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Abstract

Multi-task deep reinforcement learning (DRL) ambitiously
aims to train a general agent that masters multiple tasks si-
multaneously. However, varying learning speeds of different
tasks compounding with negative gradient interference makes
policy learning inefficient. In this work, we propose PiCor, an
efficient multi-task DRL framework that splits learning into
policy optimization and policy correction phases. The policy
optimization phase improves the policy by any DRL algo-
thrim on the sampled single task without considering other
tasks. The policy correction phase first constructs a perfor-
mance constraint set with adaptive weight adjusting. Then the
intermediate policy learned by the first phase is constrained to
the set, which controls the negative interference and balances
the learning speeds across tasks. Empirically, we demonstrate
that PiCor outperforms previous methods and significantly
improves sample efficiency on simulated robotic manipula-
tion and continuous control tasks. We additionally show that
adaptive weight adjusting can further improve data efficiency
and performance.

Introduction
Reinforcement learning (RL) (Sutton and Barto 2018) com-
bining with deep neural networks (LeCun, Bengio, and Hin-
ton 2015) shows powerful capabilities on various single-task
decision-making problems, including board games (Silver
et al. 2017, 2018), video games (Mnih et al. 2015; Vinyals
et al. 2019), robotic control (Levine et al. 2016; Rajeswaran
et al. 2018; Kalashnikov et al. 2018), and some industrial
applications (Mao et al. 2019; Tang et al. 2019). Despite the
learning algorithm is general, the solution is not; each agent
can only solve the one task it was trained on. To make the RL
agent more general, many new methods focus on multi-task
learning settings that solve multiple tasks at once. However,
current approaches still suffer from sample inefficiency, this
makes multi-task DRL difficult to train a general agent for
practical applications.

One of the most straightforward methods is to contin-
ually train the policy on various tasks leveraging existing
single-task learning algorithm. Unfortunately, neural net-
works are proven to suffer from inevitable catastrophic for-
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getting (Kirkpatrick et al. 2017). The training of subsequent
tasks can make the knowledge of previously learned tasks
abruptly lost. To mitigate catastrophic forgetting, alternate
training on multiple tasks becomes a general way (Teh et al.
2017; Arora et al. 2018). However, alternate policy train-
ing means gradient interference among different tasks. Pol-
icy can easily get distracted by certain tasks due to vary-
ing learning speeds (Chen et al. 2018; Hessel et al. 2019),
which causes the algorithm to focus on those salient tasks
at the expense of generality. Some works provide solutions
based on knowledge transfer and representation sharing (Teh
et al. 2017; Xu et al. 2020; D’Eramo et al. 2020; Yang et al.
2020). However, these methods require expert-level policies
or high-quality representations among all tasks, which are
difficult and impractical.

To overcome the gradient interference and improve learn-
ing efficiency, we propose PiCor, an efficient framework for
multi-task DRL. The critical insight is to alternately op-
timize the policy on sampled tasks while also correcting
the negative interference on other tasks. Specifically, PiCor
splits the learning into two phases, Policy Optimization and
Policy Correction. The policy optimization phase samples
a task from the task distribution and performs policy learn-
ing with task-specific experience replay using any DRL al-
gorithm. The policy correction phase first constructs a per-
formance constraint set that approximates the performance
improvement area considering all tasks. The constraint set
is dynamically adjusted by adaptive weight adjusting to bal-
ance the learning speeds and guarantee a lower bound of
average performance among tasks. The intermediate policy
learned in the policy optimization phase is corrected by a
probability metric (e.g, KL divergence) to keep it in the con-
straint set which controls the negative gradient interference.
Our contribution is three-fold:

• We propose PiCor, a novel and efficient multi-task DRL
algorithm framework, which mitigates gradient interfer-
ence and balances learning speeds among different tasks.

• We enhance this framework with adaptive weight adjust-
ing and task-specific experience replay, to further balance
the learning progress among tasks. Both techniques are
pivotal for the empirical success of PiCor.

• Experiments demonstrate that our method PiCor out-
performs other state-of-the-art multi-task DRL methods
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and substantially improves sample efficiency on vari-
ous robotic simulated manipulation tasks from Meta-
world (Yu et al. 2020b) and continuous control tasks from
the MuJoCo suite (Henderson et al. 2017).

Related Work
Deep reinforcement learning (DRL) becomes a powerful
tool for solving sequential decision-making problems. There
are many practical algorithms for continuous control tasks.
Specifically, we choose Soft Actor-Critic (SAC) (Haarnoja
et al. 2018) as the algorithm backbone in our work. How-
ever, our framework is general, and can be easily applied to
other typical RL algorithms, such as TRPO (Schulman et al.
2015), PPO (Schulman et al. 2017) and TD3 (Fujimoto, van
Hoof, and Meger 2018).

In recent years, many methods are proposed to solve
multi-task learning problems. Previous work may boil down
to three directions: knowledge transfer, representation shar-
ing across tasks, and gradient interference mitigation.

For knowledge transfer-based methods, Arora et al.
(2018) combines knowledge distillation with a single-
task RL algorithm to learn the multi-task policy. Actor-
Mimic (Parisotto, Ba, and Salakhutdinov 2016) and Dis-
tral (Teh et al. 2017) apply the policy distillation to rein-
forcement learning for learning the common behavior of dif-
ferent tasks into the shared policy network. KTM-DRL (Xu
et al. 2020) employs offline knowledge transfer to train a
policy network and leverages online learning to improve pol-
icy performance further. These methods mitigate gradient
interference to some extent. However, they usually require
expert-level policies, which are difficult and expensive to
provide. In addition, teacher models have an important im-
pact on the performance of multi-task policy, which restricts
performance improvement.

Structure sharing methods focus on reusing network mod-
ules and sharing representation, which tries to find archi-
tectural solutions to the multi-task learning problem. Devin
et al. (2017) takes advantage of a modular neural network
to share information among tasks to solve the multi-task
learning problem. D’Eramo et al. (2020) presents a shared
network algorithm that can extract common representations
across various tasks and efficiently generalize the knowl-
edge for better performance. Router network (Rosenbaum,
Klinger, and Riemer 2018) proposes a general architecture
to jointly train the router and function blocks by employing a
collaborative multi-agent reinforcement learning algorithm.
Soft modularization (Yang et al. 2020) is a learning method
that learns basic policy modules and automatically generates
soft combinations probability via a routing network (Rosen-
baum, Klinger, and Riemer 2018), which are trained in an
end-to-end manner.

Several methods focus on overcoming gradient interfer-
ence in multi-task DRL. Suteu and ke Guo (2020) proposes
a method of correcting task gradients that can force gradi-
ents of each task to be nearly orthogonal to minimize the
interference between tasks. Gradnorm (Chen et al. 2018) is
a gradient normalization algorithm capable of dynamically
tuning the magnitudes of the task gradients to balance learn-
ing speed during training. G-Surgery (Yu et al. 2020a) is a

gradient correction method that can project the gradient of
a task onto the normal plane of any other task to mitigate
gradient interference among different tasks.

We summarize the differences between our method and
previous work. Compared with knowledge transfer and
representation sharing, our method does not depend on
expert-level teacher models and automatically learns the
shared knowledge among tasks. Furthermore, prior gradi-
ent manipulation-based methods optimize the policy with an
implicit objective. In contrast, our method design a perfor-
mance constraint set that directly focuses on the the perfor-
mance maximization over all tasks.

Preliminaries
In this section, we recap the formalism of the Markov De-
cision Process (MDP) for RL, SAC algorithm, and policy
performance measure.

Markov Decision Process (MDP)

A specific task can be modeled as a finite horizon Markov
Decision Process (MDP), a 5-tuple (S,A, R, P, γ). S andA
represent the state and action spaces. P : S × A × S →
[0, 1] represents the stochastic dynamics, which determines
the probability of transferring to s′ given state s and action
a. R : S ×A×S → R is the reward function and γ ∈ (0, 1)
is the discount factor. The policy π(a|s) is a mapping from
state space to action space.

Soft Actor-Critic (SAC)

SAC (Haarnoja et al. 2018) is an actor-critic method based
on the maximum entropy RL framework, which optimizes
policy in an off-policy way. This method encourages explo-
ration by maximizing entropy, which accelerates learning.
It optimizes parameters by alternating soft policy evaluation
and soft policy improvement. For soft policy evaluation, the
parameter θ of the soft Q-function is optimized by minimiz-
ing the soft bellman error:

L(θ) = E
τt∼B

[(
Qθ(st, at)− rt − γV̄ (st+1)

)2]
,

V̄ (st) = E
at∼πϕ

[Qθ̄(st, at)− α log πϕ(at|st)] ,
(1)

where τt = (st, at, rt, st+1) is the transition at time step t, B
is a replay buffer, θ̄ is the parameter of target soft Q-function
and α is temperature parameter which is learnable and con-
trols the item of entropy. For soft policy improvement, the
parameter ϕ of the policy is optimized by minimizing the
following loss:

L(ϕ) = E
st∼B
at∼πϕ

[α log πϕ(at|st)−Qθ(st, at)] . (2)

SAC has good sample efficiency and excellent perfor-
mance in solving continuous control tasks. Therefore, we
use SAC as the backbone RL algorithm in this work.
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Policy Performance Measure
In standard RL, we express the expected discounted cumu-
lative reward as

J(π) =
1

1− γ
E

s∼dπ

a∼π,s′∼P

[R(s, a, s′)] ,

with dπ = (1− γ)
∞∑
t=0

γtP (st = s|π),
(3)

where the discounted future state distribution is denoted as
dπ and P is the stochastic transition dynamics.

Kakade and Langford (2002) provide an explicit expres-
sion of the difference in performance between two policies
π and π′:

J(π′)− J(π) =
1

1− γ
E

s∼dπ
′

a∼π′

[Aπ(s, a)] , (4)

where A is the advantage function.

PiCor
In this section, we introduce PiCor, which includes two cru-
cial phases for each update, the policy optimization phase
and the policy correction phase. In addition, we introduce
the objective for multi-task DRL and the practical imple-
mentation of our method.

Objective
In standard RL, the goal of the agent is to learn a policy that
maximizes the expected return on a specific task. In multi-
task DRL, a general agent is expected to learn multiple tasks
simultaneously. The agent’s goal is to maximize the average
performance across all tasks, which can be formulated as

π∗ = argmax
π

E
z∼p(T )

[
E

τ∼π
[Rz(τ)]

]
, (5)

where T denotes a task random variable and p(T ) presents
the task distribution.

Overview
PiCor is a general and efficient learning framework for
multi-task DRL. Since SAC (Haarnoja et al. 2018) presents
excellent sample efficiency and performance on continuous
control tasks, we consider using SAC as the backbone for
our method in this work. Each learning iteration in PiCor
consists of two phases, the policy optimization phase and
the policy correction phase. During the policy optimization
phase, PiCor samples a task z ∼ p(T ) and optimizes the
policy to maximize the cumulative reward on this sampled
task. A detailed description of the policy optimization phase
can be found in subsection Policy Optimization Phase. How-
ever, the intermediate policy learned in the policy optimiza-
tion phase does not consider the negative impact on other
tasks in the optimization. Therefore, policy updates need to
be modified to avoid harmful interference with other tasks.
During the policy correction phase, the intermediate policy
is constrained to avoid a significant drop in the average per-
formance of the policy. In addition, when PiCor constructs

𝜋𝑡
′

①

②

Task A

Task B

𝜋𝑡+1

𝜋𝑡

Figure 1: The illustration for two phases of policy learning
in PiCor. ① denotes Policy Optimization Phase. The policy
πt is improved on the sampled task B. ② denotes Policy Cor-
rection Phase. The intermediate policy π′

t is constrained to
the performance constraint set.

the performance constraint set, it not only considers the mit-
igation of gradient interference among tasks but also lever-
ages the adaptive weight adjusting technique to balance the
learning progress of different tasks, which are described in
subsection Policy Correction Phase and subsection Adaptive
Weight Adjusting. Since the first phase can use any single-
task DRL algorithm, the generality of our learning frame-
work is guaranteed. At the same time, the second phase
alleviates gradient interference and balances the learning
progress between tasks to ensure the data efficiency of Pi-
Cor.

To illustrate the update process of PiCor, we take a sim-
ple case with two tasks for example. As shown in Figure 1,
the yellow and blue regions denote the policy improvement
area for task A and task B at time step t. The constraint set
is constructed based on the overlapping area with adaptive
weight adjusting. ① and ② denote the two phases in PiCor.

Policy Optimization Phase

The policy optimization phase updates policy without con-
sidering the harmful interference on other tasks. First, PiCor
samples a task from the distribution p(T ). Second, it opti-
mizes the policy to improve the performance on this sampled
task. As for a specific task z, it optimizes parameters by al-
ternately performing soft policy evaluation and soft policy
improvement. For soft policy evaluation, the parameters θ
of the soft Q-function are optimized by minimizing the soft
Bellman residual:

JQ(θ; z) = E
τt∼Bz

[ (
Qθ(st, at; z)− rt − γV̄ (st+1)

)2 ]
,

(6)

where τt = (st, at, rt, st+1) is a transition from the replay
buffer Bz of task z.

After the updating of the soft Q-function, it performs the
soft policy improvement step. The parameters ϕ of the policy
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are optimized by minimizing the following loss:

Jπ(ϕ; z) = E
st∼Bz
at∼πϕ

[αz log πϕ(at|st; z)−Qθ(st, at; z)] ,

(7)
where αz is the temperature parameter of task z. The above
optimization process improves the performance of policy πt

on task z. We use π′
t to denote an intermediate policy after

the policy optimization phase at time step t.

Policy Correction Phase
The policy correction phase constrains the intermediate pol-
icy π′

t to alleviate the gradient interference and balance the
learning process among all tasks. First, we construct a suit-
able constraint set that can represent the weighted perfor-
mance bound across tasks. Inspired by (Kakade and Lang-
ford 2002), we utilize formula (4) to measure the perfor-
mance changes when the policy is optimized. Specifically,
policy optimization causes the average task performance
(i.e., our objective) to change during the first phase. The
performance difference between πt+1 and πt is in propor-
tion to the advantage, which is the average advantage under
the discounted future state distribution dπt+1 . However, it
is difficult and inefficient to calculate it. Therefore, we use
dπt to approximate dπt+1 . In addition, to control the bal-
ance of various tasks, we set up different weights for distinct
tasks adaptively, which is introduced in section . We incor-
porate this manipulation into the constraint set construction.
Second, we project the intermediate policy to the constraint
set by minimizing the Kullback-Leibler (KL) divergence be-
tween π′

t and π. This process can be formalized as the fol-
lowing optimization problem with performance constraints
on N tasks sampled from p(T ):

πt+1 = argmin
π∈Π

DKL(π
′
t ∥ π),

s.t.

N∑
z=1

wz E
s∼dπt
a∼π

[Aπt(s, a)] ≥ c(1− γ),
(8)

where c is a negative number approximate to 0, wz is the
adaptive weight for task z which represents the importance
of task z, γ is the discounted factor. This phase explic-
itly corrects the intermediate policy to mitigate interference
among tasks, which guarantees sample efficiency.

Adaptive Weight Adjusting
Tasks with different difficulties lead to inconsistent con-
vergence speeds in policy learning, which is detrimental to
multi-task optimization. Therefore, we control the learning
speeds during training among tasks by setting up different
weights for each task. In the SAC algorithm, the tempera-
ture parameter α represents the importance of the entropy
term. Large temperature parameter α encourages policy to
explore the environment, making the policy more stochas-
tic. To some extent, the temperature parameter α reflects the
policy learning progress on the task. As for a specific task,
when the α is large, the policy tends to explore, which means
that the policy is not confident about the current optimal ac-
tion. On the other hand, when the α is small, the policy is

Algorithm 1: PiCor
Input: the frequency K of sampling task
Input: the distribution of tasks p(T )
Parameter: the parameters θ for soft Q-function
Parameter: the parameters ϕ for policy
Output: a conditioned policy πϕ

1: Initialize replay buffer Bi ← ∅
2: for each iteration do
3: if iteration % K == 0 then
4: Sample a task z from p(T )
5: end if
6: Take action at ∼ πϕ(at|st, z)
7: Collect st+1 ∼ P (st+1|st, at; z)
8: Store transitions Bz ← Bz ∪ {(st, at, rt, st+1)}
9: for each gradient step do

10: // Policy Optimization Phase
11: Sample a mini-batch transition from Bz
12: Optimize JQ(θ; z) in (6) with respect to θ
13: Optimize Jπ(ϕ; z) in (7) with respect to ϕ
14: // Policy Correction Phase
15: Calculate the adaptive weight according to (9)
16: Update ϕ by minimizing L(ϕ) in (10)
17: end for
18: end for

encouraged to exploit, which indicates that the policy is de-
terministic in the optimal action. Specifically, we provide
the independent temperature parameter for different tasks,
facilitating policy optimization more flexibly to balance ex-
ploration and exploitation across various tasks. Furthermore,
we associate the temperature parameters of tasks with task
weights. It is easy to achieve adaptive adjustment of task
weights by leveraging the learnability of the temperature pa-
rameter. The adaptive weight for tasks can be calculated by

w = softmax(α/τ), (9)

where τ is a hyperparameter to control the smoothness of
the output distribution.

By adaptively adjusting the weights of each task, the
policy learning process is more stable and policy can
achieve higher performance, which is demonstrated in sub-
section Ablation Study.

Practical Implementation

As for the policy optimization phase, the intermediate policy
π′
t can be easily calculated by alternating soft policy evalua-

tion and soft policy improvement via framework of SAC. As
for the policy correction phase, it can be solved efficiently if
it is a convex programming problem with a reasonable ap-
proximation (Schulman et al. 2015; Achiam et al. 2017).

Although we can provide a formula that explicitly
presents the update rule for the policy correction phase, opti-
mizing a large neural network policy with many parameters
is impractical. Therefore, we utilize another more straight-
forward and practical solution. We rewrite the above opti-
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PiCor MTMHSAC MTSAC Soft Modularization KTM-DRL G-Surgery

(a) Meta-world MT10 (b) HalfCheetah Task Group

Figure 2: Training curves of various methods on two benchmarks. The solid line presents the mean values, and the shaded area
denotes the standard deviations over five runs. The grey dashed line indicates the average performance of individual policies
across all tasks for each benchmark. Robotic simulated manipulation tasks from Meta-world MT10 are measured on success
rate and continuous control tasks from HalfCheetah Task Group are measured on episode return.

Benchmark PiCor MTSAC MTMHSAC Soft Modularization KTM-DRL G-Surgery
Meta-world MT10 73.3% 23.3% 46.0% 46.6% 66.6% 63.3%

HalfCheetah Task Group 15200 7080 8170 10830 10750 10084

Table 1: Comparisons of all methods on average success rates for Meta-world MT10 and average episode returns for HalfChee-
tah Task Group. Meta-world (Yu et al. 2020b) reports the success rates of MTSAC and MTMHSAC for MT10 are 24% and
44%, respectively.

mization problem and give the following objective:

L(ϕ) = DKL(πϕ ∥ π′
t) +

1

2
λ c̃2(ϕ),

with

c̃(ϕ) =

c(1− γ)−
N∑

z=1

wz E
s∼dπt
a∼πϕ

[Aπt(s, a)]

+

,

(10)

where the parameter λ controls the size of the second
item. For notation simplicity, we give a definition (·)+ ≡
max(·, 0).

In addition, we use a task-specific replay buffer to store
transitions that interact with the environment to improve
data efficiency further. The complete procedure of PiCor is
presented in Algorithm 1.

Experiments
In this section, we conduct experiments to compare PiCor
with five existing approaches on various robotic simulated
manipulation tasks from Meta-world (Yu et al. 2020b) and
continuous control tasks from the MuJoCo suite (Henderson
et al. 2017). More specifically, we use two multi-task bench-
marks in our experiments. The first benchmark is MT10,
which is challenging and requires the agent to learn ten ma-
nipulation tasks with fixed goals simultaneously. The second

is the HalfCheetah Task Group which includes eight similar
locomotion tasks.

Baseline Methods
We choose multi-task SAC, multi-head multi-task SAC, and
three recent state-of-the-art multi-task DRL methods.

• Multi-task Soft Actor-Critic (MTSAC): MTSAC is an
off-policy actor-critic algorithm, which adapts SAC al-
gorithm (Haarnoja et al. 2018) to the multi-task setting.

• Multi-task Multi-headed Soft Actor-Critic (MTMH-
SAC): MTMHSAC is a variant of MTSAC, which em-
phasizes the importance of shared representation. It uses
a shared network as a backbone but independent output
layer for each task.

• Soft Modularization (Yang et al. 2020): a method that
learns basic policy modules and automatically generates
soft combinations probability via a routing network for
multi-task DRL.

• KTM-DRL (Xu et al. 2020): a knowledge transfer-based
method that combines offline knowledge learning and
online performance improvement.

• G-Surgery (Yu et al. 2020a): a gradient correction-based
method that projects conflicting gradients onto the nor-
mal plane of the gradient of each task.
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PiCor (Ada: O, Cor: O) PiCor (Ada: X, Cor: O) PiCor (Ada: O, Cor: X) PiCor (Ada: X, Cor: X)

(a) Meta-world MT10 (b) HalfCheetah Task Group

Figure 3: Ablation study for policy correction on two benchmarks. Analyze the contribution of policy correction and adaptive
weight adjusting technique in our method,which are denoted as Cor and Ada, respectively. O means PiCor uses this technique,
and X means PiCor without. The results present the mean and standard deviation averaged over five runs.

Benchmark PiCor (Ada: O, Cor: O), PiCor (Ada: X, Cor: O), PiCor (Ada: O, Cor: X), PiCor (Ada: X, Cor: X)
Meta-world MT10 73.3% 60.0% 24.0% 23.3%

HalfCheetah Task Group 15200 12400 7518 7080

Table 2: Comparisons of different techniques in PiCor on two benchmarks.

Experimental Settings
In the experiments, we identify different tasks through one-
hot task encoding and assume the task distribution is uni-
form. We evaluate all methods over five runs independently,
and the mean and standard variance of the results are re-
ported for each benchmark. For MT10, all algorithms are
evaluated based on the success rate well-defined in Meta-
world (Yu et al. 2020b). And for the HalfCheetah Task
Group, policies are measured by episode return. Since the
task difficulty and the number of tasks are different be-
tween the two benchmarks, we train all methods with 5 mil-
lion and 2.4 million time steps on Meta-world MT10 and
HalfCheetah Task Group, respectively. For fair comparisons,
baseline methods train with the same network structure ex-
cept for MTMHSAC and soft modularization (Yang et al.
2020). Each neural network contains two hidden layers with
a width of 512 neurons. Soft modularization needs to use a
specially designed network structure, so we use its variant
called the deep version with the same number of parameters
for comparison. In addition, MTMHSAC utilizes a multi-
head policy. Furthermore, all algorithms use hierarchical ex-
perience replay proposed in KTM-DRL (Xu et al. 2020),
which means that transitions of each task are stored indepen-
dently in the task-specific replay buffer. For the implemen-
tation, Soft Modularization 1, KTM-DRL 2, G-Surgery 3 are

1https://github.com/RchalYang/Soft-Module
2https://github.com/xuzhiyuan1528/KTM-DRL
3https://github.com/WeiChengTseng/Pytorch-PCGrad

implemented by using their released code.

Main Results
Meta-world MT10. The Meta-world consists of fifty
robotic simulated manipulation tasks well-designed to learn
various manipulation skills. We consider MT10 from Meta-
word to investigate the performance and sample efficiency
of PiCor. Figure 2(a) shows the learning curves of average
success rate over policy optimization of PiCor and baselines
on the Meta-world MT10. From the learning curves, the per-
formance of PiCor outperforms all baselines and presents
a significant sample efficiency. We also observe that PiCor
exceeds all other methods, using only half of all samples.
Moreover, Figure 2(a) also shows that the learning curve
of PiCor is steeper in the early stage, which indicates that
PiCor has excellent data efficiency. It is worth emphasiz-
ing that KTM-DRL seems to learn faster, but the fact is
that this benefits from knowledge transfer from expert-level
teacher agents. For further analysis, we compare the perfor-
mance of PiCor with the average performance of the agents,
which are trained independently on each task. Specifically,
each independent agent is trained through the SAC algo-
rithm and keeps the same experimental settings as PiCor.
We note that PiCor exceeds the average performance of in-
dependent agents with 70% of total samples, which means
PiCor can automatically learn the shared knowledge among
tasks leading to better performance. These results demon-
strate that PiCor can train a general agent to master multiple
tasks efficiently.
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HalfCheetah Task Group. As for the benchmark of the
HalfCheetah Task Group, it contains eight similar environ-
ments modifying specific body parts through morphological
modification. The training curves of the average episode re-
turn of PiCor and baselines on the HalfCheetah Task Group
are in Figure 2(b). The results demonstrate that PiCor shows
an obvious advantage on locomotion tasks compared to
baselines. Given the same samples, the performance of Pi-
Cor exceeds baselines by 40.4%. On the other hand, Pi-
Cor reaches the same performance as baselines with only
12% of the total sample. We observe that the knowledge
transfer-based method leverages offline knowledge transfer
to improve performance at the beginning rapidly, but on-
line policy learning has slightly improved. Compared with
the average performance of the independent agents, PiCor
also shows an improvement by a large margin. These results
again demonstrate that PiCor improves the performance and
sample efficiency of multi-task DRL methods on various
complex tasks. The results of both benchmarks are displayed
in the table 1.

Ablation Study
Policy Correction. In order to investigate the advantages of
using policy correction, we conduct extended ablation ex-
periments. PiCor utilizes SAC as the backbone algorithm.
Therefore, MTSAC can be considered PiCor with only the
policy optimization phase. However, we notice that MTSAC
has poor performance on both benchmarks, which shows
slow performance improvement and has a large gap with Pi-
Cor. It can also be noticed that policy correction can sig-
nificantly improve multi-task asymptotic performance be-
cause it effectively mitigates the harmful gradient interfer-
ence among tasks. Figure 3(a) and 3(b) shows that PiCor
reaches the same performance as MTSAC with less than 3%
of total samples. Moreover, we remark that the speed of per-
formance improvement of PiCor is noticeable by leveraging
policy correction. These results demonstrate that policy cor-
rection can substantially improve sampling efficiency and
play an essential role in our learning framework.
Adaptive Weight Adjusting. A detailed analysis is pro-
vided to evaluate the effect of adaptively balancing the learn-
ing speed across tasks. To investigate the benefits of adaptive
adjusting of learning progress between tasks, we compare
the performance of PiCor with adaptive weight adjusting
and with a constant weight on two benchmarks. Other set-
tings are maintained the same. Figure 3(a) and Figure 3(b)
show the training curves on two benchmarks and report the
mean and the standard variance over three seeds. And the
final performance is given in table 2. By additionally uti-
lizing adaptive weight to balance the learning progress of
each task dynamically, the data efficiency and average per-
formance are improved. However, when PiCor removes the
adaptive weight adjust strategy, the performance drops by
16% and 18% on the Meta-world MT10 and HalfCheetah
Task Groups, respectively. At the same time, we also note
that adaptive weight adjustment cannot provide significant
benefits without policy correction from the table 2.

To present the effect of learning rate balance among tasks,
we plot the weight change of each task on MT10 during
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Figure 4: Weight adaptive adjusting process of ten tasks
from Meta-world MT10. Various tasks show different
weights according to the difficulty of tasks.

learning in Figure 4. We train an independent agent on each
task to measure the task difficulty. From the learning curves
of single-tasks, drawer-close and window-open are easy to
solve, reach and push are difficult. By comparing the dif-
ficulty of tasks, we find that the effect of adaptive weight
adjusting is in line with the expectation. For example, Fig-
ure 4 shows that the more difficult tasks have larger weights
to keep the knowledge from losing during the training, while
the simple tasks have smaller weights.

Conclusion

In this paper, we propose PiCor, an efficient and novel al-
gorithm framework for training a general agent capable of
mastering multiple tasks. PiCor mitigates gradient interfer-
ence and balances learning speeds among different tasks via
two-phase optimization. Specifically, PiCor provides a sim-
ple and general solution to multi-task DRL, which can ap-
ply to a wide range of domains for mastering diverse skills
or handling different tasks. We conduct comprehensive ex-
periments on simulated robotic manipulation and continu-
ous control benchmarks for empirical evaluation and anal-
ysis. From experimental results, we conclude that 1) PiCor
leads to across-the-board improvements in the performance
and sample efficiency on both benchmarks comparing with
recent state-of-art methods. 2) PiCor can significantly im-
prove sample efficiency and automatically share knowledge
among tasks. 3) Adaptive weight adjusting can balance the
learning rate between tasks and is an important component
in PiCor. As for future work, we would like to explore how
to leverage expert knowledge to assist in the constraint set
construction to reduce the computational complexity of pol-
icy correction and further improve the sample efficiency of
the algorithm. Finally, we hope our work can attract more re-
searchers to pay attention to the sample efficiency of multi-
task optimization leading to practical applications.
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