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Abstract

Understanding intention behind event processes in texts is im-
portant to many applications. One challenging task in this line
is event process typing, which aims to tag the process with
one action label and one object label describing the overall
action of the process and object the process likely affects re-
spectively. To tackle this task, existing methods mainly rely
on the matching of the event process level and label level rep-
resentation, which ignores two important characteristics: Pro-
cess Hierarchy and Label Hierarchy. In this paper, we propose
a Hierarchical Optimal Transport (HOT) method to address
the above problem. Specifically, we first explicitly extract the
process hierarchy and label hierarchy. Then the HOT opti-
mally matches the two types of hierarchy. Experimental re-
sults show that our model outperforms the baseline models,
illustrating the effectiveness of our model.

Introduction
Being able to understand the overall intention behind event
processes in texts is important to many artificial intelligence
applications which require the ability to reason about chains
of activities, such as script event prediction (Lv, Zhu, and
Hu 2020), question answering (Li et al. 2020a), and event
based summarization (Li and Zhang 2020). One challenging
task in this line is event process typing (Chen et al. 2020).
Given an event process composed of a sequence of events,
the task aims to tag the process with two labels: one action
label describing the overall action of the process and one
object label describing the overall object the process likely
affects. An example of the event process typing is showed in
Figure 1, given an event process of four events, the task tags
one action label book and one object label flight.

To tackle the event process typing task, previous meth-
ods (Chen et al. 2020) leverage pre-trained language model
to encode the whole process and the action label as process
feature vector and action label vector respectively, then the
action whose feature vector is the closest to the process is
predicted as the action label for the process. The object la-
bel for the process is predicted in the same way. Though
effective, they ignore two important characteristics: Process
Hierarchy and Label Hierarchy, which can be leveraged to
improve performance of the task. In the following, we will
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Figure 1: An example of the event process typing task. The
action label of the event process is book and the object label
is flight.

elaborate the two characteristics and the reasons why they
are important for the event process typing task.

Process Hierarchy: Event process is composed of events,
and event is composed of words, previous methods ignore
this hierarchy since their predictions mainly rely on the
event process-level representation. Thus they failed to di-
rectly match labels with events in the process and labels
with words in the events, which can provide fine-grained
prediction clues for the task. For example in Figure 1, the
words airfares and airline strongly indicate the object label
of flight, while the event Buy a ticket implies that the action
is likely to be book. Thus, a challenging problem is to model
the process hierarchy and leverage it to capture the matching
with action and object labels.

Label Hierarchy: Due to the large label space (1,336 ac-
tion types and 10,441 object types) of the event process typ-
ing, it’s difficult to directly capture the association between
a process and a single label. Meanwhile, the action label
and object label of this task are verb and noun respectively,
both of which have hypernyms. The verb-hypernyms (noun-
hypernyms) hierarchy can provide additional information
for the original label consisting of only one verb (noun).
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Figure 2: An event process containing four events, its action label and object label are learn and piano respectively. The
keyboard instrument is a hypernym of the object piano.

For example in Figure 2, the hypernym keyboard instrument
of the object piano can match the first event in the process,
hence it can provide additional information and help the ob-
ject prediction. Therefore, another problem is how to lever-
age label hierarchy for event process typing.

In order to utilize both the process hierarchy and the
label hierarchy and optimally capture the interaction be-
tween them, we propose a novel method termed Hierarchical
Optimal Transport (HOT). Specifically, for the process hier-
archy, we explicitly extract semantics of each event in the
process and semantics of each word in event. For the label
hierarchy, we leverage external knowledge base to extract
hierarchical label for each label. Then the HOT is utilized to
optimally match label semantics with event semantics and
word semantics hierarchically.

To recap, our contributions can be summarized as follows:

• We consider two types of hierarchy: process hierarchy
(word-event-event process) and label hierarchy (verb-
hypernyms and noun-hypernyms) to help the event pro-
cess typing task.

• We propose a novel method for event process typing
termed Hierarchical Optimal Transport, which optimally
matches label semantics with event semantics and word
semantics hierarchically.

• Experimental results show that our model outperforms
the baseline models, which demonstrate the effectiveness
of our model.

Related Work
Script Event Learning
Researchers have done a lot of work on script events. The
first is script event prediction, which is to predict the end
event of a given event chain. It includes the early script event
prediction method based on statistical information (Cham-
bers and Jurafsky 2008; Jans et al. 2012; Peyré, Cuturi et al.
2019), and the recent script event prediction method based
on neural network (Pichotta and Mooney 2016; Granroth-
Wilding and Clark 2016; Lv, Zhu, and Hu 2020; Bai et al.
2021; Zhou et al. 2021; Wang et al. 2021). The second line
of work on script events is script event generation. Zhang
et al. (2020) propose an analogous process structure in-
duction framework that leverages analogies between pro-
cesses and the conceptualization of subevent instances to
predict subevent sequences of previously unseen processes.
To handle the task of story ending generation, Huang et al.

(2021) propose a context-aware multi-level graph convolu-
tional network dependency analysis tree to capture depen-
dencies and context clues more efficiently. Li et al. (2022b)
propose a novel coarse-grained to fine-grained two-stage ap-
proach that more explicitly generates subsequent events in
open-ended text generation. Another task related to script
events is event process typing which we focus on in this pa-
per, Chen et al. (2020) propose a model that utilizes a pre-
trained language model to encode the entire process and ac-
tion labels into process feature vectors and action label vec-
tors, respectively, and then predicts the action whose feature
vector is closest to the process as the action label of the pro-
cess. Object labels for processes are predicted in the same
way. In this paper, we consider two types of hierarchy and
propose a method which optimally matches the hierarchy for
event process typing task.

Optimal Transport in NLP

Many recent NLP tasks have exploited optimal transport. In
information extraction related tasks, Li et al. (2021) intro-
duce a time-aware optimal transport distance to learn the
compression model for compressing the whole event-graph
to its salient sub-graph for the timeline summarization task.
Veyseh et al. (2022) employ optimal transport to induce
document structures based on sentence-level syntactic struc-
tures for document-level event argument extraction task. Li
et al. (2022a) design an event graph alignment loss based
on optimal transport to capture event argument structures,
to enforce vision-language pretraining models to compre-
hend events and associated argument roles. In text gener-
ation task, to tackle the exposure bias problem, Li et al.
(2020b) propose using student-forcing optimal transport to
train the text-generation model together with maximum like-
lihood estimation. In multilingual word representation task,
an alignment objective using optimal transport during fine-
tuning is proposed (Alqahtani et al. 2021) to further improve
multilingual contextualized representations for downstream
cross-lingual transfer. In text style transfer task, to simul-
taneously incorporate syntactic and semantic information,
Nouri (2022) proposes a novel method based on optimal
transport for text style transfer to compute similarity be-
tween the source and the converted text. In this paper, we
exploit optimal transport and propose a method termed hi-
erarchical optimal transport to match different hierarchies in
event process typing task.
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Figure 3: The Hierarchical Optimal Transport (HOT) architecture. The HOT calculates four losses OTea, OTwa, OTwo and
OTeo, each of which is obtained by the same optimal transport calculation process on the far right in the figure. For brevity, we
only show one hypernym and its definition for the action label and object label.

Methodology
Task Formulation
Given an event process p = (e1, e2, ..., en), the goal of the
task (Chen et al. 2020) is to conceptualize the overall inten-
tion of the process into two labels, one is action label a ∈ A
and the other is object label o ∈ O, where A is the set of
verbs and O is the set of nouns.

Following Chambers and Jurafsky (2008), we define the
event process as a sequence of primitive events with a shar-
ing protagonist. Each event ei consists of a predicate ai de-
scribing the action performed by the protagonist, and an ob-
ject oi describing the object of the action ai. The action label
a of the process p describes the overall action of p, and the
object label o describes the most probable object the process
p affects.

Hierarchical Label Extraction
The overall structure of our model is illustrated in Figure
3. We first leverage WordNet (Miller 1995) to extract hier-
archical label for each action label a ∈ A and object la-
bel o ∈ O. Specifically, for an action label a, we lever-
age its sense of verb type in WordNet to obtain its defini-
tion f = (w1, w2, ..., wLf

), where wi is a word and Lf

is the length of the definition. We then obtain k hyper-
nyms (a1, a2, ..., ak) of action label a together with their
definitions (f1, f2, ..., fk) with length Lf1 , Lf2 , ..., Lfk re-
spectively. Finally, we concatenate these information as

the hierarchical label for the action label a, which is de-
noted as a sequence Ha = (a, f, a1, f1, ..., ak, fk). For
example, for the action label buy and k = 1, we fi-
nally obtain Hbuy = (buy, obtain by purchase, get,
come into the possession of something).

For an object label o, we leverage its sense of noun type in
WordNet to extract the definitions and hypernyms, and the
hierarchical label of o is Ho = (o, f, o1, f1, ..., ok, fk).

Feature Extraction
Following previous work (Chen et al. 2020), we use pre-
trained language model RoBERTa-base (Liu et al. 2019) to
extract event process features and label features.

Event Process Feature Extraction Given an event pro-
cess p = (e1, e2, ..., en), we first concatenate the predicate
ai and object oi of event ei. Then the separator token ⟨/s⟩
of RoBERTa is added between events to help the model
to differentiate them. That is, the final input sequence to
RoBERTa is sp = (a1, o1, ⟨/s⟩, ..., ⟨/s⟩, an, on):

(h1,h2, ...,hLp) = RoBERTa(sp) (1)

where Lp is the total number of tokens in the input sequence
and hi is the hidden state of the ith token. We then use mean-
pooling of these hidden states to obtain two types of repre-
sentations. One type is the representation p of the process
by mean-pooling of all the hidden states, and the other is
representations of events in the process by mean-pooling
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of hidden states corresponding to each event, denoted as
(he1 ,he2 , ...,hen).

Label Feature Extraction For the hierarchical label
of the action label a which is denoted as Ha =
(a, f, a1, f1, ..., ak, fk), we also add the separator token
⟨/s⟩ between hypernyms to obtain an input sequence
(a, f, ⟨/s⟩, a1, f1, ⟨/s⟩, ..., ⟨/s⟩, ak, fk) to RoBERTa. Then
hidden states corresponding to tokens in input sequence are
obtained in the same way as equation (1). We then use mean-
pooling of hidden states corresponding to each hypernym
and definition to get representations of the hierarchical label
for the action label a, denoted as (ha

1 ,h
a
2 , ...,h

a
k+1).

For the hierarchical label Ho = (o, f, o1, f1, ..., ok, fk)
of the object label o, we use the same method as above to
get the representations of the hierarchical label, denoted as
(ho

1,h
o
2, ...,h

o
k+1).

Hierarchical Optimal Transport
Discrete optimal transport. We first briefly introduce the
optimal transport between discrete probability measures,
which aims to minimize the distance between them. Assume
two discrete probability measures α and β, which can be
denoted as α =

∑n
i=1 aiδxi and β =

∑m
j=1 biδyj

where
δx is the Dirac measure sitting at x. The coefficients a =
(a1, a2, ..., an) of α and the coefficients b = (b1, b2, ..., bm)
of β both sum to 1 because they are both probability mea-
sures. Under the setting of the above discrete probability
measures, the optimal transport problem can be transformed
into the following constrained optimization problem (Luise
et al. 2018):

L(α, β) = min
T∈Π(a,b)

n∑
i=1

m∑
j=1

T ij · c
(
xi,yj

)
(2)

where Π(a, b) = {T ∈ Rn×m
+ | T1m = a,T⊤1n =

b}, and 1n is an n-dimensional all-one vector. C is the cost
matrix with Cij = c

(
xi,yj

)
and c is the cost function.

Optimal transport calculation. The minimum value T ∗

of Equation (2) can be approximated by the following IPOT
algorithm (Xie et al. 2020). Given the number of iterations
T , perform the following iterations,

Q = A⊙ T (t), T (t+1) = diag(δ)Qdiag(σ) (3)

where ⊙ is Hadamart product. The δ and σ are obtained by
iterating a fixed number of K times as shown below,

δ =
1

nQσ
, σ =

1

mQ⊤δ
(4)

where n and m are the lengths of the two input sequences.
The variables involved in equation (3) and equation (4) are
initialized as follows,

σ =
1

m
1m,T (1) = 1n1m

⊤,Aij = e−
Cij
β (5)

where 1
β is the generalized stepsize.

Now for the event process, through the feature extraction
we get the event vector sequence Se = {hei}ni=1 and the

Algorithm 1: HOT algorithm
Input: Set of event processes with action and object
{(pi, ai, oi)}
Parameter: Batch size M

1: Initialize model parameters.
2: for epoch = 1, ...,MaxEpoch do
3: for k = 1, ...,M do
4: Draw an event process with action and object

(pi, ai, oi).
5: Extract hierarchical labels for ai and oi.
6: Extract word-level and event-level features for pi.
7: Extract features of hierarchical labels for ai and oi.
8: Compute the losses OTea, OTwa as equation (6),

and OTeo, OTwo similar to (6).
9: end for

10: Update model parameters by optimizing loss in (9).
11: end for

word vector sequence Sw = {hi}
Lp

i=1. For the action label,
we also obtain the vector sequence Sa = {ha

i }k+1
i=1 . Then we

compute the optimal transport for the action using the IPOT
algorithm:

La = OTea +OTwa = IPOT(Se, Sa) + IPOT(Sw, Sa) (6)

where OTea = IPOT(Se, Sa) is the loss bewteen the event
vector sequence Se and vector sequence Sa, obtained by the
IPOT algorithm.

For the object label, we obtain the vector sequence So =
{ho

i }k+1
i=1 , and we get the loss Lo for object similar to equa-

tion (6).

Training and Optimization
Recall that in section of Feature Extraction we obtain the
representation p of the process. Here we use p to score all
the action labels and object labels. Specifically, p is input to
a linear layer to score action labels:

pa = softmax
(
pTW a + ba

)
(7)

here W a ∈ Rd×na is a weight matrix and ba ∈ Rna is a bias
vector, na is the number of action label and pa ∈ Rna is the
action probability distribution for p. We use cross entropy
loss as the action prediction loss:

Lap = −
na∑
j=1

(
lja log

(
pj
a

))
(8)

where la is the label vector of action.
Similarly, we get the loss Lop for object label. We then

combine these losses to obtain the following loss:

L =
1

N

N∑
n=1

(Lap + Lop + α(La + Lo)) (9)

where N is the number of training pairs. The parameters are
updated by minimizing this loss, and the full algorithm is
summarized in Algorithm 1.
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Label Type Action Object
Metrics MRR recall@1 recall@10 MRR recall@1 recall@10
Sequence-to-label(mean) 3.72 1.96 5.95 1.01 0.80 1.66
Sequence-to-label(BiGRU) 7.94 4.40 12.71 4.20 2.72 6.19
Sequence-to-label(RoBERTa) 8.36 5.31 14.69 4.88 3.24 8.10
Single MFS-P2G (partial) 18.03 14.36 17.16 10.36 6.37 17.64
Single WSD-P2G (partital) 18.07 14.05 17.82 10.72 6.68 18.03
Single MFS-P2G 24.10 19.67 32.40 13.71 8.86 23.09
Single WSD-P2G 25.83 19.93 37.50 14.19 9.32 24.84
Joint MFS-P2G 28.57 20.63 43.14 15.26 10.62 25.01
Joint WSD-P2G 29.11 21.21 42.84 15.70 11.07 25.51
Model w/o hierarchy 36.80 28.34 53.71 11.79 7.66 19.25
HOT 41.44 31.94 60.02 21.19 15.43 32.23

Table 1: The action label and object label prediction results. The Model w/o hierarchy does not use the process hierarchy and
label hierarchy compared with HOT.

Experiment
Experimental Setup
Dataset We use dataset released by Chen et al. (2020),
in which each event process with one action and one ob-
ject label is extracted from wikiHow1. It’s an online wiki-
style publication featuring expert co-authored, how-to arti-
cles on a variety of topics and each article consists of a title
of how to do something and a series of sentences describing
the steps. The events are extracted from these sentences by
leveraging AllenNLP (Gardner et al. 2018) to perform SRL
to extract the VERB term (action of an event) and ARG1
term (object of an event). These extracted events are then
organized into an event process in the order of the steps.
To extract action label and object label of the event pro-
cess, SRL is also used for the title of the article to obtain
the VERB and the head word of ARG1, which are chosen
as action label and object label respectively. Finally, 62,277
event processes with 1,336 action types and 10,441 object
types are extracted by the above procedure. The split of the
training/dev./test set is 80/10/10%, and we report three rank-
ing metrics, i.e. MRR (mean reciprocal rank), recall@1 and
recall@10 following Chen et al. (2020).

Parameter Settings The RoBERTa-base pretrained model
from Hugging-Face’s Transformers library (Wolf et al.
2020) is used as the base encoder which is the same as previ-
ous work. The cosine function is chosen as the cost function
in the hierarchical optimal transport and the hyper-parameter
α is set to 0.1. We set the number of labels in label hierarchy
to 2. Adam (Kingma and Ba 2015) is used for optimization
with an initial learning rate 1e-4. The models are trained for
50 epochs with batch size of 64.

Baselines We compare our model with the following base-
line methods for event process typing:

Sequence-to-label generators (S2L) (Rashkin et al. 2018):
the model is based on encoder-decoder architecture and map
sequences to unigrams of the type vocabulary directly. Three
variants of S2L using different encoders are employed:
Sequence-to-label(mean), Sequence-to-label(BiGRU) and

1https://www.wikihow.com/

Sequence-to-label(RoBERTa), which use mean-pooling of
Skip-Gram word embeddings, BiGRU, and RoBERTa as en-
coders respectively.

Process-to-gloss based typing (P2G) (Chen et al. 2020):
the model is based on pre-trained language model RoBERTa
and tag the process with labels by directly matching the pro-
cess level representation with the label gloss representation.
We adopt some of its variants as our baseline models in-
cluding separately learning for the two type axes, instead of
performing joint training (Single or Joint), different gloss se-
lection strategy (Pre-trained WSD models or Most frequent
senses, denoted as WSD or MFS), and representing event
using only ai or oi (Partial event).

Comparison with Baseline Methods

Experimental results are shown in Table 1, from which we
can observe that:

(1) Our HOT outperforms all the baseline models in all
metrics in terms of action label and object label prediction.
In particular, it outperforms the Model w/o hierarchy which
does not use the process hierarchy and label hierarchy. This
shows the effectiveness of matching hierarchy.

(2) For our model and all baseline models, all the perfor-
mance on object prediction is lower than the performance on
action label prediction. The possible reason is that the ob-
ject label space is larger than the action label space, which
increases the difficulty of object prediction.

(3) Although the pre-trained language model RoBERTa
is used as the encoder, the performance of the S2L model
is still poor. It illustrates the necessity of considering more
semantics of the label, so our method takes into account the
label hierarchy to enrich the label semantics.

(4) As can be seen from the table, the performance of pre-
dicting the label is relatively poor if only the action or ob-
ject of the event is used to represent the event in the process
(partial event). This shows that extracting richer semantics
of event process is helpful for predicting labels, just as our
method considers the process hierarchy.
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Label Type Action Object
Metrics MRR recall@1 recall@10 MRR recall@1 recall@10
single-label-def 41.06 31.60 60.05 20.91 15.21 31.76
words-in-hierarchical-label 41.00 31.42 59.68 20.88 15.25 31.66
names-of-hypernyms 40.27 30.75 59.02 20.90 15.03 31.57
HOT 41.44 31.94 60.02 21.19 15.43 32.23

Table 2: Results on the impact of label hierarchy.

Label Type Action Object
Metrics MRR recall@1 recall@10 MRR recall@1 recall@10
events-only 40.64 31.79 57.88 20.48 15.06 31.17
words-only 40.80 31.41 59.06 20.19 14.60 30.56
HOT 41.44 31.94 60.02 21.19 15.43 32.23

Table 3: Results on the impact of process hierarchy.

Impact of Label Hierarchy
Recall that in our model, the hierarchical label for the ac-
tion label a is a sequence Ha = (a, f, a1, f1, ..., ak, fk),
and the vector sequences (ha

1 ,h
a
2 , ...,h

a
k+1) corresponding

to hypernyms are obtained to construct HOT loss. We now
consider three variants of label representations to construct
HOT loss: using the representation of the single label with
its definition ha

1 , using all hidden states of words in the hi-
erarchical label sequence Ha, and using all hidden states of
words in the sequence (a, a1, ..., ak). For the object label, we
use three variants similar to the action label. The above three
variants are called single-label-def, words-in-hierarchical-
label and names-of-hypernyms respectively. Table 2 shows
the results and we can observe that:

(1) The HOT method performs better than the single-
label-def method on the whole, which shows that consid-
ering the label hierarchy information is helpful for the pre-
dictions of action and object labels.

(2) Compared with names-of-hypernyms, HOT performs
better on all metrics. The reason is that the HOT also consid-
ers the definition of each label word in the knowledge base,
thereby introducing more information to enrich the seman-
tics of the label.

(3) Compared with words-in-hierarchical-label, HOT
also performs better. The possible reason is that although
the labels of words-in-hierarchical-label contain similar in-
formation to labels in HOT, the labels of this method are
matched based on words, and the semantics of each label in
the hierarchical label is not explicitly considered.

Impact of Process Hierarchy
In our HOT method, both the sequence of events and the se-
quence of words in the event process are used to take into ac-
count the process hierarchy. Here we only use the sequence
of events or the sequence of words in the event process,
which are called events-only and words-only respectively.
Results are shown in Table 3, from which we can make the
following observations:

(1) Only using events or words in the event process can
also achieve good performance, because they can provide

some clues for the action label and object label prediction.
(2) When considering process hierarchy, that is, when

combining event and word sequences in the process, bet-
ter performance than events-only and words-only can be ob-
tained. This also validates our motivation: both events and
words can provide clues for label prediction, and combining
the two can further improve the prediction performance.

Impact of Different Event Semantics Extraction
In our method HOT, mean-pooling of hidden states of words
in each event is leveraged to get the representations of events
in the process. Here we try to extract event semantics in
other ways. One is to use the sum of the representation of
each word in the event as the representation of the event,
one is to take the maximum value of each dimension of the
representation of all words in the event as the event represen-
tation, and one is to use the attention mechanism to obtain
the representation of the event for the representation of the
word in the event. The above three methods are called sum,
max and att respectively. Table 4 shows the results and we
can observe that:

(1) The HOT method which uses mean-pooling performs
better than sum and max. The possible reason is that com-
pared with sum, the mean-pooling can eliminate the influ-
ence of sequence length and obtain a more stable event
representation. Compared with max, the mean-pooling can
more comprehensively consider the semantic information of
each word in the event.

(2) The HOT method is also better than att, which shows
that in our task, using the mean-pooling method to extract
the semantics of the event is more effective than using the
attention mechanism. The possible reason is that there are
already complex aggregation functions such as attention in
RoBERTa, so it is enough to use mean-pooling as the aggre-
gation function of the RoBERTa output.

Impact of Number of Labels in Label Hierarchy
We now investigate the impact of number of labels in label
hierarchy, by changing the number and observe its effect on
the model. The results are shown in Table 5 and we can ob-
serve that:
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Label Type Action Object
Metrics MRR recall@1 recall@10 MRR recall@1 recall@10
sum 40.11 31.04 58.45 19.56 13.99 30.11
max 40.80 31.57 58.94 20.24 14.31 30.89
att 40.74 31.50 59.34 20.41 14.68 31.31
HOT 41.44 31.94 60.02 21.19 15.43 32.23

Table 4: Results on the impact of different event semantics extraction.

Label Type Action Object
Metrics MRR recall@1 recall@10 MRR recall@1 recall@10
number=1 41.06 31.60 60.05 20.91 15.21 31.76
number=2 41.44 31.94 60.02 21.19 15.43 32.23
number=3 40.55 31.54 58.30 19.50 13.92 30.17

Table 5: Results on the impact of number of labels in label hierarchy.

Clean your razor, Dry the razor, Use a razor strop,
Use a sharpening stone

Sharpen, Clean, Use, Make, Cut

Blade, Longer, Hoof, Snake, Razor

Add details, Sketch her short wavy hair, Add her
outfit, Color her

Draw, Make, Create, Act, Do

Costume, Like, Character, Look, Animal

Gather the ingredients, Mix the mask, Apply the
mask, Rinse the mask

Make, Get, Use, Do, Create

Mask, Word, Fake, Face, Heart

Grab something, Spray the fly, Clean the area
Remove, Kill, Use, Clean, Treat

Fly, Mold, Wart, Urine, Tick

Event processes actions/ objectsTop 5 predicted

Figure 4: Top 5 predictions of action label and object label by our model HOT on examples of test data. Ground truths are in
bold.

(1) When the number is equal to 2, the performance of the
model is generally better than that when the number is equal
to 1, that is, when the number of labels in the label hierarchy
is appropriately increased, the performance of the model can
be improved. The reason is that more label information is
introduced, which further illustrates the effect of considering
the label hierarchy.

(2) When the number continues to increase, the perfor-
mance of the model begins to deteriorate. The reason may be
that as the label hierarchy increases, the parent categories of
some labels of different categories will tend to be the same,
which affects label prediction and model performance.

Case Study
We conduct a case study using examples of test data. Figure
4 shows 4 event processes, and for each process our model
HOT predicts the top 5 action and object labels. Although it
is difficult to always rank the ground-truth labels on the top,
the model can often infer similar labels to ground-truth as
top predictions. For example in Figure 4, the ground-truth

action label and object label of the first event process are
sharpen and razor respectively. Although the top 1 predic-
tion of object label by our model is Blade, it’s similar to the
ground-truth object label Razor. A similar situation exists
for the other examples in Figure 4.

Conclusion

In this paper, we consider two types of hierarchy: process
hierarchy and label hierarchy to help the event process typ-
ing task. For the former, semantics of each event in the pro-
cess and semantics of each word in event are extracted, for
the latter, hierarchical label for each label are extracted from
external knowledge base. Then we propose a novel method
Hierarchical Optimal Transport to deal with event process
typing, which optimally match label semantics with event
semantics and word semantics hierarchically. Experimen-
tal results demonstrate that our proposed model outperforms
baseline methods.
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Jans, B.; Bethard, S.; Vulić, I.; and Moens, M. F. 2012.
Skip n-grams and ranking functions for predicting script
events. In Proceedings of the 13th Conference of the Eu-
ropean Chapter of the Association for Computational Lin-
guistics, 336–344.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In ICLR (Poster).
Li, F.; Peng, W.; Chen, Y.; Wang, Q.; Pan, L.; Lyu, Y.; and
Zhu, Y. 2020a. Event extraction as multi-turn question an-
swering. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing: Findings,
829–838.

Li, J.; Li, C.; Wang, G.; Fu, H.; Lin, Y.; Chen, L.; Zhang,
Y.; Tao, C.; Zhang, R.; Wang, W.; et al. 2020b. Improving
text generation with student-forcing optimal transport. In
Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 9144–9156.
Li, M.; Ma, T.; Yu, M.; Wu, L.; Gao, T.; Ji, H.; and McKe-
own, K. 2021. Timeline summarization based on event graph
compression via time-aware optimal transport. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, 6443–6456.
Li, M.; Xu, R.; Wang, S.; Zhou, L.; Lin, X.; Zhu, C.; Zeng,
M.; Ji, H.; and Chang, S.-F. 2022a. Clip-event: Connecting
text and images with event structures. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 16420–16429.
Li, Q.; Li, P.; Bi, W.; Ren, Z.; Lai, Y.; and Kong, L. 2022b.
Event Transition Planning for Open-ended Text Generation.
In Findings of the Association for Computational Linguis-
tics: ACL 2022, 3412–3426.
Li, Q.; and Zhang, Q. 2020. A Unified Model for Finan-
cial Event Classification, Detection and Summarization. In
IJCAI, 4668–4674.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.
Luise, G.; Rudi, A.; Pontil, M.; and Ciliberto, C. 2018. Dif-
ferential Properties of Sinkhorn Approximation for Learning
with Wasserstein Distance. Advances in Neural Information
Processing Systems, 31: 5859–5870.
Lv, S.; Zhu, F.; and Hu, S. 2020. Integrating External
Event Knowledge for Script Learning. In Proceedings of the
28th International Conference on Computational Linguis-
tics, 306–315.
Miller, G. A. 1995. WordNet: a lexical database for English.
Communications of the ACM, 38(11): 39–41.
Nouri, N. 2022. Text Style Transfer via Optimal Transport.
In Proceedings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, 2532–2541. Seattle,
United States: Association for Computational Linguistics.
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