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ABSTRACT
Multiview network embedding aims at projecting nodes in the net-
work to low-dimensional vectors, while preserving their multiple re-
lations and attribute information. Contrastive learning approaches
have shown promising performance in this task. However, they
neglect the semantic consistency between fused and view represen-
tations and have difficulty in modeling complementary information
between different views. To deal with these deficiencies, this work
presents a novel Contrastive leaRning framEwork for Multiview
network Embedding (CREME). In our work, different views can be
obtained based on the various relations among nodes. Then, we
generate view embeddings via proper view encoders and utilize
an attentive multiview aggregator to fuse these representations.
Particularly, we design two collaborative contrastive objectives,
view fusion InfoMax and inter-view InfoMin, to train the model in
a self-supervised manner. The former objective distills information
from embeddings generated from different views, while the latter
captures complementary information among views to promote dis-
tinctive view embeddings. Extensive experiments demonstrate that
our model consistently outperforms state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies → Unsupervised learning.

KEYWORDS
Multiview network embedding; contrastive learning

ACM Reference Format:
Mengqi Zhang, Yanqiao Zhu, Qiang Liu, Shu Wu, and Liang Wang. 2022.
Deep Contrastive Multiview Network Embedding. In Proceedings of the 31st
ACM International Conference on Information and Knowledge Management
(CIKM ’22), October 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3511808.3557577

∗These authors contributed equally to this research.
†To whom correspondence should be addressed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557577

1 INTRODUCTION
Real-world networks often consist of various types of relations,
which are known as multiview networks or multiplex networks.
Multiview network embedding aims at projecting nodes in the net-
work to low-dimensional vectors, while preserving their multiple
relations and attribute information [2, 11, 14, 28]. Since it is usually
labor-extensive to manually collect high-quality labels, obtaining in-
formative embeddings without supervision for multiview networks
has attracted a lot of attention in the community.

So far, a series of self-supervised methods have been proposed for
multiview network embedding. Some early approaches [2, 14, 28]
mainly focus on the compression of multiple graph views but ignore
node attributes. To capture the attribute and structure information
together, some others [1, 10] combine graph neural networks and re-
lational reconstruction tasks for self-supervised learning. However,
most of these methods over-emphasize the network proximity, thus
limiting the expressiveness of learned embeddings [13, 15, 23]. In-
spired by visual representation learning [6], recent studies attempt
to introduce contrastive learning into multiview networks [7, 11]
and have achieved compelling performance.

However, we argue that these contrastive models still have two
deficiencies. Firstly, their contrastive strategies neglect the semantic
consistency between views in the original network. In the paradigm
of multiview network embedding, the final node embedding is usu-
ally obtained by aggregating node embeddings from different views
induced by relations. Based on the hypothesis that a powerful rep-
resentation is one that models view-invariant factors [18, 19], the
fused embedding should capture sufficient semantic information
shared among multiple relations. In contrast, the existing models
focus on contrasting node- and graph-level embeddings, while ig-
noring capturing view-invariant factors in relation-induced views.
As a result, the fused representation suffers from limited expressive-
ness. Secondly, these contrastive methods fail to further consider
inter-view dependency, leading to suboptimal performance. Con-
sider that in multiview networks, node representations obtained
from different views tend to be similar due to the shared node
attributes. To improve the discriminative ability of node embed-
dings, it is thus vital to capture the complementary information of
different views [17].

To deal with the two aforementioned challenges, we present
a novel deep Contrastive leaRning framEwork for Multiview net-
work Embedding, CREME for brevity. The overall framework of
CREME is presented in Figure 1. Specifically, we first generate
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views according to various relations of multiview networks. Then,
we obtain each view representation via a view encoder based on
graph attention networks (§2.4). Next, we combine all the relations
and form a fusion view. Accordingly, we introduce a multiview
aggregator to integrate different view representations as the final
node representations (§2.5). To enable self-supervised training, we
propose a novel contrasting strategy (view fusion InfoMax) with a
regularization term (inter-view InfoMin) (§2.3). The first objective
maximizes the mutual information between the fused representation
and view representations to promote multiview fusion, while the
second objective enforces information minimization among graph
views, which improves distinctiveness of view representations, so
as to preserve complementary information among relation-induced
views. We further show that the two contrastive objectives can be
collectively combined into one elegant, unified objective function.

The main contributions of this work are summarized as follows:
Firstly, we propose a novel contrastive framework CREME for
multiview network embedding, the core of which contains two
collaborative contrastive objectives, view fusion InfoMax and inter-
view InfoMin. Secondly, we conduct extensive empirical studies on
three real-world datasets. The results demonstrate the effectiveness
of CREME over state-of-the-art baselines.

2 THE PROPOSED METHOD
2.1 Preliminaries
Definition (Multiview networks). A multiview network is a
graph G = (V, E,𝑿 , 𝜙) whose edges are associated with more than
one types. In such a network, the mapping 𝜙 : E → R, |R | > 1
associates an edge with an edge type;V , E ∈ V ×V , 𝑿 ∈ R |V |×𝐹 ,
and R represents the node set, the edge set, the node attribute
matrix, and the set of edge types respectively.

In this work, we consider the task of self-supervised multiview
network embedding, wherewe aim to learn a𝑑-dimensional (𝑑 ≪ 𝐹 )
vector 𝒛𝑖 representing for each node 𝑖 without accessing to labels.

2.2 The Overall Framework
The overall framework of CREME is illustrated in Figure 1. There
are three main components: (1) a view encoder that projects nodes
in each relation-induced view into low-dimensional representa-
tions, (2) a multiview aggregator, which adaptively integrates view
representations and obtains the final fused node embeddings for
G, and (3) a unified contrastive objective to enable self-supervised
learning of the view encoder and the multiview aggregator.

Our CREME framework follows the common multiview con-
trastive learning paradigm, which essentially seeks to maximize the
agreement of representations among different views. Different from
traditional graph contrastive learning methods [5, 24, 27, 31, 32],
our graph views are naturally induced by different relations rather
than generated by data augmentations.

After obtaining views according to relations, we utilize an en-
coding function 𝑓𝑟 : 𝑨𝑟 × 𝑿 → 𝒁𝑟 ∈ R𝑁×𝑑 for view G𝑟 to obtain
relation view representations. Thereafter, we employ a multiview
aggregator 𝑔 : (𝒁1, ...,𝒁 |R |) → 𝒁 ∈ R𝑁×𝑑 to obtain the fused
representations for multiview network G. Here, 𝒛𝑟

𝑖
in 𝒁𝑟 is the rep-

resentation of node 𝑖 in view G𝑟 and 𝒛𝑖 in 𝒁 is the representation
of node 𝑖 in graph G, which can be regarded as a fusion view of the
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Figure 1: An overview of CREME: Figure (a) presents the
framework of our proposed model; Figures (b) and (c) illus-
trate the contrastive strategies between different graph views,
where the green solid arrow indicates positive pairs and the
orange dashed arrows indicate negative pairs.

original network. In this following subsections, we introduce the
learning objective at first (§2.3) and then proceed to the design of
view encoders (§2.4) and multiview aggregators (§2.5) in detail.

2.3 Contrastive Objectives
2.3.1 View fusion InfoMax. At first, we propose a novel contrasting
strategy to train the model by maximizing the semantic consistency
of view representation 𝒁𝑟 in each view G𝑟 and the fusion repre-
sentation 𝒁 of G. Following mutual information estimation [20],
this can be achieved by maximizing the Mutual Information (MI)
between 𝒁𝑟 and 𝒁 . In this way, the resulting fusion view represen-
tation can selectively distill information of each relation view.

Specifically, for an anchor node 𝑖 , its view representation and the
fused representation (𝒛𝑟

𝑖
, 𝒛𝑖 ) constitutes a positive pair. Following

prior studies [30–32], we set all other nodes in two graph views as
negative pairs of 𝒛𝑟

𝑖
. We illustrate the view fusion InfoMax in Figure

1(b). Formally, the objective of view fusion InfoMax is defined as

L𝑜 (𝒛𝑟𝑖 , 𝒛𝑖 ) = log
𝑒\ (𝒛

𝑟
𝑖
,𝒛𝑖 )/𝜏

𝑒\ (𝒛
𝑟
𝑖
,𝒛𝑖 )/𝜏 +∑

𝑗≠𝑖 𝑒
\ (𝒛𝑟

𝑖
,𝒛 𝑗 )/𝜏 +∑

𝑗≠𝑖 𝑒
\ (𝒛𝑟

𝑖
,𝒛𝑟

𝑗
)/𝜏 ,

(1)
where \ (𝑢, 𝑣) = 𝑠 (𝑝 (𝑢), 𝑝 (𝑣)) is a critic function, 𝑠 (·, ·) is imple-
mented using a simple cosine similarity, 𝑝 (·) is a non-linear projec-
tion function to enhance the expression power of the critic function,
and 𝜏 is a temperature parameter. For simplicity, we denote the
denominator in Eq. (1) as 𝜌 (𝒛𝑟

𝑖
, 𝒛𝑖 ) hereafter:

𝜌 (𝒛𝑟𝑖 , 𝒛𝑖 ) = 𝑒
\ (𝒛𝑟

𝑖
,𝒛𝑖 )/𝜏 +

∑︁
𝑗≠𝑖

𝑒\ (𝒛
𝑟
𝑖
,𝒛 𝑗 )/𝜏 +

∑︁
𝑗≠𝑖

𝑒
\ (𝒛𝑟

𝑖
,𝒛𝑟

𝑗
)/𝜏
. (2)
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2.3.2 Inter-view InfoMin. The previous objective only focuses on
the relationship between each relation view and the final fusion
view. Considering that in our setting, each node shares the same
node attribute in different relation views, and thus their view em-
beddings tend to be similar during view encoding. Therefore, we
propose the second objective to further regularize information
among relation views. Our approach is to add a regularization term
to minimize the MI of relation view representations, so as to enforce
the model to learn discriminative view representations.

Instead of directly optimizing MI between 𝒁𝑟 and 𝒁𝑘 for any
view pair (𝑟, 𝑘)𝑟≠𝑘 , we simply set (𝑧𝑟

𝑖
, 𝑧𝑘
𝑖
)𝑟≠𝑘 and (𝑧𝑟

𝑖
, 𝑧𝑘
𝑗
)𝑖≠𝑗 as

additional negative samples in Eq. (1), as illustrated in Figure 1(c).
In this way, we elegantly combine the two contrastive objectives:

L(𝒛𝑟𝑖 , 𝒛𝑖 ) = log
𝑒\ (𝒛

𝑟
𝑖
,𝒛𝑖 )/𝜏

𝜌 (𝒛𝑟
𝑖
, 𝒛𝑖 ) +

∑
𝑗 ∈G𝑘

1[𝑘≠𝑟 ]𝑒
\ (𝒛𝑟

𝑖
,𝒛𝑘

𝑗
)/𝜏

. (3)

2.3.3 Learning objective. Finally, the overall objective is defined as
an average of MI over all positive pairs, formally given by

J =
1

𝑁 · |R |
∑︁𝑁

𝑖=1

∑︁ |R |
𝑟=1

L(𝒛𝑟𝑖 , 𝒛𝑖 ) . (4)

To summarize, the view fusion InfoMax objective enforces the
multiview aggregator to adaptively distill information from each
relation view. The inter-view InfoMin regularization further con-
strains different relation view representations to be distinct to each
other, which makes the model capture the complementary infor-
mation of contained in each relation.

2.4 View Encoders
For the input multiview network, we generate views, each accord-
ing to one provided relation. In this way, we essentially convert the
heterogeneous network into a series of homogeneous networks.
Then, for each relation-induced view, we capture the structural and
attribute information of nodes through a view-specific graph atten-
tion neural network. To be specific, we leverage the self-attention
mechanism [22] to compute the weight coefficients 𝛼𝑟

𝑖 𝑗
between

node 𝑖 and its neighbor 𝑗 in G𝑟 :

𝛼𝑟𝑖 𝑗 =
exp(𝜎 (𝒂⊤𝑟 [𝑴𝑟𝒙𝑖 ∥ 𝑴𝑟𝒙 𝑗 ]))∑

𝑘∈N𝑟
𝑖
exp(𝜎 (𝒂⊤𝑟 [𝑴𝑟𝒙𝑖 ∥ 𝑴𝑟𝒙𝑘 ]))

, (5)

whereN𝑟
𝑖
is the set of neighbors of node 𝑖 in view G𝑟 , 𝒂𝑟 ∈ R2𝑑 is a

view-specific weight vector, 𝑴𝑟 ∈ R𝑑×𝐹 is a transformation matrix
projecting each node attribute into the corresponding semantic
space, and 𝜎 (·) = ReLU(·) is the non-linear function. The view
representation of node 𝑖 in G𝑟 can then be calculated by aggregating
their neighbor node embeddings:

𝒛𝑟𝑖 = ∥𝐾𝑘=1 𝜎
(∑︁

𝑗 ∈N𝑟
𝑖

𝛼
𝑟,𝑘
𝑖 𝑗

𝑴𝑟𝒙 𝑗

)
. (6)

Here, we leverage a multihead attention mechanism of𝐾 heads [22],
where each attention head has its own independent encoder param-
eters and 𝛼𝑟,𝑘

𝑖 𝑗
is the attention coefficient in the 𝑘-th head.

2.5 Multiview Aggregators
After obtaining each relation view representations, we leverage a
multiview aggregator to integrate semantic information from all

Table 1: Statistics of datasets used in experiments.

Dataset Relations #Nodes #Edges #Attributes #Classes

ACM P–S–P 3,025 2,210,761 1,830 3P–A–P 29,281

IMDB M–A–M 3550 66,428 1,007 3M–D–M 13,788

DBLP
P–A–P

7,907
144,783

2,000 4P–P–P 90,145
P–A–T–A–P 57,137,515

relation-induced views for each node in G. To preserve important
information during aggregation, we utilize an another attention net-
work to aggregate the embeddings of different views for each node.
The importance of each of view embedding 𝒛𝑟

𝑖
can be calculated by

𝑤𝑟𝑖 = 𝒒⊤ tanh(𝑾𝒛𝑟𝑖 + 𝒃), (7)

where 𝒒 ∈ R𝑑 denotes the attention vector,𝑾 ∈ R𝑑×𝑑 is the weight
matrix parameter, and 𝒃 ∈ R𝑑 is the bias vector. For node 𝑖 , the
weight of each view embedding 𝒛𝑟

𝑖
can be obtained by:

𝛽𝑟𝑖 =
exp (𝑤𝑟

𝑖
)∑ |R |

𝑟=1 exp (𝑤
𝑟
𝑖
)
. (8)

Then, the fused representation is obtained by taking weighted av-
erage of view representations:

𝒛𝑖 =
∑︁ |R |

𝑟=1
𝛽𝑟𝑖 𝒛

𝑟
𝑖 . (9)

These fused representations can be used for downstream tasks.

3 EXPERIMENTS
In this section, we conduct experiments on three real-world datasets
to evaluate our proposed method.

3.1 Experimental Setup
♦Datasets.We conduct experiments on ACM1, IMDB2, and DBLP3.
ACM contains item nodes with two types of relations: Paper–
Author–Paper (P–A–P) and Paper–Subject–Paper (P–S–P). IMDB
contains movie nodes with Movie–Actor–Movie (M–A–M) and
Movie-Director-Movie (M–D–M) relations. DBLP has paper nodes
with Paper–Paper–Paper (P–P–P), Paper–Author–Paper (P–A–P),
and Paper–Author–Term–Author–Paper (P–A–T–A–P) relations.
For fair comparison, we follow the same data preprocessing as in
DMGI [11] for all datasets, whose statistics are shown in Table 1.
♦ Baselines. The baselines include (a) homogeneous network mod-
els are DeepWalk [12], Node2Vec [4], ANRL [29], GCN [9], GAT [22],
DGI [24], and GraphCL [27], (b) heterogeneous network models
Metapath2vec [3] and HAN [25], and (c) multiview network models
MNE [28], GATNE [1], DMGI [11], and HDMI [7].
♦ Implementation details. For all methods, we set the embedding
size to 64 and default to the recommended hyperparameters settings.
ForCREME, we use the Adam optimizer [8] with the initial learning
rate to 0.001, the weight decay to 1e-5, the temperature 𝜏 to 0.7, and
1https://www.acm.org/
2https://www.imdb.com/
3https://aminer.org/AMinerNetwork/
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Table 2: Performance comparison of different models. The
highest and second-to-best performances are highlighted in
boldface and underlined respectively.

Method
ACM IMDB DBLP

MaF1 MiF1 NMI MaF1 MiF1 NMI MaF1 MiF1 NMI

Deepwalk 0.739 0.748 0.310 0.532 0.55 0.117 0.533 0.537 0.348
node2vec 0.741 0.749 0.309 0.533 0.55 0.123 0.543 0.547 0.382
ANRL 0.819 0.820 0.515 0.573 0.576 0.163 0.770 0.699 0.332

GCN/GAT 0.869 0.870 0.671 0.603 0.611 0.176 0.734 0.717 0.465
DGI 0.881 0.881 0.640 0.598 0.606 0.182 0.723 0.720 0.551

GraphCL 0.892 0.894 0.656 0.613 0.624 0.183 0.736 0.722 0.562

Metapath2vec 0.752 0.758 0.314 0.546 0.574 0.144 0.653 0.649 0.382
HAN 0.878 0.879 0.658 0.599 0.607 0.164 0.716 0.708 0.472

MNE 0.792 0.797 0.545 0.552 0574 0.013 0.566 0.562 0.136
GATNE 0.846 0.841 0.521 0.494 0.504 0.048 0.673 0.665 0.436
DMGI 0.898 0.898 0.687 0.648 0.648 0.196 0.771 0.766 0.409

DMGI-attn 0.887 0.887 0.702 0.602 0.606 0.185 0.778 0.770 0.554
HDMI 0.895 0.894 0.657 0.601 0.610 0.197 0.805 0.795 0.544

CREME 0.907 0.906 0.726 0.672 0.675 0.211 0.812 0.798 0.623

set the dropout of view encoder to 0.6. We implement our CREME
in MindSpore. Following DMGI [11], we run the evaluation for
50 times and report the averaged performance. We use a logistic
regression and a k-Means model to perform node classification
and node clustering on the learned embeddings, respectively. We
use Macro-F1 (MaF1) and Micro-F1 (MiF1) as metrics for node
classification, and Normalized Mutual Information (NMI) for node
clustering.

3.2 Performance Comparison
We first report the performance of all compared methods on node
classification and node clustering tasks. Table 2 summaries the
results. Our CREME consistently achieves the best performance
on three datasets. Compared with the strong baselines DMGI and
HDMI, CREME obtains the most noticeable performance improve-
ment. This verifies that our framework has strong capabilities to
utilize different graph views. CREME is also competitive with semi-
supervised models, i.e., HAN, GAT, and GCN, which shows the
superiority of our framework in the training of view encoder and
multiview aggregator. Traditional baselinesMNE andMetapath2vec
are inferior to that of attribute-aware network methods, such as
HAN, ANRL, DMGI, and HDMI, on most datasets. This indicates
that the node attributes are necessary formultiview network embed-
ding. Furthermore, most multiview methods, such as HDMI, DMGI,
GATNE, and MNE, generally outperform single-viewmethods. This
verifies the necessity of modeling multiple relations.

3.3 Ablation Studies
To investigate the effects of the contrastive objectives, view encoder,
and multiview aggregator, we compare CREME with five variants.
CREV-mean and CREV-max set the operator as mean and max in
the view encoder, respectively. CREM-mean and CREM-max set the
operator as mean and max in the multiview aggregator, respectively.
CREC-ori excludes the inter-view InfoMin objective. The results
are shown in Table 3. From the table, we see that CRE𝑉 -mean and
CRE𝑉 -max perform worse than CRE𝑀 -mean and CRE𝑀 -max on
most datasets, especially for node clustering, which suggests that
the view encoder plays a more important role compared to the

Table 3: Performance of different model variants.

Variant
ACM IMDB DBLP

MaF1 MiF1 NMI MaF1 MiF1 NMI MaF1 MiF1 NMI

CRE𝑉 -mean 0.786 0.778 0.394 0.519 0.546 0.056 0.801 0.795 0.516
CRE𝑉 -max 0.824 0.828 0.529 0.551 0.562 0.015 0.810 0.796 0.516
CRE𝑀 -mean 0.896 0.896 0.714 0.672 0.673 0.196 0.803 0.783 0.623
CRE𝑀 -max 0.905 0.899 0.723 0.671 0.674 0.203 0.792 0.780 0.606
CRE𝐶 -ori 0.894 0.893 0.725 0.657 0.661 0.216 0.795 0.775 0.519

CREME 0.907 0.906 0.726 0.672 0.675 0.211 0.812 0.798 0.623

(a) HDMI (b) CREME

Figure 2: Visualization of the learned node embedding by
HDMI and CREME on DBLP.

multiview aggregator. The performance of CRE𝑀 -mean and CRE𝑀 -
max is not significantly different from that of CREME in ACM and
IMDB. However, the performance of CRE𝑀 -max is worse in DBLP.
The reason is that DBLP data is more complicated than ACM and
IMDB, as shown by the fact that DBLP have more relations. The
max aggregator tends to ignore multiplicities than the attention and
mean aggregator [26].CREME outperforms CRE𝐶 -ori in most cases,
which demonstrates that our inter-view InfoMin could supplement
the view fusion InfoMax objective.

3.4 Visualization
To provide a qualitative evaluation, we map the node embedding
of the DBLP network learned by CREME and HDMI into a 2D
space using the t-SNE algorithm [21] and plot them in Figure 2.
We find that CREME exhibit more distinct boundaries and clusters
than HDMI. Moreover, the Silhouette scores [16] of the embeddings
obtained by HDMI and CREME are 0.11 and 0.28 (the higher, the
better), respectively, which once again verifies that CREME can
learn informative node embeddings.

4 CONCLUSION
In this work, we have proposed a novel contrastive learning frame-
work for unsupervised learning of multiview networks. In our
framework, we propose two contrastive objectives through opti-
mizing mutual information between different views, fusion view
InfoMax and inter-view InfoMin. Extensive experiments on three
real-world multiview networks verify the effectiveness of CREME.
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