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ABSTRACT
Human-centric spatio-temporal video grounding (HC-STVG) is a
challenging task that aims to localize the spatio-temporal tube of
the target person in a video based on a natural language description.
In this report, we present our approach for this challenging HC-
STVG task. Specifically, based on the TubeDETR framework, we
propose two cascaded decoders to decouple spatial and temporal
grounding, which allows the model to capture respective favorable
features for these two grounding subtasks. We also devise a multi-
stage inference strategy to reason about the target in a coarse-to-
fine manner and thereby produce more precise grounding results
for the target. To further improve accuracy, we propose a model
ensemble strategy that incorporates the results of models with
better performance in spatial or temporal grounding. We validated
the effectiveness of our proposed method on the HC-STVG 2.0
dataset and won second place in the HC-STVG track of the 4th
Person in Context (PIC) workshop at ACM MM 2022.

CCS CONCEPTS
• Information systems →Multimedia and multimodal retrieval;
• Computing methodologies → Computer vision.

KEYWORDS
Spatio-temporal video grounding (STVG), Transformer, DETR
ACM Reference Format:
Li Yang, Peixuan Wu, Chunfeng Yuan, Bing Li, and Weiming Hu. 2022.
Cascaded Decoding and Multi-Stage Inference for Spatio-Temporal Video
Grounding. In Proceedings of the 4th Person in Context Workshop and Chal-
lenge (PIC ’22), October 14, 2022, Lisboa, Portugal. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3552455.3555814

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PIC ’22, October 14, 2022, Lisboa, Portugal.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9489-5/22/10. . . $15.00
https://doi.org/10.1145/3552455.3555814

1 INTRODUCTION
Spatio-temporal video grounding (STVG) aims to find the spatial
location and temporal scope of the target object in a video given
a natural language query, which is important for associating the
linguistic expression with video understanding. On the basis of the
STVG task, Tang et al. [17] introduce the human-centric spatio-
temporal video grounding (HC-STVG) task, further focusing on
humans as the targets in the video grounding process. This HC-
STVG task has more practical applications in the real world, as
humans are often the focus of video analysis and comprehension.
To address this challenging problem, the HC-STVG challenge in the
4th Person in Context (PIC) workshop [18] is held in conjunction
with ACM MM 2022.

In this report, we employ TubeDETR [22] as the basic frame-
work to build our method for this HC-STVG challenge. Unlike the
previous methods [17, 30] that rely on the pre-generated object
proposals or tube proposals for the STVG task, TubeDETR [22]
employs a transformer-based encoder-decoder structure to directly
infer the spatio-temporal tube of the target object. The encode
extracts the features of the input video frames and sentence, and
then perform visual-textual feature fusion. Based on the features
of two modalities, the decoder of TubeDETR establishes 𝑇 time
queries for𝑇 sampled frames, and conducts temporal self-attention
and time-aligned cross-attention to jointly model the spatial and
temporal information of the target. Evaluated on the challenging
HC-STVG [17] and VidSTG [30] benchmarks, TubeDETR outper-
forms the previous methods by a significant margin.

Despite its success, TubeDETR utilizes a single decoder for both
spatial and temporal grounding, which may cause conflicts and
difficulties in learning since the two subtasks usually have different
information to focus on. The fixed video frame sampling strategy
(e.g. 100 frames for each video) may also be coarse for the target
and could hamper the accuracy of the estimated bounding box se-
quences, especially for targets appearing for a short time in the
videos. Thus, to address these issues, we propose several method-
ological improvements based on TubeDETR and build a stronger
model for HC-STVG reasoning.

In our method, based on the features encoded by the video-text
feature encoder of TubeDETR, we propose two cascaded decoders
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for spatial and temporal video grounding, respectively. This decou-
ples the reasoning process of the two grounding subtasks, allowing
the model to focus on their respective related features for estima-
tion. In addition, we devise a multi-stage inference strategy that
enables the model to resample the key video frames focused on the
target and produce more accurate grounding results in a coarse-
to-fine manner. We also employ the model ensemble strategy to
further improve the grounding accuracy. We conduct experiments
on the dataset provided by the HC-STVG challenge and validate
the effectiveness of our method.

2 RELATEDWORK
2.1 Visual Grounding
Visual grounding aims to localize the target object in an image
given a natural language expression, without the need for temporal
grounding as in spatio-temporal video grounding. Existing meth-
ods usually extend a pre-trained object detector [5, 14, 15, 23] to
address this task. Two-stage methods [7, 19, 27] first generate a
set of object proposals, and then compare them to the language
query to select the best match. One-stage methods [9, 25, 26] fuse
visual and linguistic features and then generate dense detections
with scores, where the top-ranked one is selected as the localiza-
tion result. Some recent methods [3, 24] develop transformer-based
models to directly identify the target object from the image, and
achieve leading performance without performing ranking on the
candidates.

2.2 Temporal Grounding
The goal of temporal grounding is to locate the relevant video mo-
ment corresponding to a given language query. Earlier approaches
[1, 4, 10, 11] mainly use a sliding window based approach to gen-
erate multiple temporal candidates and then select the top-ranked
one. TGN [2] proposes to exploit fine-grained frame-by-word in-
teractions between the video and sentence to score the temporal
candidates of multiple scales. Xu et al. [21] propose to fuse the
query information with the fine-grained video clips to generate
query-specific candidate segments. MAN [28] develops an itera-
tive graph adjustment network to model the temporal relations of
video moments for better moment alignment. 2D-TAN [29] and
MMN [20] establish a two-dimensional temporal map to represent
various video moments and model their temporal relationships.

2.3 Spatio-Temporal Video Grounding
Unlike visual grounding that identifies a target object in an image
or temporal grounding that locates a specific video moment, spatio-
temporal video grounding (STVG) seeks to pinpoint the spatio-
temporal tube of the target object. This task is a combination of
spatial and temporal localization for the target in the video, which
requires a finer-grained understanding of the video information.

Zhang et al. [30] first introduce this STVG task and propose a
spatio-temporal graph reasoning network (STGRN) to model the
spatial and temporal relations of the detected object proposals for
target tube retrieving. While STGRN does not need pre-generated
tube proposals, it depends on a pre-trained object detector to gen-
erate a set of object proposals for each video frame. Another work

STGVT [17] first forms spatio-temporal tube proposals by link-
ing the detected object proposals in consecutive frames, and then
employs a visual transformer to learn cross-modal features and
perform tube-description matching. Recently, one-stage methods
have also been developed without the use of pre-generated tube or
object proposals. STVGBert [16] extends the pre-trained VilBERT
model [13] to this task, and directly predicts the bounding box
sequence as well as the start and end frames from the modeled
cross-modal features. The recent one-stage method TubeDETR [22]
proposes a space-time transformer decoder with time queries to
perform spatial and temporal localization on the sampled video
frames, outperforming prior methods by a large margin. In this
report, we use TubeDETR as a strong basic framework and make
methodological improvements to further enhance the performance
on human-centric spatio-temporal video grounding (HC-STVG).

3 OUR METHOD
In Section 3.1, we first give an overview of our baseline framework,
TubeDETR. Next, based on TubeDETR, we describe in detail our
proposed methods, including spatio-temporal cascaded decoders
(Section 3.2), multi-stage inference (Section 3.3), and model ensem-
ble (Section 3.4).

3.1 TubeDETR
We use TubeDETR [22] as our basic framework for human-centric
spatio-temporal video grounding (HC-STVG). Given an untrimmed
video and a description depicting the object, the HC-STVG task
aims to localize the spatio-temporal tube of the target object, i.e. a
sequence of bounding boxes and the corresponding temporal bound-
aries. To address this problem, TubeDETR adopts a transformer-
based encoder-decoder architecture. In the two-stream video-text
encoder, the video-language features are modeled on short clips of
the 𝑘 video frames (e.g. 𝑘 = 5 frames per second) using a slow multi-
modal branch and a fast vision-only branch, followed by slow-fast
feature aggregation. The spatio-temporal decoder of TubeDETR
establishes𝑇 time queries for𝑇 input video frames, and alternately
performs temporal self-attention and time-aligned cross-attention
to model the target within and across frames. Finally, two MLPs
are applied to 𝑇 time queries to predict the bounding boxes as well
as the start and end times of the target on all input video frames.

3.2 Spatio-Temporal Cascaded Decoders
Spatio-temporal video grounding is challenging because it requires
both temporal and spatial localization of the target in the video.
These two localization subtasks naturally focus on different infor-
mation (e.g. object features for spatial localization and temporal
features for estimating the start and end times). Using a single
decoder for these two subtasks may lead to suboptimal results.
Thus we propose two cascaded decoders to perform the spatial and
temporal grounding respectively.

As shown in Figure 1 (a), in the first decoder, we also establish𝑇
time queries for 𝑇 input video frames, where each query is respon-
sible for the spatial grounding of the target at the corresponding
frame. To gather the target’s features at each frame and ensure
the consistency of the localized targets across frames, we employ
the same decoder architecture as TubeDETR, applying temporal
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Figure 1: Our proposed methods for human-centric spatio-temporal video grounding. (a) Based on the encoded video-text
features, we establish two cascaded decoders to decouple the spatial and temporal video grounding. (b)We devise the multi-stage
inference strategy to resample the video frames focused on the target and thereby produce finer localization results.

self-attention and time-aligned cross-attention to update the time
queries. The output queries are fed into an MLP to predict the
bounding boxes for all frames.

In the second decoder, we also prepare𝑇 time queries and initial-
ize their positional embeddings with the output queries of the first
decoder. Since the first decoders’ output queries already encode
the information about the target object on all frames, we make use
of such information to assist temporal grounding in the second
decoder. The second decoder has the same architecture as the first
decoder, but with unshared weights. We apply another MLP to the
output queries of the second decoder to estimate the start and end
probabilities for 𝑇 input frames.

3.3 Multi-Stage Inference
TubeDETR samples a fixed number of 𝑇 frames (e.g. 𝑇 = 100) for
all videos to perform spatio-temporal video grounding. However,
this fixed sampling strategy may fail to capture information ade-
quately or adaptively for targets with various temporal durations.
For example, if a target appears for a short time in the video, only
a few frames about the target will be sampled, which may make it
difficult to recover the accurate positions of the target on all target-
associated frames. To address this issue, we propose multi-stage
inference to perform video grounding in a coarse-to-fine manner.

As shown in Figure 1 (b), in the first stage, the model infers
the spatial locations and temporal boundaries of the target from 𝑇

sampled frames of the entire video. With the estimated temporal
boundaries, we get a coarse time window of the target and then
enlarge it twice as the search window in the video. The video clips
within this search window are generally more focused on the target
than the entire video. Thus, in the next stage, we resample 𝑇 video
frames in this search window and input them into the model to
perform video grounding again. Using these more densely sam-
pled frames for the target, we are able to more accurately locate
the bounding box sequence of the target from the video. In our
implementation, we apply two-stage inference and directly replace
the first stage’s localization results with the second stage’s estima-
tions (on the corresponding frames), which further improves the
grounding performance.

3.4 Model Ensemble
We also perform model ensemble to incorporate the results of mod-
els that perform better in spatial or temporal video grounding. Here,
we empirically find that freezing the parameters of the CNN back-
bone during training leads to more accurate temporal localization
results. This may be because temporal grounding relies more on
the modeling of temporal features rather than learning finer vi-
sual features. We train two grounding models, one with a frozen
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Table 1: Evaluation of the proposed methods on the test set of the HC-STVG challenge.

Method m_vIoU m_tIoU vIoU@0.3 vIoU@0.5
TubeDETR (our implementation) 36.92 55.24 58.92 32.27
+ Cascaded decoders 37.45 56.31 60.15 33.40
+ Model emsemble 37.49 56.64 59.26 32.95
+ Multi-stage inference 37.71 56.64 59.81 33.47

backbone and the other without. During inference, we apply both
models for video grounding and then perform fusion on their es-
timation results. Specifically, we adopt the temporal grounding
results of the first model and select the spatial localization results of
the second model within the estimated time window. The formed
spatio-temporal grounding results further improve the accuracy by
combining the advantages of both models.

4 EXPERIMENTS
4.1 Dataset
We evaluate our approach on the improved HC-STVG 2.0 dataset,
which is provided by the HC-STVG challenge of the 4th Person in
Context (PIC) workshop [18]. This new dataset has 16,544 video-
sentence pairs, and it is split into three subsets with 10,131, 3,482,
and 2,931 video-sentence pairs for training, validation, and testing,
respectively. The new dataset has also been re-annotated compared
to the previous HC-STVG 2.0 dataset.

4.2 Implementation Details
Following TubeDETR [22], we use ResNet-101 [6] and RoBERTa [12]
as the visual backbone and text encoder, respectively. We initialize
our model (including the feature encoder and decoder) with the pre-
trained MDETR [8]. For each video, we sample a total of 𝑇 = 100
frames as inputs (5 frames per second for videos of 20 seconds).
For multi-stage inference, we also sample 𝑇 = 100 frames in the
second inference stage. To obtain the target bounding boxes on all
video frames between the start and end frames, we perform linear
interpolation to calculate the bounding boxes on the unsampled
frames. During training, we combine the training and validation
sets to form a trainval set for model training. All models are trained
for 8 epochs with a batch size of 4. The other hyper-parameters are
consistent with TubeDETR.

4.3 Evaluation Metrics
We follow [17, 22, 30] to use𝑚_𝑣𝐼𝑜𝑈 , the average of 𝑣𝐼𝑜𝑈 tested on
all videos, as the main metric to evaluate our model’s performance
on spatio-temporal grounding. For the grounding results of a single
video, the calculation of 𝑣𝐼𝑜𝑈 is defined as:

𝑣𝐼𝑜𝑈 =
1
|𝑆𝑢 |

∑︁
𝑡 ∈𝑆𝑖

𝐼𝑜𝑈

(
𝑏𝑡 , 𝑏𝑡

)
(1)

where 𝑆𝑢 denotes the union of the frames contained in the pre-
dicted and ground-truth time segments, 𝑆𝑖 refers to the intersection
of the frames contained in the predicted and ground-truth time
segments, 𝑏𝑡 and 𝑏𝑡 are the predicted bounding boxes and ground-
truth bounding boxes at frame 𝑡 , respectively. We also calculate
𝑣𝐼𝑜𝑈@𝑅, i.e. the proportion of samples with 𝑣𝐼𝑜𝑈 > 𝑅, for further

evaluation. In order to evaluate the accuracy of temporal grounding,
we also use𝑚_𝑡𝐼𝑜𝑈 , which is the average of temporal 𝐼𝑜𝑈 (𝑡𝐼𝑜𝑈 )
between the predicted time segment and the ground truth.

4.4 Evaluation Results
As shown in Table 1, we gradually apply our proposed methods
to the baseline to evaluate their effectiveness. In the first row, we
retrain the TubeDETR baseline on the union of training and valida-
tion sets, which achieves 36.92% in𝑚_𝑣𝐼𝑜𝑈 . Based on this baseline,
we employ the cascaded decoders to perform decoupled spatial
and temporal grounding, which improves the𝑚_𝑣𝐼𝑜𝑈 to 37.45%,
as shown in the second row of Table 1. It is worth noting that
the 𝑚_𝑡𝐼𝑜𝑈 metric is significantly improved by 1.07 percentage
points, further demonstrating the efficacy of cascaded decoding.
Themodel ensemble shows a slight improvement in𝑚_𝑣𝐼𝑜𝑈 , and in-
creases the temporal localization accuracy (𝑚_𝑡𝐼𝑜𝑈 ) by 0.33 points.
Nevertheless, we expect that a more dedicated temporal ground-
ing model [20] would improve the performance more significantly.
Finally, we adopt the multi-stage inference strategy and further
improve the 𝑚_𝑣𝐼𝑜𝑈 to 37.71%. It is worth mentioning that we
share the spatio-temporal decoders in both inference stages, but
it may be better to apply separate decoders for these two stages,
since they have different distributions of the target time windows.
We leave this for future work.

5 CONCLUSION
In this report, we have developed several methodological improve-
ments based on TubeDETR to achievemore accurate spatio-temporal
video grounding. We first propose two cascaded decoders to decou-
ple the reasoning process of the spatial and temporal grounding
subtasks. Then, we propose the multi-stage inference strategy to re-
sample the key frames focused on the target, which helps to produce
finer localization results for the target in the video. We also employ
the model ensemble strategy to further improve the grounding ac-
curacy. The experiments on the dataset of the HC-STVG challenge
validate the effectiveness of our proposed method.
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