 0.602* 0.688*
DistMult 0.496 0.461 0.528 0.541 0.548 0.473 0.598 0.685
ComplEx 0.487* 0.457* 0.522* 0.532* 0.550* 0.471* 0.594* 0.682*
TuckER 0.500 0.461 0.536 0.548 0.548 0.474 0.596 0.689

T-TransE 0.292 0.216 0.344 0.423 0.311 0.181 0.409 0.512
TA-DistMult 0.445 0.399 0.487 0.517 0.549 0.481 0.596 0.667
De-simplE 0.454 0.426 0.477 0.495 0.549 0.516 0.573 0.601
TNTComplEx 0.450 0.400 0.493 0.520 0.579 0.529 0.613 0.666
TuckERTNT 0.503* 0.480* 0.518* 0.538* 0.607* 0.562* 0.636* 0.682*
CyGNet 0.338 0.290 0.361 0.418 0.520 0.453 0.561 0.637
TANGO-Tucker 0.504 0.485 0.514 0.535 0.578 0.530 0.607 0.658
TANGO-DistMult 0.515 0.496 0.521 0.533 0.627 0.591 0.603 0.679
ReNET 0.496 0.468 0.511 0.534 0.580 0.530 0.610 0.662

HGAT 0.561 0.529 0.581 0.618 0.636 0.598 0.660 0.715

Table 5
The results of different variants of our model on ICEWS14 and ICEWS18 datasets. The best results are in bold.

Method ICEWS14 ICEWS18

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

HGAT-w/o-RTA 0.351 0.261 0.384 0.535 0.268 0.177 0.301 0.447
HGAT-w-RA 0.368 0.278 0.405 0.552 0.276 0.184 0.310 0.455
HGAT-w-TA 0.374 0.281 0.413 0.558 0.283 0.190 0.319 0.461
HGAT-dot 0.356 0.265 0.392 0.537 0.275 0.184 0.309 0.452

HGAT 0.389 0.297 0.424 0.564 0.285 0.196 0.327 0.466
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relation in the decoder part and do not make full use of relevant
historical information, and HGAT equipping with the proposed
encoder has more merits than them on learning adaptive entity
representation. Second, our decoder model TuckERTNT is superior
to most of the baseline methods due to its powerfully expressive
ability, especially on WIKI and YAGO datasets. This also provides
support for the outstanding performance of the proposed model.
Third, compared with the decoder-only model TuckERTNT, HGAT
achieves substantial improvements against it on all the metrics.
For instance, on metric MRR, HGAT outperforms TuckERTNT 2.6%
on ICEWS14, 2.4% on ICEWS18, 5.8% on WIKI, and 2.9% on YAGO.
This result justifies the effectiveness of the proposed encoder and
shows that the learned information from historical facts is valuable
to our model.

Un
6

5.5.2. Model variants & ablation study
To further verify the effectiveness of the proposed model, we

present several variants of HGAT by adjusting the use of its model
components, and Table 5 and Table 6 report the link prediction
results of these variants. The result shows that both time-aware
and relation-aware attention exert an important effect in the pro-
posed model on all datasets. For instance, on metric MRR, the
relation-aware mechanism helps the proposed model improve
1.7% on ICEWS14, and the time-aware mechanism helps the pro-
posed model improve 2.3% on ICEWS14. These results further
demonstrate that the proposed model is capable of learning from
historical facts in a targeted manner. Moreover, we also observe
that HGAT outperforms HGAT-dot on all datasets and metrics. This
justifies that designing an appropriate information aggregator is
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Table 6
The results of different variants of our model on WIKI and YAGO datasets. The best results are in bold.

Method WIKI YAGO

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

HGAT-w/o-RTA 0.499 0.458 0.523 0.571 0.587 0.538 0.617 0.680
HGAT-w-RA 0.522 0.485 0.548 0.583 0.611 0.565 0.638 0.692
HGAT-w-TA 0.536 0.502 0.558 0.594 0.628 0.583 0.652 0.705
HGAT-dot 0.500 0475 0.515 0.542 0.588 0.539 0.618 0.673

HGAT 0.561 0.529 0.581 0.618 0.636 0.598 0.660 0.715

Table 7
The results of HGAT with different decoders.

Method ICEWS14 ICEWS18 WIKI YAGO

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

HGAT-TuckER 0.381 0.292 0.558 0.272 0.180 0.451 0.553 0.520 0.611 0.616 0.571 0.704
HGAT-TNTComplEx 0.383 0.287 0.553 0.277 0.191 0.457 0.545 0.503 0.602 0.608 0.563 0.612
HGAT 0.389 0.297 0.564 0.285 0.196 0.466 0.561 0.529 0.618 0.636 0.590 0.715
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also important for our model. In addition, we also employ different
models as the decoder of HGAT, including static model TuckER,
temporal model TNTComplEx, and TuckERTNT. The results in
Table 7 suggest that HGAT with decoder TuckERTNT achieves con-
siderable performance. Furthermore, HGAT-TuckER and HGAT-
TNTComplEx are also superior to the decoder TuckER and TNTCom-
plEx, respectively. These results also demonstrate the effectiveness
and superiority of the proposed encoder.
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5.5.3. Case study
We also provide some case studies for HGAT. Table 8 presents

an example of a query and its relevant historical facts, and corre-
sponding weights computed by time-aware and relation-aware
attention. From the results in Table 8, we have the following obser-
vations and analyses.

First, the time-aware attention mechanism which is inspired by
our intuition results in large variations in a over time, which is
beneficial to our model because it alleviates the problem of over-
smooth in the process of information aggregation and focuses on
the more valuable neighboring facts. The results in Table 5 and
Table 6 validate our intuition and the attention score a can
improve our model performance explicitly. Second, we find that
the relation Accuse and Criticizeordenounce are more relevant to
the task relation Threaten than other relations. Among the tail enti-
ties of the two relations, Pakistan, and Iran are the most weighted.
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Table 8
Case study for the query (Trump, Threaten, ?, 2018-7-26).

Query: (Trump, Threaten, ?, 20

Query-Relevant Historical Facts

(Trump, Make statement, North Korea, 2018-1-2)
(Trump, Accuse, Pakistan, 2018-1-2)

(Trump, Reduce material aid, Pakistan, 2018-1-4)
(Trump, Consult, Sebastián Piñera, 2018-1-4)

(Trump, Criticize or denounce�1, Iran, 2018-1-5)
. . .

(Trump, Criticize or denounce, Iran, 2018-7-3)
(Trump, Host a visit, Russia, 2018-7-3)

. . .

(Trump, Accuse, Iran, 2018-7-25)
(Trump, Make statement, Ecuador, 2018-7-25)

7
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These results are in line with our expectations and also justify that
the relation-aware mechanism can differentiate the importance of
structural neighbors. Third, it is worth noting that we also tried to
learn from top-20 query-relevant historical facts, and found utiliz-
ing all query-relevant historical facts achieved the best perfor-
mance. Last, we observe that the weights of most historical facts
follow this rule ðc � atl þ ð1� cÞ � btl ;i

Þ � maxfc�
atl ; ð1� cÞ � btl ;i

g. For example, the importance factor is 0.5 on
ICEWS18, and ðc � atl þ ð1� cÞ � btl ;i

Þ 	 ðatl þ btl ;i
Þ � maxfatl ; btl ;i

g.
Therefore, the important information in the distance to be under-
estimated by time-aware attention can be pulled back, such as

(Trump;Criticizeordenounce�1
; Iran, 2018-1-5). The summation

operation also increases the contribution of nearby important
information, such as (Trump;Accuse; Iran, 2018-7-25). From
another perspective, the dot operation makes Rtl ;iatl � btl ;i

¼ 1,
which indicates the sum of weights of all relevant facts is 1. This
kind of operation destroys the hierarchical weight structure
designed in this paper, making these related facts get very small
weights respectively, and it is hard to distinguish the importance
of the facts. This is also the reason why the performance of
HGAT-dot is similar to that of TuckERTNT. In short, the summation
operation can better alleviate the influence of the two attention
mechanisms on each other, so that the importance of related facts
can be more reasonably distinguished. All these results justify the
effectiveness of the proposed information aggregator.

ted
 P
18-7-26) Answer: Iran

Attention Scores

a1 = 1.180e-10, b1;1 = 4.931e-11, l1;1 = 1.673e-10
a1 = 1.180e-10, b1;2 = 0.044, l1;2 = 0.044

a2 = 1.180e-10, b2;1 = 3.153e-4, l2;1 = 3.15e-4
a2 = 1.108e-10, b2;2 = 4.934e-11, l2;1 = 1.673e-10

a3 = 1.180e-10, b3;1 = 7.4e-3, l3;1 = 7.4e-3
. . .

a8206 = 3.777e-9, b8206;1 = 0.025, l8206;1 = 0.025
a8206 = 3.777e-9, b8206;1 = 3.405e-10, l8206;1 = 4.182e-9

. . .

a8897 = 0.038, b8897;1 = 0.044, l8897;1 = 0.082
a8897 = 0.038, b8897;1 = 4.931e-11, l8897;1 = 0.038
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6. Conclusion and future work

This work proposes a novel hierarchical graph attention net-
work for TKGs reasoning tasks. The proposed two-layer graph
attention encoder can model the time-oriented and task-oriented
roles of the entities, respectively. The designed time-aware and
relation-aware attention mechanism can focus on the historical
facts that are valuable to the query. Therefore, these two attention
mechanisms not only provide interpretability for our model but
also enable the proposed model more stable and more consistent
with our intuition. Experimental results on four benchmarks
explicitly demonstrate the significant merits and superiority of
the proposed model on the TKGs reasoning task. In the future,
we plan to explore a more reasonable and more adaptable atten-
tion mechanism to assign a reasonable weight to each historical
fact related to the query, thereby learning a more powerful encoder
for TKGs reasoning.
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