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Abstract: Graph neural networks (GNNs) are powerful tools for analyzing graph-structured
data. However, recent studies have shown that GNNs are vulnerable to small but intentional
perturbations of input features and graph structures in the node classification task. Existing
researches focus on enhancing the robustness of GNNs for a single type of perturbation such
as graph structure perturbation or node feature perturbation. An ideal graph neural networks
model should be able to resist the two kinds of perturbations. For this purpose, we propose a
new adversarial training method for graph-structured data named Graph Jointly Adversarial
Training (GJAT) which incorporates Graph Structure Adversarial Training (GSAT) and Graph
Feature Adversarial Training (GFAT) two components and can resist perturbations from the
topological structure and node attribute. Extensive experimental results demonstrate that our
proposed method combining two kinds of adversarial training strategies can effectively improve
the robustness of graph convolutional networks (GCNs) which is an important subset of GNNs.
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1. INTRODUCTION

Graph structure data plays an important role in many
real-world applications. Graph neural networks (GNNs), a
powerful tool to implement training and inference on graph
data, have shown promising results in various domains,
including computer vision (Wang et al., 2018), natural lan-
guage processing (Marcheggiani and Titov, 2017),applied
chemistry and biology (Kearnes et al., 2016), etc.

Despite the remarkable success of GNNs, recent studies
show that GNNs are vulnerable to adversarial attacks (Dai
et al., 2018; Zügner et al., 2018; Zügner and Günnemann,
2019). These attacks are usually stealthy and only perform
subtle perturbations in graph structures or node features
to fool the GNNs. State-of-the-art GNNs usually follow a
“message-passing” framework (Gilmer et al., 2017) where
each node aggregates information from its immediate

neighbors in each layer. We argue that the vulnerability
of GNNs could be more serious than the standard neural
networks that do not model the graph structure, since the
smoothness constraint of GNNs (Li et al., 2018) aggregates
the impact of perturbations from nodes connected to the
target node and exacerbates the impact of perturbations
to the target node. In practical applications, models should
guarantee that small perturbations like the updates of
node features or edges should not change the predictions
much. Therefore, there is a strong need to enhance the
robustness of GNNs from the graph structure level and
node feature level.

It is worth mentioning that adversarial training has been
empirically shown to be able to stabilize neural networks,
and enhance their robustness against perturbations in
standard classification tasks (Kurakin et al., 2016). An
advantage of adversarial training is that it can generate
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data. However, recent studies have shown that GNNs are vulnerable to small but intentional
perturbations of input features and graph structures in the node classification task. Existing
researches focus on enhancing the robustness of GNNs for a single type of perturbation such
as graph structure perturbation or node feature perturbation. An ideal graph neural networks
model should be able to resist the two kinds of perturbations. For this purpose, we propose a
new adversarial training method for graph-structured data named Graph Jointly Adversarial
Training (GJAT) which incorporates Graph Structure Adversarial Training (GSAT) and Graph
Feature Adversarial Training (GFAT) two components and can resist perturbations from the
topological structure and node attribute. Extensive experimental results demonstrate that our
proposed method combining two kinds of adversarial training strategies can effectively improve
the robustness of graph convolutional networks (GCNs) which is an important subset of GNNs.

Keywords: Graph neural networks, Robustness, Adversarial Attack, Adversarial Training,
Deep Learning.

1. INTRODUCTION

Graph structure data plays an important role in many
real-world applications. Graph neural networks (GNNs), a
powerful tool to implement training and inference on graph
data, have shown promising results in various domains,
including computer vision (Wang et al., 2018), natural lan-
guage processing (Marcheggiani and Titov, 2017),applied
chemistry and biology (Kearnes et al., 2016), etc.

Despite the remarkable success of GNNs, recent studies
show that GNNs are vulnerable to adversarial attacks (Dai
et al., 2018; Zügner et al., 2018; Zügner and Günnemann,
2019). These attacks are usually stealthy and only perform
subtle perturbations in graph structures or node features
to fool the GNNs. State-of-the-art GNNs usually follow a
“message-passing” framework (Gilmer et al., 2017) where
each node aggregates information from its immediate

neighbors in each layer. We argue that the vulnerability
of GNNs could be more serious than the standard neural
networks that do not model the graph structure, since the
smoothness constraint of GNNs (Li et al., 2018) aggregates
the impact of perturbations from nodes connected to the
target node and exacerbates the impact of perturbations
to the target node. In practical applications, models should
guarantee that small perturbations like the updates of
node features or edges should not change the predictions
much. Therefore, there is a strong need to enhance the
robustness of GNNs from the graph structure level and
node feature level.

It is worth mentioning that adversarial training has been
empirically shown to be able to stabilize neural networks,
and enhance their robustness against perturbations in
standard classification tasks (Kurakin et al., 2016). An
advantage of adversarial training is that it can generate

samples with fatal attack information. Thus, it might be
useful to improve the robustness of GNNs by incorporating
adversarial training into the graph neural network models.

However, due to the discrete nature of the graph and
complex interdependency between nodes, it is non-trivial
to directly implement the structure perturbation and fea-
ture perturbation. We propose a novel adversarial training
method for graph-sturcture data named Graph Jointly
Adversarial Training (GJAT) including Graph Structure
Adversarial Training (GSAT) and Graph Feature Adver-
sarial Training (GFAT) two components, which learns
to resist perturbations from topological structure and
node attribute respectively. To verify the effectiveness of
GJAT, we employ it on the Graph Convolutional Network
(GCN)(Kipf and Welling, 2016), a state-of-the-art graph
neural network model and conduct experiments on two
graph datasets (Citeseer, Cora). To the best of our knowl-
edge, we are the first to try to stabilize the graph neural
network models from the perspectives of graph structure
level and node feature level.

The rest of the paper is organized as follows. In Section 2,
we review the related works. In Section 3, we summarize
the notations and give some preliminaries. We introduce
our proposed method in Section 4 and report experimental
results in Section 5. Finally, we conclude the paper and
point out future directions.

2. RELATED WORK

Our work builds upon three categories of recent researches:
adversarial robustness of deep learning, graph adversarial
attack and graph adversarial defense.

Adversarial robustness of deep learning is already a hot
direction. Substantial related researches have proposed
various adversarial attack and defense methods (Goodfel-
low et al., 2014; Samangouei et al., 2018). Benefiting from
the adversarial attack and defense, adversarial training
has been leveraged to enhance the robustness of the deep
learning methods (Goodfellow et al., 2014).From the opti-
mization perspective, adversarial training is an alternative
minimax optimization process (Goodfellow et al., 2014).

Recently, a few attempts have been made to study ad-
versarial attacks on GNNs. Dai et al. (2018) proposed a
non-target evasion attack on node classification and graph
classification. A reinforcement learning method was used
to learn the attack policy that applies small-scale modifi-
cation to the graph structure. Zügner et al. (2018) intro-
duced a poisoning attack on node classification. This work
adopted a substitute model attack and formulated the
attack problem as a bi-level optimization. Different from
Dai et al. (2018), it attacked both the graph structure and
node attributes. Furthermore, it considered both direct
attacks and influence attacks. Chen et al. (2018a,b) applied
adding/deleting edge strategies. Zügner and Günnemann
(2019) proposed a simple yet strong global attack with
an interpretable strategy (remove internally, insert exter-
nally), where it randomly disconnects nodes from the same
class and connects nodes from different classes.

So far, there are only a few studies about the adversarial
defense for GNNs. Zhu et al. (2019) proposed a robust
GCN which, instead of representing nodes as vectors,

adopts Gaussian distributions as the hidden representa-
tions of nodes in each convolutional layer and variance-
based attention mechanism Jin et al. (2019) highlighted
some basic flaws of the fundamental building block of
GCN—the Laplacian operator and proposed a new opera-
tor based on graph powering to construct an architecture
with improved spectral robustness. Overall, it still needs
to seek a more general approach to improve the robustness
of the GNNs.

3. NOTATIONS AND PRELIMINARIES

To demonstrate the utility of GJAT, we will briefly intro-
duce how the Graph Convolutional Network (GCN) (Kipf
and Welling, 2016), a representative graph neural network
model, works in the semi-supervised node classification
and formalize the graph structure perturbation and the
node feature perturbation.

3.1 Semi-supervised Classification with GCNs

In this paper, a graph is defined as G = (V,E), where
V = {v1, · · · , vN} denotes the set of nodes, N = |V| is
the number of nodes, and E ⊆ V ×V is the set of edges
between nodes with cardinality M = |E|. Let A represent
a binary adjancency matrix. Aij = 1 if there is an edge
between node i and j, otherwiseAij = 0. X is the node
features matrix and D = diag (d1, d2, · · · , dN ) denotes the
degree matrix of A, where di =

∑
j Aij is the degree of

vertex i.

The original form of Kipf’s GCN with two convolutional
layers be defined using the following equation:

Z = f (X,A) = softmax
(
ÂReLU

(
ÂXW

(0)
)
W(1)

)
,

(1)

where Â = D̃− 1
2 ÃD̃

1
2 , Ã = A + I. D̃ is the degree

matrix of Ã. I is an identity matrix. Z is the predicted
labels matrix of nodes. W(0) is the input-to-hidden weight
matrix and W(1) is the hidden-to-output weight matrix.
Finally, the loss function is defined as the cross entropy
error over all labeled nodes:

L0 = −
∑
l∈VL

C∑
c=1

ylcZlc, (2)

where VL is the set of node indices that have labels and
C is the number of categories.

3.2 Graph Structure Perturbation and Feature Perturbation

To formalize the edge manipulation, we employ the same
method as (Xu et al., 2019) did. We introduce a Boolean

symmetric matrix B ∈ {0, 1}N×N
to encode whether or

not an edge in G is modified. If the edge connecting
nodes i and j is perturbed (added or removed), then
Bij = Bji = 1. Otherwise, Bij = 0 if i = j or the edge
(i, j) is not modified. Then a perturbed graph can be givn
by

A
′
= A+ (C−A)�B, (3)

where C = 11T −A−I denotes the supplement of exsiting
edges and � denotes the element-wise product. The term
(C−A) � B is the graph structure perturbations. To
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samples with fatal attack information. Thus, it might be
useful to improve the robustness of GNNs by incorporating
adversarial training into the graph neural network models.

However, due to the discrete nature of the graph and
complex interdependency between nodes, it is non-trivial
to directly implement the structure perturbation and fea-
ture perturbation. We propose a novel adversarial training
method for graph-sturcture data named Graph Jointly
Adversarial Training (GJAT) including Graph Structure
Adversarial Training (GSAT) and Graph Feature Adver-
sarial Training (GFAT) two components, which learns
to resist perturbations from topological structure and
node attribute respectively. To verify the effectiveness of
GJAT, we employ it on the Graph Convolutional Network
(GCN)(Kipf and Welling, 2016), a state-of-the-art graph
neural network model and conduct experiments on two
graph datasets (Citeseer, Cora). To the best of our knowl-
edge, we are the first to try to stabilize the graph neural
network models from the perspectives of graph structure
level and node feature level.

The rest of the paper is organized as follows. In Section 2,
we review the related works. In Section 3, we summarize
the notations and give some preliminaries. We introduce
our proposed method in Section 4 and report experimental
results in Section 5. Finally, we conclude the paper and
point out future directions.

2. RELATED WORK

Our work builds upon three categories of recent researches:
adversarial robustness of deep learning, graph adversarial
attack and graph adversarial defense.

Adversarial robustness of deep learning is already a hot
direction. Substantial related researches have proposed
various adversarial attack and defense methods (Goodfel-
low et al., 2014; Samangouei et al., 2018). Benefiting from
the adversarial attack and defense, adversarial training
has been leveraged to enhance the robustness of the deep
learning methods (Goodfellow et al., 2014).From the opti-
mization perspective, adversarial training is an alternative
minimax optimization process (Goodfellow et al., 2014).

Recently, a few attempts have been made to study ad-
versarial attacks on GNNs. Dai et al. (2018) proposed a
non-target evasion attack on node classification and graph
classification. A reinforcement learning method was used
to learn the attack policy that applies small-scale modifi-
cation to the graph structure. Zügner et al. (2018) intro-
duced a poisoning attack on node classification. This work
adopted a substitute model attack and formulated the
attack problem as a bi-level optimization. Different from
Dai et al. (2018), it attacked both the graph structure and
node attributes. Furthermore, it considered both direct
attacks and influence attacks. Chen et al. (2018a,b) applied
adding/deleting edge strategies. Zügner and Günnemann
(2019) proposed a simple yet strong global attack with
an interpretable strategy (remove internally, insert exter-
nally), where it randomly disconnects nodes from the same
class and connects nodes from different classes.

So far, there are only a few studies about the adversarial
defense for GNNs. Zhu et al. (2019) proposed a robust
GCN which, instead of representing nodes as vectors,

adopts Gaussian distributions as the hidden representa-
tions of nodes in each convolutional layer and variance-
based attention mechanism Jin et al. (2019) highlighted
some basic flaws of the fundamental building block of
GCN—the Laplacian operator and proposed a new opera-
tor based on graph powering to construct an architecture
with improved spectral robustness. Overall, it still needs
to seek a more general approach to improve the robustness
of the GNNs.

3. NOTATIONS AND PRELIMINARIES

To demonstrate the utility of GJAT, we will briefly intro-
duce how the Graph Convolutional Network (GCN) (Kipf
and Welling, 2016), a representative graph neural network
model, works in the semi-supervised node classification
and formalize the graph structure perturbation and the
node feature perturbation.

3.1 Semi-supervised Classification with GCNs

In this paper, a graph is defined as G = (V,E), where
V = {v1, · · · , vN} denotes the set of nodes, N = |V| is
the number of nodes, and E ⊆ V ×V is the set of edges
between nodes with cardinality M = |E|. Let A represent
a binary adjancency matrix. Aij = 1 if there is an edge
between node i and j, otherwiseAij = 0. X is the node
features matrix and D = diag (d1, d2, · · · , dN ) denotes the
degree matrix of A, where di =

∑
j Aij is the degree of

vertex i.

The original form of Kipf’s GCN with two convolutional
layers be defined using the following equation:

Z = f (X,A) = softmax
(
ÂReLU

(
ÂXW

(0)
)
W(1)

)
,

(1)

where Â = D̃− 1
2 ÃD̃

1
2 , Ã = A + I. D̃ is the degree

matrix of Ã. I is an identity matrix. Z is the predicted
labels matrix of nodes. W(0) is the input-to-hidden weight
matrix and W(1) is the hidden-to-output weight matrix.
Finally, the loss function is defined as the cross entropy
error over all labeled nodes:

L0 = −
∑
l∈VL

C∑
c=1

ylcZlc, (2)

where VL is the set of node indices that have labels and
C is the number of categories.

3.2 Graph Structure Perturbation and Feature Perturbation

To formalize the edge manipulation, we employ the same
method as (Xu et al., 2019) did. We introduce a Boolean

symmetric matrix B ∈ {0, 1}N×N
to encode whether or

not an edge in G is modified. If the edge connecting
nodes i and j is perturbed (added or removed), then
Bij = Bji = 1. Otherwise, Bij = 0 if i = j or the edge
(i, j) is not modified. Then a perturbed graph can be givn
by

A
′
= A+ (C−A)�B, (3)

where C = 11T −A−I denotes the supplement of exsiting
edges and � denotes the element-wise product. The term
(C−A) � B is the graph structure perturbations. To
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perturb a graph, we just need to give the encoding matrix
B. We replace the symmetric matrix variable B with its
vector form b that consists of n := N(N − 1)/2 unique
perturbation variables in B. Compared with the graph
structure perturbations, the graph feature perturbations
are more easy to depict. We define a node feature pertur-
bation ri for node i.Term xi + ri represents implementing
the perturbation ri to the feature vector xi of node i.

4. GRAPH ADVERSARIAL TRAINING

In this section, we first introduce our proposed Graph Sr-
tucture Adversarial Training (GSAT) and Graph Feature
Adversarial Training (GFAT). Then we present the Graph
Jointly Adversarial Training (GJAT).

4.1 Graph Srtucture Adversarial Training

Applying GSAT would regulate the model parameters
to resist the vulnerable local structure in the graph.
Therefore, the key challenge is how to define the vulnerable
local structure. To solve this problem, in this paper, we
regard as those edges as the vulnerable structure, which
significantly increase the training loss after modified by B.
Inspired by the philosophy of standard adversarial training
(Goodfellow et al., 2014), we give the following graph
adversarial training loss:

min
w

max
b

F (b,W) =
∑
i∈VL

D (f (xi,A;W,b) ,yi)

+ α
∑

i∈VUL

D (f (xi,A;W,b) ,yi)

s.t.1Tb � ε,b ∈ {0, 1}n

(4)

where D (·, ·) measures the divergence between two distri-
butions such as cross-entropy function, f (xi,A;W,b) is
the predicted probability vector of node i, yi is the one-
hot vector of true label of node i, VL is the set of node
indices that have labels, VUL is the set of unlabeled node
indices, α controls the impact of the loss of the unlabeled
nodes, ε constraints the number of edge to be perturbed
and

ȳi = f
(
xi,A;W̄,b

)
(5)

is the prediction result vector of unlabeled node i under
the training process, where W̄ is the initial parameter of
GCN model to be trained.

Problem (4) is a combinatorial optimization problem due
to the presence of binary variables. To optimize it with
a continuous way, we employ the same method as Xu
et al. (2019) did. We relax b ∈ {0, 1}n to its convex hull
b ∈ [0, 1]

n
and solve the following continuous optimization

problem,

min
w

max
b

F (b,W) =
∑
i∈VL

D (f (xi,A;W,b) ,yi)

+
∑

i∈VUL

D (f (xi,A;W,b) ,yi)

s.t. b ∈ B,

(6)

where B =
{
b|1T

b ≤ ε,b ∈ [0, 1]
n
}
. Problem (6) can be

solved by first-order alternating optimization (Xu et al.,
2019; Lu et al., 2018), where the outer minimization is

handled by gradient descent, and the inner maximization
is solved by projected gradient ascent, and (PGA),

b(t) = ΠB

[
b(t−1) + ηtĝt

]
, (7)

where t denotes the iteration index of PGA, ηt > 0 is
the learning rate at iteration t, ĝt = ∇F

(
b(t−1),W(t−1)

)
denotes the gradient of the attack loss F evaluated at
b(t−1), and ΠB (a) = argminb∈B‖b − a‖22 is the projec-
tion operator at the constraint set B. In fact, under the
constraint B, the PGA exists a closed-form solution:

ΠB (a) =

{
P[0,1] [a− µ1] , µ > 0,1TP[0,1] [a− µ1] = ε,
P[0,1] [a] , 1TP[0,1] [a] ≤ ε,

(8)
where P[0,1] [x] = x if x ∈ [0, 1] , 0 if x < 0, and 1 if x > 1.
The detail proof can be found in (Xu et al., 2019). Due to
b ∈ [0,1]

n
, we use a randomization sampling to obtain the

binary values (Liu et al., 2016). We summarize the graph
structure adversarial training in Algorithm 1.

Algorithm 1 Graph structure adversarial training

1: Input: b(0), W(0), α > 0, ε > 0, learning rates γt and
ηt, iterations T1and T2, and # of random trials K,

2: for t1 = 1, 2, ..., T1 do
3: for t2 = 1, 2, ..., T2 do
4: gradient ascent: a(t2) = b(t2−1)+ ηt2∇F (b(t2−1)),
5: call projection operation in (7),
6: end for
7: for each k = 1, 2, ...,K do
8: draw binary vector u(k) following
9:

u
(k)
i =

{
1 with probability bi
0 with probability 1− bi

, ∀i

10: end for
11: choose a vector b∗ from u(k) which yields the biggest

adversarial training loss, F (u(k)) under 1Tb ≤ ε,
12: outer minimization over W: given b(t), obtain

W(t1) = W(t1−1) − γt∇WF (b(t1),W(t1−1)),

13: end for
14: return Ŵ = W(T1)

4.2 Graph Feature Adversarial Training

To prevent node feature perturbation propagation in the
“message-passing” framework, we design the GFAT as a
regularization term that enforces the model parameters to
smooth the output label of model in the local graph struc-
ture. Here we formally define the graph feature adversarial
training loss in GCNs, where adversarial perturbations are
added on features of all nodes:

min
w

max
r

L1 =
∑
i∈VL

D (f (xi + ri,A;W,b) ,yi)

+ β
∑

i∈VUL

D (f (xi + ri,A;W,b) , ỹi)

s.t.‖r‖ � δ

(9)

where ri denotes the feature adversarial perturbation,
that is the direction which leads to the largest change
on the model prediction of xi, δ controls the magnitude
of feature perturbation such that the feature distribution
of the adversarial examples is close to that of the clean
examples. β weights the loss between unlabeled nodes and

label nodes, yi and ỹi denote the ground truth label and
model prediction, respectively. And

ỹi = f
(
xi,A;Ŵ,b

)
, (10)

where Ŵ is the return of Algorithm 1.

In fact, problem 9 is precisely Virtual Adversarial Training
(Miyato et al., 2018) that has a ready-made optimiza-
tion method. This problem can be optimized by lever-
aging the approximation method. For labeled nodes, ri
can be easily evaluated via linear approximation (Good-
fellow et al., 2014), i.e., calculating the gradient of
D (f (xi + ri,A;W) ,yi) w.r.t. xi. However, linear ap-
proximation is infeasible for unlabeled nodes since the
gradient will always be zero because the gradient of
D (f (xi + ri,A;W) , ỹi) achieves the minimum value (0)
at xi (ri = 0). Although the first-order gradient is always
zero, it is feasible to estimate ri from the second-order
Taylor approximation of D (f (xi + ri,A;W) , ỹi). That
is, ri ≈ argmaxr′

i
,‖r′i‖�δ

1
2r

′T
i Hr′i, where H is the Hessian

matrix ofD (f (xi + ri,A;W) , ỹi). Due to the time cost of
calculating Hessian matrix, Miyato et al. (2018) calculate
ri via the power iteration approximation:

ri = δ
g

‖gi‖2
, g = ∇riD (f (xi + ri,A;W)) |ri=ξd, (11)

where d is a random vector and ξ is the step length of
the finite difference. Detailed derivation of the method is
referred to Miyato et al. (2018). Finally, we summarize the
graph feature adversarial training in Algorithm 2.

Algorithm 2 Graph feature adversarial training

1: Input: W(0), δ > 0, β > 0, ξ > 0, learning rates µt,
iterations T3

2: for t1 = 1, 2, ..., T3 do
3: generate a random unit vector: di using an iid

Gaussian distribution,
4: calculate the gradient gi of L1 with respect to ri on

ri = ξdi on each node featur xi,
5: calculate the feature adversarial perturbation ri =

δ gi

‖gi‖2
,

6: update the parameters of the model: W(t) =
W(t−1) + µt∇WL1,

7: end for
8: return W̄ = W(T3)

4.3 Graph Jointly Adversarial Training

An ideal graph nerual neteork model should be able to
resist the two kinds of perturbations. We design a graph
jointly adversarial training (GJAT) to enhance the robust-
ness of the GNNs by combining the graph feature adver-
sarial training (GFAT) and the graph structure adversarial
training (GSAT). The combination of GSAT and GFAT
is straightforward. To gain benefits from two methods,
we alternate GFAT and GSAT. We summarize the graph
jointly adversarial training in Algorithm3.

5. EXPERIMENTS

5.1 Compared Methods

To evaluate the effectiveness of our proposed GFAT, GSAT
and GJAT, we the following methods as baselines.

Algorithm 3 Graph jointly adversarial training

1: Input: W(0), ε, δ > 0, α, β > 0, ξ > 0, learning rates
µt, γt and ηt, iterations T1, T2, T3 and T4 and # of
random trials K,

2: for t1 = 1, 2, ..., T4 do
3: Ŵ(t) = W(t−1),
4: obtain W̄(t) by implementing the Algorithm 2,
5: obtain Ŵ(t) by implementing the Algorithm 1,
6: W(t) = Ŵ(t),
7: end for
8: return W = W(T4)

Table 1. The statistics of the datasets.

Dataset #Node #Edge #Feature #Class

Citeseer 2,110 3,757 3,703 3

Cora 2,810 7,981 1,433 7

• DeepWalk (Perozzi et al., 2014) is a graph embedding
method which applies the technique for learning word
representations in multiple random walks from the
graph to generate node embedding.

• GCN (Kipf andWelling, 2016) has two graph convolu-
tion layers to map the node features and structure to
labels and propagates node representations and labels
to unlabeled nodes.

• GraphSAGE (Hamilton et al., 2017) is an extended,
inductive version of Kipf et al’s semi-supervised GCN
(Kipf and Welling, 2016).

• GAT (Veličković et al., 2017) enables specifying dif-
ferent weights to different nodes in a neighborhood
during stacking the graph convolution layers.

Besides, we also choose the Multilayer Perceptron (MLP)
as a baseline.

To evaluate the performances of our proposed methods
on defending adversarial attacks, we choose three populor
adversarial attacks:

• FGSM (Goodfellow et al., 2014) generates adversarial
examples by producing subtle node feature perturba-
tions based on the sign of gradient.

• NETTACK (Zügner et al., 2018) is a state-of-the-art
graph structure attack method based on optimiza-
tion.

• RAND perturbs the node features by randomly
adding or deleting some attributes and modifies the
graph structure by randomly adding edges to the
node that belongs to a different class and/or deleting
an edge that connected to the node within the same
class.

5.2 Learning Settings

For the benchmark datasets, we choose two well-known
citation network datasets: Cora and Citeseer (Sen et al.,
2008) for node classification tasks. The statistics of two
datasets are reported in Table 1. We follow the same
experimental settings as in (Xu et al., 2019). During
training process, all nodes and features are accessible, but
only 40 (20) labels are fed into the model on the dataset
Citeseer (Cora). The number of test labeled nodes is 1000
for both datasets. In our paper, we set T1 = 1, T2 =
10, T3 = 1, T4 = 800 and K = 15 for all datasets.
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label nodes, yi and ỹi denote the ground truth label and
model prediction, respectively. And

ỹi = f
(
xi,A;Ŵ,b

)
, (10)

where Ŵ is the return of Algorithm 1.

In fact, problem 9 is precisely Virtual Adversarial Training
(Miyato et al., 2018) that has a ready-made optimiza-
tion method. This problem can be optimized by lever-
aging the approximation method. For labeled nodes, ri
can be easily evaluated via linear approximation (Good-
fellow et al., 2014), i.e., calculating the gradient of
D (f (xi + ri,A;W) ,yi) w.r.t. xi. However, linear ap-
proximation is infeasible for unlabeled nodes since the
gradient will always be zero because the gradient of
D (f (xi + ri,A;W) , ỹi) achieves the minimum value (0)
at xi (ri = 0). Although the first-order gradient is always
zero, it is feasible to estimate ri from the second-order
Taylor approximation of D (f (xi + ri,A;W) , ỹi). That
is, ri ≈ argmaxr′
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,‖r′i‖�δ

1
2r

′T
i Hr′i, where H is the Hessian

matrix ofD (f (xi + ri,A;W) , ỹi). Due to the time cost of
calculating Hessian matrix, Miyato et al. (2018) calculate
ri via the power iteration approximation:

ri = δ
g

‖gi‖2
, g = ∇riD (f (xi + ri,A;W)) |ri=ξd, (11)

where d is a random vector and ξ is the step length of
the finite difference. Detailed derivation of the method is
referred to Miyato et al. (2018). Finally, we summarize the
graph feature adversarial training in Algorithm 2.

Algorithm 2 Graph feature adversarial training

1: Input: W(0), δ > 0, β > 0, ξ > 0, learning rates µt,
iterations T3

2: for t1 = 1, 2, ..., T3 do
3: generate a random unit vector: di using an iid

Gaussian distribution,
4: calculate the gradient gi of L1 with respect to ri on

ri = ξdi on each node featur xi,
5: calculate the feature adversarial perturbation ri =

δ gi

‖gi‖2
,

6: update the parameters of the model: W(t) =
W(t−1) + µt∇WL1,

7: end for
8: return W̄ = W(T3)

4.3 Graph Jointly Adversarial Training

An ideal graph nerual neteork model should be able to
resist the two kinds of perturbations. We design a graph
jointly adversarial training (GJAT) to enhance the robust-
ness of the GNNs by combining the graph feature adver-
sarial training (GFAT) and the graph structure adversarial
training (GSAT). The combination of GSAT and GFAT
is straightforward. To gain benefits from two methods,
we alternate GFAT and GSAT. We summarize the graph
jointly adversarial training in Algorithm3.

5. EXPERIMENTS

5.1 Compared Methods

To evaluate the effectiveness of our proposed GFAT, GSAT
and GJAT, we the following methods as baselines.

Algorithm 3 Graph jointly adversarial training

1: Input: W(0), ε, δ > 0, α, β > 0, ξ > 0, learning rates
µt, γt and ηt, iterations T1, T2, T3 and T4 and # of
random trials K,

2: for t1 = 1, 2, ..., T4 do
3: Ŵ(t) = W(t−1),
4: obtain W̄(t) by implementing the Algorithm 2,
5: obtain Ŵ(t) by implementing the Algorithm 1,
6: W(t) = Ŵ(t),
7: end for
8: return W = W(T4)

Table 1. The statistics of the datasets.

Dataset #Node #Edge #Feature #Class

Citeseer 2,110 3,757 3,703 3

Cora 2,810 7,981 1,433 7

• DeepWalk (Perozzi et al., 2014) is a graph embedding
method which applies the technique for learning word
representations in multiple random walks from the
graph to generate node embedding.

• GCN (Kipf andWelling, 2016) has two graph convolu-
tion layers to map the node features and structure to
labels and propagates node representations and labels
to unlabeled nodes.

• GraphSAGE (Hamilton et al., 2017) is an extended,
inductive version of Kipf et al’s semi-supervised GCN
(Kipf and Welling, 2016).

• GAT (Veličković et al., 2017) enables specifying dif-
ferent weights to different nodes in a neighborhood
during stacking the graph convolution layers.

Besides, we also choose the Multilayer Perceptron (MLP)
as a baseline.

To evaluate the performances of our proposed methods
on defending adversarial attacks, we choose three populor
adversarial attacks:

• FGSM (Goodfellow et al., 2014) generates adversarial
examples by producing subtle node feature perturba-
tions based on the sign of gradient.

• NETTACK (Zügner et al., 2018) is a state-of-the-art
graph structure attack method based on optimiza-
tion.

• RAND perturbs the node features by randomly
adding or deleting some attributes and modifies the
graph structure by randomly adding edges to the
node that belongs to a different class and/or deleting
an edge that connected to the node within the same
class.

5.2 Learning Settings

For the benchmark datasets, we choose two well-known
citation network datasets: Cora and Citeseer (Sen et al.,
2008) for node classification tasks. The statistics of two
datasets are reported in Table 1. We follow the same
experimental settings as in (Xu et al., 2019). During
training process, all nodes and features are accessible, but
only 40 (20) labels are fed into the model on the dataset
Citeseer (Cora). The number of test labeled nodes is 1000
for both datasets. In our paper, we set T1 = 1, T2 =
10, T3 = 1, T4 = 800 and K = 15 for all datasets.



424 Hu Tian  et al. / IFAC PapersOnLine 53-5 (2020) 420–425

Table 2. The results of node classification ac-
curacy (%) on the clean datasets.

Methods Citeseer Cora

MLP 46.5 55.1
Deepwalk 43.2 67.2
GCN 70.3 81.4
GraphSAGE 70.9 81.2
GAT 72.5 83.3
GFAT 70.7 81.6
GSAT 75.1 81.8
GJAT 70.1 81.4

Table 3. The results of node classification ac-
curacy (%) on the Cora dataset under various

attacks.

Methods
Cora

CLEAN FGSM NETTACK RAND
GCN 81.4 73.5 60.7 61.8
GraphSAGE 81.2 71.3 63.3 60.5
GAT 83.3 75.2 64.1 62.3
GFAT 81.6 78.7 66.4 67.6
GSAT 81.8 74.5 70.5 66.9
GJAT 81.4 77.6 71.2 68.8

5.3 Against Adversarial Attacks

Firstly, we conduct experiments on the clean datasets. The
experimental results are reported in Table 2. We can ob-
serve that our proposed methods can achieve comparable
results on Citeseer and Cora, which indicates that GFAT,
GSAT and GJAT are adequate for traditional node clas-
sification task. Next, we maily investigate the prediction
accuracy of our three defense methods under three types
of attck methods. The results are shown in Table 3 and
4. CLEAN represents the performance of corresponding
methods on the clean datasets.

From the Tables 3 and 4, we can find GJAT can improve
the prediction accuracy significantly except the NET-
TACK on the Citeseer dataset. Quantitatively, GJAT can
improve the prediction accuracy upon the best baseline
by a margin from 3.19% to 21.98%. Especially, we find
GFAT and GSAT can resist the corresponding attack
methods to some extant. In most cases, GJAT the com-
bination of GFAT and GSAT can achieve better results
than the individual method. This observation implies that
jointly adversarial training considering the node feature
and graph structure is a promising direction to enhance
the robustness of graph neural networks.

5.4 Parameters Analysis

Finally, we conduct the sensitive analysis to investigate the
effects of hyperparameters (β, α, δ, ε) for the performance
of our proposed methods. Each experiment is implemented
by trying the different target hyperparameter and fixing
the other hyperparameters. The results are reported in
Figures 1, 2, 3 and 4.

From these figures, we can observe the following results:

Table 4. The results of node classification ac-
curacy (%) on Citeseer dataset under various

attacks.

Methods
Citeseer

CLEAN FGSM NETTACK RAND
GCN 70.3 49.1 51.2 58.4
GraphSAGE 70.9 50.5 54.7 59.1
GAT 72.5 49.9 52.4 62.9
GFAT 70.7 60.6 53.8 64.3
GSAT 70.5 53.2 55.6 65.6
GJAT 70.1 61.6 55.0 67.8
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Fig. 1. Evaluation accuracy of GFAT and GJAT with
different values of hyperparameter β on Citseer and
Cora datasets, which is the weight of unlabeled nodes
loss of GFAT.
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Fig. 2. Evaluation accuracy of GSAT and GJAT with
different values of hyperparameter α on Citseer and
Cora datasets, which is the weight of unlabeled nodes
loss of GSAT.
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Fig. 3. Evaluation accuracy of GFAT and GJAT with dif-
ferent values of hyperparameter δ on Citseer and Cora
datasets, which controls the perturbation magnitude
of node feature.

• GFAT, GSAT and GJAT are relatively insensitive to
the regularization weights α and β. When α and β
are in the interval [0.1, 1], the can achieve the strong
performance in most cases.

• GFAT, GSAT and GJAT are relatively insensitive to
the featuren and structure perturbations when δ and
ε are in a very small interval.

• Under most cases, GJAT has better performace than
GFAT and GSAT. This phenomenon demonstrates
the advantage of GJAT.
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Fig. 4. Evaluation accuracy of GSAT and GJAT with dif-
ferent values of hyperparameter ε on Citseer and Cora
datasets, which controls the perturbation magnitude
of graph structure.

6. CONCLUSION

In this paper, we proposed a jointly adversarial training
method to enhance the robustness of the graph nerual net-
works by combining the graph feature adversarial training
and graph structure adversarial training. Our extensive
experiments show that our graph jointly adversarial train-
ing can resist the attacks from the node feature attack
and graph structure attack effectively. Our proposed graph
feature adversarial training and graph structure adversar-
ial training can be used to deal with different application
settings. However, the graph structure adversarial train-
ing involves the a discrete optimization, which limits the
possibilities for the large scale scenarios. Scaling up the
robust graph neural networks is still an open problem.
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6. CONCLUSION

In this paper, we proposed a jointly adversarial training
method to enhance the robustness of the graph nerual net-
works by combining the graph feature adversarial training
and graph structure adversarial training. Our extensive
experiments show that our graph jointly adversarial train-
ing can resist the attacks from the node feature attack
and graph structure attack effectively. Our proposed graph
feature adversarial training and graph structure adversar-
ial training can be used to deal with different application
settings. However, the graph structure adversarial train-
ing involves the a discrete optimization, which limits the
possibilities for the large scale scenarios. Scaling up the
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Zügner, D., Akbarnejad, A., and Günnemann, S. (2018).
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