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   Abstract—Despite  some  efforts  and  attempts  have  been  made
to  improve  the  direction-of-arrival  (DOA)  estimation  perfor-
mance  of  the  standard  Capon  beamformer  (SCB)  in  array  pro-
cessing,  rigorous  statistical  performance  analyses  of  these  modi-
fied  Capon  estimators  are  still  lacking.  This  paper  studies  an
improved  Capon  estimator  (ICE)  for  estimating  the  DOAs  of
multiple  uncorrelated  narrowband  signals,  where  the  higher-
order  inverse  (sample)  array  covariance  matrix  is  used  in  the
Capon-like cost function. By establishing the relationship between
this nonparametric estimator and the parametric and classic sub-
space-based  MUSIC (multiple  signal  classification),  it  is  clarified
that as long as the power order of the inverse covariance matrix is
increased  to  reduce  the  influence  of  signal  subspace  components
in  the  ICE,  the  estimation  performance  of  the  ICE  becomes
equivalent to that of the MUSIC regardless of the signal-to-noise
ratio (SNR).  Furthermore the statistical  performance of  the ICE
is  analyzed,  and  the  large-sample  mean-squared-error  (MSE)
expression of the estimated DOA is derived. Finally the effective-
ness  and  the  theoretical  analysis  of  the  ICE  are  substantiated
through  numerical  examples,  where  the  Cramer-Rao  lower
bound  (CRB)  is  used  to  evaluate  the  validity  of  the  derived
asymptotic MSE expression.
    Index Terms— Capon  beamformer,  direction-of-arrival  (DOA)
estimation, large-sample mean-squared-error (MSE), subspace-based
methods, uniform linear array.
  

I.  Introduction

IN  various  applications  such  as  radar,  sonar,  astronomy,
seismology,  biomedicine,  and  communications,  the  direc-

tion-of-arrival (DOA) estimation of multiple narrowband sig-

nals  impinging  on  an  array  of  sensors  is  very  important
[1]–[17].  Extensive research has been conducted on this  esti-
mation  problem  for  decades,  and  many  estimation  methods
have  been  proposed  in  the  literature  (see,  e.g.,  [1]–[3],  [7],
[12],  [15]–[17]  and  references  therein),  where  the  nonpara-
metric  methods  (such  as  beamforming  techniques)  and  the
parametric  methods  (for  example,  the  maximum  likelihood
(ML),  the  subspace-based  methods)  are  of  great  significance
and  are  most  widely  used.  The  nonparametric  methods  are
based on the concept of data-adaptive finite-impulse response
(FIR) filtering (see, e.g., [5], [12], [15]–[18]), while the para-
metric  methods  assume a  model  for  the  array  data  (see,  e.g.,
[19]–[29]),  where  the  former  possess  better  robustness  than
the latter, but the latter has high resolution and good accuracy
[30].

The beamforming is one of the oldest methods for nonpara-
metric DOA estimation [15], and perhaps the most representa-
tive  data-independent  one  is  the  Capon beamformer  (i.e.,  the
minimum  variance  distortionless  response  (MVDR))  [31],
which was proposed in the late 1960s as a better alternative to
the  traditional  Fourier  analysis  based  Bartlett  beamformer,
where  a  non-linear  and  non-quadratic  cost  function  with  the
inverse  array  covariance  matrix  is  used.  Compared  to  para-
metric  and  classic  subspace-based  MUSIC  [20],  the  Capon
beamformer  is  in  general  more  practical  in  terms  of  imple-
mentation as it requires less a priori knowledge on the statisti-
cal properties of array data and the number of incident signals
and  is  applicable  for  any  array  geometry  [32],  where  these
properties  are  not  available  (see,  [15]−[18]),  and  the  geome-
tries of the arrays are usually limited by physical factors,  but
the standard Capon beamformer (SCB) generally suffers from
low resolution and poor  accuracy at  low signal-to-noise ratio
(SNR) (see, e.g., [1]–[5], [16], [33]–[43]), while the MUSIC is
the  large-sample  realization  of  the  ML  method  in  the  pres-
ence of  uncorrelated incident  signals  [44]  and it  involves  the
computationally  intensive  eigendecomposition,  which  may
become  a  tremendous  computational  burden  in  the  practical
applications  with  a  large  number  of  array  sensors  [16],  [38],
[45].

In  fact,  the  beamforming  including  Capon  beamformer  is
also  a  classic  yet  continuously  developing  field,  which  has
practical  and  sensible  applications  in  array  processing  (see,
e.g.,  [13],  [39],  [46]–[64]  and  references  therein),  and  many
efforts  and  attempts  were  made  to  develop  some  variants  of
the  Capon  beamformer  to  improve  the  estimation  perfor-
mance  from  different  perspectives  in  the  past  few  decades
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(see,  e.g.,  [10],  [32],  [37],  [38],  [65]–[85]).  Since  the  array
covariance matrix should be estimated from finite array data,
and the (high-order) inverse sample covariance matrix is usu-
ally  involved  in  the  non-linear  and  non-quadratic  cost  func-
tion, it is rather complicated and difficult to analyze the statis-
tical performance of the standard and modified Capon estima-
tors. In particular, a class of non-quadratic spectral estimators
(i.e., Pisarenko framework [86]) was proposed from the anal-
ogy of Capon beamformer [67], where the higher-order array
covariance  matrix  is  adopted  in  the  non-quadratic  cost  func-
tion.  Although  the  statistical  performances  for  the  Pisarenko
framework [67], the SCB [31] and the weighted Capon beam-
former  (WCB) [38]  were  analyzed in  [37]−[39]  only  simula-
tion  examples  were  used  to  evaluate  the  estimation  perfor-
mance  of  other  variants  of  the  SCB  (see,  e.g.,  [38]).  Further
the  derived  analytical  expression  [40]  is  not  strict  and  accu-
rate when the number of snapshots is small and/or the SNR is
relatively  low,  while  the  statistical  analysis  of  the  WCB
derived  in  [38]  is  only  applicable  to  the  modified  Capon
beamformer  (MCB)  with  the  second-order  inverse  sample
covariance  matrix  [9]  and  it  is  still  difficult  to  determine  the
optimal weighting matrix of the WCB [38]. Although the sim-
ilar  Capon  estimator  was  considered  in  our  previous  work
[87], its statistical performance was not completed therein.

Therefore  in  this  paper,  we study an improved Capon esti-
mator  (ICE)  for  estimating  the  DOAs  of  multiple  uncorre-
lated narrowband signals, where the higher-order inverse array
covariance  matrix  is  used  in  the  cost  function,  and  we  focus
on the performance analyses of such DOA estimator. First the
relationship  between  the  ICE  and  the  classic  subspace-based
MUSIC is established. It is clarified that as long as the power
order  of  inverse  covariance  matrix  is  larger  enough,  the  ICE
can  greatly  outperform  the  SCB  and  is  equivalent  to  the
MUSIC regardless of the SNR. Then the statistical properties
of the ICE are analyzed, and the asymptotic MSE expressions
of DOA estimates are derived for a sufficiently large number
of snapshots. In addition, an analytical and numerical study of
the  performance  is  performed  for  the  case  of  one  signal
impinging  on  the  uniform  linear  array  (ULA)  to  get  insights
into the ICE. The simulation results show that the DOA esti-
mation performance of the ICE is significantly improved com-
pared  with  the  SCB,  where  the  Cramer-Rao  lower  bound
(CRB) is also used to evaluate the validity of the derived MSE
analytical expression.

The  main  contribution  of  this  paper:  1)  A  new  improved
Capon estimator for DOA estimation is proposed by using the
higher-order inverse array covariance matrix in the cost func-
tion.  2)  The relationship  between the  ICE and the  MUSIC is
established that as long as the power order of inverse covari-
ance matrix is larger enough, the ICE can greatly outperform
the  SCB  and  is  equivalent  to  the  MUSIC  regardless  of  the
SNR.  3)  The  statistical  properties  of  the  ICE  are  derived
explicitly, and the asymptotic MSE expressions of DOA esti-
mates are derived for a sufficiently large number of snapshots.

Om×n Im 0m×1 el δn,t
m×n m×m m×1

l×1

Notations: Throughout the paper, , , , , and 
stand  for  an  null  matrix,  identity  matrix, 
null  vector,  an  unit  vector  with  one  as  the  first  element

E{·} {·}∗
(·)H

diag{·} blkdiag{·}
tr{·}

Re{ · }
x̂

whereas zeros elsewhere, and Kronecker delta, while , ,
and  represent  the  statistical  expectation,  complex  conju-
gate,  and  Hermitian  transposition,  respectively.  Additionally,

 and  indicate  the  diagonal  matrix  and  block
diagonal  matrix  operators,  respectively,  and  signifies  the
trace operator, while  denotes the real part of the brack-
eted quantity, and  means the estimate of x.  

II.  Problem Formulation

l = 1,2, . . . ,L
(x̄i, ȳi)
{sk(n)}Kk=1

{θk}Kk=1

x̄i = 0 ȳi = 0
θk sk(n)

xl(n)

We consider an array composed of L identical and omnidi-
rectional  sensors  indexed  by ,  where  the  coordi-
nate of the lth sensor is , and we assume that K uncorre-
lated narrowband signals  with the wavelength λ are
in  the  far-field  and  impinge  from  distinct  directions .
Herein the first sensor of the array (i.e., sensor 1) is assumed
to  be  the  phase  reference  point  (i.e., , ),  and  the
DOA  of  is measured at the reference sensor relative to
the normal of the array. Then the received noisy signal  at
the lth sensor is expressed as
 

xl(n) =
K∑

k=1

sk(n)e jτl(θk)+wl(n) (1)

wl(n) τl(θk)
sk(n)

where  is  the  additive  noise,  and  indicates  the
phase delay of the kth signal  due to the propagation time
between  the  reference  sensor  and  the lth  sensor,  which  is
given by
 

τl(θk) =
2π
λ

(x̄l sinθk + ȳl cosθk). (2)

Then the compact model of array data is given by
 

x(n) = A(θ)s(n)+w(n) (3)
x(n) s(n) w(n)

x(n) = [x1(n), x2(n), . . . , xL(n)]T s(n) = [s1(n), s2(n), . . . , sK(n)]T

w(n) = [w1(n),w2(n), . . . ,wL(n)]T A(θ)
A(θ) = [a(θ1), a(θ2), . . . ,a(θK)],
a(θk)

where ,  and  are the vectors of the received noisy
data,  the  incident  signals  and  the  additive  noises  given  by

,  
and , respectively,  is the
array response matrix given by  
while the array response vector  is given by
 

a(θk) = [1,ejτ2(θk), . . . ,ejτL(θk)]T . (4)
Now we make the  basic  assumptions  on the  data  model  as

follows.
Assumption 1: The array is calibrated and the array response

matrix A has full-rank and unambiguous.
{sk(n)}

E{sk(n)s∗k(t)} = rskδn,t E{sk(n)
sk(t)} = 0,∀n, t

Assumption  2: The  incident  signals  are  temporally
complex  white  Gaussian  random  processes  with  zero-mean
and  the  variance  given  by  and 

.
{wl(n)}

E{w(n)wH(t)} =
σ2ILδn,t E{w(n)wT (t)} = OL×L ∀n, t

Assumption  3: The  additive  noises  are  temporally
and spatially complex white Gaussian random processes with
zero-mean  and  the  covariance  matrices 

,  and , .  In  addition,  the
additive noise is independent of the incident signals.

K < L

Assumption  4: The  number  of  incident  signals K is  known
or  estimated  by  the  existing  number  detection  techniques  in
advance  (cf.,  [88]  and references  therein),  and  it  satisfies  the
relation that .

Under the basic assumptions, from (3), we easily obtain the
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covariance matrix R of the received array data
 

R = E{x(n)xH(n)} = A(θ)Rs AH(θ)+σ2IL (5)
Rs

Rs = E{s(n)sH(n)} = diag{rs1 ,rs2 , . . . ,rsK }

R̂

where  is  the  signal  covariance  matrix  with  full-rank  and
defined  as .  In  prac-
tice, when the finite snapshots of array data are available, the
true  covariance  matrix R should  be  replaced  by  its  sample
estimate  given by
 

R̂ =
1
N

N∑
n=1

x(n)xH(n) (6)

{θk}Kk=1
R̂

where N is  the  number  of  snapshots.  In  this  paper,  we  con-
sider a new modified Capon beamformer (i.e., the ICE herein)
for estimating the DOAs  of multiple signals with high-
resolution from the sample covariance matrix  and study its
statistical performance analysis.  

III.  Improved Capon Estimator for DOA
Estimation—ICE

  

A.  Preliminary—SCB

w̄

The beamforming is considered as a spatial filter that multi-
plies  the  received  signals  from  each  sensor  with  complex
weights and then sums them to form the array output (see [5],
[17],  [18]  for  details).  The  SCB  uses  the  array  weights  to
maintain  a  unity  constraint  in  the  specific “look  direction”
while  maximally  suppressing  the  signals  from  other  direc-
tions and additive noises to minimize the mean-squared power
of  the  array  output  [15],  [31],  [36],  [66],  [67].  The  optimal
weight vector  of the SCB is obtained as the solution of the
following constrained quadratic problem [15]
 

min
w̄

w̄H Rw̄ s.t. w̄H a(θ) = 1. (7)

w̄SCB

By using techniques such as the Lagrange optimization, we
can obtain the weight vector  as
 

w̄SCB =
R−1a(θ)

aH(θ)R−1a(θ)
. (8)

{θk}Kk=1

fSCB(θ)

Then the Capon estimates of the DOAs  are obtained
from the positions of the K smallest minima of the following
function  defined as:
 

fSCB(θ) = aH(θ)R−1a(θ) (9)
{θk}Kk=1

PSCB(θ)

i.e.,  the  DOAs  can be estimated from the locations of
the K highest  peaks  of  the  Capon  spatial  spectrum  (i.e.,  the
array output power)  given by
 

PSCB(θ) =
1

fSCB(θ)
=

1
aH(θ)R−1a(θ)

. (10)

From  (5),  the  eigenvalue  decomposition  (EVD)  of  the
covariance matrix R is given by [89]
 

R = UΣUH = UsΣsUH
s +UnΣnUH

n (11)
U = [Us,Un] Us = [u1,u2, . . . ,uK] Un = [uK+1,uK+2, . . . ,

uL] Σ = blkdiag{Σs,Σn} Σs = diag{λ1,λ2, . . . ,λK} Σn =

diag{λK+1,λK+2, . . . , λL} (ul,λl)
λ1 ≥ · · · ≥ λK ≥ λK+1 = · · · = λL =

σ2 , 0 Us Un

where , ,  
, ,  ,  and 

 ,  in  which  is  the lth  eigenvec-
tor and eigenvalue pair with 

,  while  and  correspond  to  the  signal  and  noise

UUH = UHU = ILsubspaces, respectively, and .  Then by sub-
stituting (11) into (9), we easily have
 

fSCB(θ) =
L∑

l=1

1
λl
|aH(θ)ul|2 =

L∑
l=1

1
λl

fl(θ) (12)

fl(θ) = |aH(θ)ul|2 aH(θk)ul , 0 l = 1,2, . . . ,K
aH(θk)ul = 0 l = K +1,K +2, . . . ,L

where , while  for ,
and  for . As a result, we can
obtain
 

fSCB(θk) =
K∑

l=1

1
λl

fl(θk) , 0 (13)

fSCB(θ)

i.e., the estimated DOAs of the SCB are asymptotically biased
and also not consistent. Obviously, we can easily find that the
signals  subspace  is  involved  by  the  cost  function ,
which  is  not  orthogonal  to  the  array  response  vector,  and  it
may  dominate  the  estimation  performance  in  some  cases.
Hence the SCB performs worse than the MUSIC.  

B.  Review of Various Modifications of SCB
In  the  past  few  decades,  various  modifications  were  pro-

posed in an attempt  to  improve the performance of  the SCB,
and they are briefly summarized as follows.

Firstly,  by  using  a  truncated  array  covariance  matrix  to
reduce the influence of signal subspace components in (13), a
modified  Capon  beamformer  with  noise  eigenvectors  (MCB-
NEV) was presented [15], [32]
 

fMCB-NEV(θ) =
L∑

l=K+1

1
λl
|aH(θ)ul|2. (14)

1/λl

Clearly the noise eigenvector is weighted by the correspond-
ing  inverse  eigenvalue  (i.e., )  in  the  MCB-NEV,  which
will  makes  the  effect  of  the  noise  eigenvector  on  the  DOA
estimation different for a finite number of snapshots, while the
unity weight is used in the MUSIC.

Secondly,  for  the  ULA [66],  it  was  clarified  that  the “har-
monic  averaging” [45]  (or “parallel  resistor  network  averag-
ing” [10])  effect  of  combining the LP spectra with all  differ-
ent models from the lowest to highest resolution results in the
reduced resolution of the SCB, i.e.,
 

1
PSCB(θ)

=
1
L

L∑
l=1

1

P(l)
LP(θ)

(15)

P(l)
LP(θ)where the LP spatial spectrum  with the lth LP order is

defined as [45]
 

P(l)
LP(θ) =

eH
l R−1

l el

|eH
l R−1

l al(θ)|2
(16)

Rl l× l
al(θ)

in  which  is  the  subarray  covariance  matrix  with  the
first l sensors, and  is the corresponding response vector.
By deleting the lower-order LP spectra to enhance the resolu-
tion,  a  pseudospectrum  estimation  method  (PEM)  was  sug-
gested [73], where its spatial spectrum is defined as
 

1
PPEM(θ)

=

L∑
l=K

1

P(l)
LP(θ)

. (17)

 1718 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 8, AUGUST 2023



Evidently  the  computational  burden  of  the  PEM is  heavier
than  that  of  the  SCB,  and  the  number  of  incident  signals  is
required.

On the other hand, by direct analogy with the SCB in (9), a
class  of  non-quadratic  spectral  estimators  (i.e.,  Pisarenko
framework [86]) was proposed in [67], where the higher-order
array  covariance  matrix  is  adopted  in  its  non-quadratic  cost
function
 

fPISARENKO(θ) = (aH(θ)Rr a(θ))−
1
r (18)

r , 0
r = −1

fSNLM(θ)

where r is an integer with .  Obviously the SCB in (9) is
obtained  with .  In  [70],  a  stable  nonlinear  method
(SNLM)  was  suggested,  and  its  cost  function  is
given by
 

fSNLM(θ) = aH(θ)R−
1
2 (R+α2R−1)−pR−

1
2 a(θ) (19)

p = 0,1,2, . . . ,where  and α are  the  parameters  introduced  to
emphasize the noise eigenvectors while deemphasize the sig-
nal  eigenvectors  with  different  weights,  but  it  is  difficult  to
determine them without proper a priori information.

Additionally  a  generalized  Capon  beamformer  (GCB)  was
considered as follows [69], [71]:
 

fGCB(θ) =
aH(θ)R−qa(θ)

aH(θ)R−q+1a(θ)
. (20)

q = 0,1,

fMCB(θ)

When  or  2,  the  GCB  will  reduce  to  the  Bartlett
beamformer [17], [35], the SCB in (9), or the simple modified
Capon  beamformer  (SMCB)  [69],  respectively.  By  using  the
squared  array  covariance  matrix,  another  modified  Capon
beamformer  (MCB)  was  recommended  [10],  [67],  where  its
cost function  is given by
 

fMCB(θ) = aH(θ)R−2a(θ) (21)

fWCE(θ)

but its performance was not shown therein. Further a weighted
Capon beamformer (WCB) was proposed [38], where its cost
function  is defined as
 

fWCB(θ) = aH(θ)R−1W̄R−1a(θ) (22)
W̄

W̄ = IL

where  is the weighting matrix. Clearly the WCB is equal to
the  MCB  in  (21)  when .  Unfortunately,  there  is  no
existing  prior  technique  to  determine  the  optimal  weight
matrix.

In  short,  some  variants  were  proposed  from  different  per-
spectives to enhance the DOA estimation performance of the
SCB  as  mentioned  above.  However,  they  usually  need  to
know the  number  of  incident  signals  in  the  MCB-NEV [15],
[32] and the PEM [73], or alternatively, they need to select the
appropriate parameters in the SNLM [70], the GCB [69], [71]
and the WCB [38]. More importantly, except that the statisti-
cal  analyses  of  a  special  case  of  the  Pisarenko  framework  in
(18), the SCB in (9) and the WCB in (22) were well studied in
[37],  [38],  these  modified  methods  were  only  verified  by
numerical simulations.

R̂−1

R̂r

Remark  1: By  exploiting  the  statistical  results  on  the
inverted  Wishart  distribution  of  the  inverse  sample  covari-
ance  matrix  (i.e., )  [90]  and  by  approximating  the  high-
order inverse sample covariance matrix (i.e., ) with the con-
tour integrals, the estimation performance of a special case of

f̄PISARENKO(θ) = aH(θ)R̂r a(θ)
r ≤ −1

R−1

R̂−1

Pisarenko  framework  (i.e., ,  for
)  and the  SCB were  analyzed with  the  first-order  Tay-

lor series expansion around the asymptotic DOA estimate and
the  theoretical  inverse  covariance  matrix  in  [39],  [40],
respectively. Additionlly, by using the first-order Taylor series
expansion  around  the  asymptotic  DOA  estimate  and  the
inverse  sample  covariance  matrix  matrix ,  the  asymptotic
MSEs of the WCB and the SCB were studied [37], [38]. How-
ever,  the  derived  analytical  expression  [40]  is  not  strict  and
accurate for a small  number of snapshots and/or at  SNR (see
Section  V  for  details),  while  the  statistical  analysis  of  the
WCB  derived  in  [38]  is  only  applicable  to  the  MCB  in  (21)
and  it  is  still  difficult  to  determine  the  optimal  weighting
matrix of the WCB [38].  

C.  Improved Capon Without Eigendecomposition

{ul}Kl=1
fSCB(θ)

a(θ)

As shown in (12) and (13), the low resolution of the SCB is
due to the combination of the signal eigenvectors  in the
cost  function ,  that  are  not  orthogonal  to  the  array
response  vector .  Differently  from  the  classic  subspace-
based  MUSIC,  we  consider  eliminating  the  signal  subspace
components  to  improve  the  SCB  estimation  performance
without  knowing  the  number  of  incident  signals  in  advance
and performing eigendecomposition.

PICE =

w̄H Rmw̄ m ≥ 2
w̄

By  defining  a “pseudo-power” of  the  ICE  as 
, where m is a positive integer constant, and , we

can  determine  the  weight  by  solving  the  following  con-
strained quadratic problem:
 

min
w̄

w̄H Rmw̄ s.t. w̄H a(θ) = 1. (23)

w̄ICEConsequently we easily get the weight vector  as
 

w̄ICE =
R−ma(θ)

aH(θ)R−ma(θ)
. (24)

{θk}Kk=1
PICE(θ)

As a result, we can estimate the DOAs  from the loca-
tions  of K highest  peaks  of  the  ICE spatial  spectrum 
defined as
 

PICE(θ) =
1

fICE(θ)
=

1
aH(θ)R−ma(θ)

(25)

fICE(θ)where the ICE cost function  is given by
 

fICE(θ) = aH(θ)R−ma(θ). (26)

m = 1 m = 2
Obviously, the ICE turns into the SCB in (9) and the MCB

in (21) with  or , respectively.

fICE(θ)
Then  by  substituting  (11)  into  (26),  the  ICE  cost  function

 can be expressed as [87]
 

fICE(θ) =
L∑

l=1

1
λm

l
|aH(θ)ul|2

=
1

(σ2)m

 K∑
l=1

(
σ2

λl

)m

|aH(θ)ul|2+ fMUSIC(θ)

 . (27)

(σ2/λl)m→ 0
(σ2)m fICE(θ) = fMUSIC(θ)

{ul}Kl=1 Us

Clearly  when  the  SNR  is  sufficiently  large  or  the  power
order m becomes  larger,  we  can  obtain  and

, i.e., the serious influence of the sig-
nal subspace components  (i.e., ) on the DOA estima-
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tion performance can be effectively eliminated, and hence the
ICE cost function can be close to that of the MUSIC method,
and  the  DOA  estimation  performance  of  the  ICE  will  be
improved with a resolution comparable to the MUSIC.

{x(n)}Nn=1

As mentioned above,  the array covariance matrix R should
be  estimated  from  the  finite  available  array  data  as
(6),  then the implementation of  the ICE DOA estimation can
be summarized as follows.

R̂1) Calculate the sample array covariance matrix  with (6).
R̂−1 R̂

(R̂−1)m

2) Calculate the matrix inversion  from  by using some
technique  (i.e.,  the  Gaussian  elimination  method),  and  calcu-
late its mth power (i.e., ).

{θk}Kk=1
P̂ICE(θ)

P̂ICE(θ)

3) Estimate the directions  by searching the K highest
peaks of the spatial spectrum  (the spectral approach),
where  is given by
 

P̂ICE(θ) =
1

f̂ICE(θ)
(28)

in which
 

f̂ICE(θ) = aH(θ)(R̂−m)a(θ) (29)

f̂ICE(z)
f̂ICE(z)

or  by  finding  the  phases  of  the K zeros  of  the  polynomial
 closest to the unit circle in the z-plane for the ULA (the

root approach), where  is given by
 

f̂ICE(z) = zL−1 pH(z)(R̂−m)p(z) (30)
p(z) = [1,z, . . . ,zL−1]T z = ej2dπsinθ/λin  which , ,  and d is  the

sensor spacing of the ULA.

R̂−1

(R̂−1)m

m = 4

Remark  2: In  practice,  there  is  a  trade-off  between  good
estimation performance and computational  complexity.  Since
the  computationally  intensive  eigendecomposition  is  not
required in the SCB and some its variants,  the computational
complexity  of  these  Capon-like  methods  is  relatively  small
compared with the classic subspace-based MUSIC, and many
effective  algorithms  were  suggested  to  calculate  the  inverse
sample covariance matrix (i.e., ) in the literature (see, e.g.,
[91]–[97]).  In fact,  the computational  complexity of  calculat-
ing  the mth  power  of  the  inverse  sample  covariance  matrix
(i.e., ) will be increased with the increase of the power
order m.  Hence,  the  trade-off  value  of  the  power  order m
should be determined by a balance between performance and
computational  complexity,  and  numerous  experiments  show
that the power order  is generally sufficient for the ICE
to  achieve  comparable  performance  (see  Section  V  for  de-
tails).

R̂ R̂−1

(R̂−1)m 10L2N+
4L2 25L3+7L2+24L 8(m−1)L3

f̂ICE(z) 8L3+8L

10L2N +8(m−1)L3+33L3+8L2

Remark  3: As  shown  in  above,  the  implementation  of  the
ICE involves the calculation of , the inversion of  and the
calculation  of ,  which  approximately  require 

 flops,  flops,  and  flops,
respectively,  where a flop is defined as a floating-point addi-
tion or multiplication operation as adopted by MATLAB soft-
ware,  and  the  LU  decomposition  and  Gaussian  elimination
can  be  used  for  inversion  [98].  In  addition,  the  rooting  of

 also  needs  about  flops.  Hence  the  estimated
number  of  MATLAB  flops  required  by  the  ICE  is  nearly

.  The  quantitative  compar-
isons of computational complexities between the ICE and the

10L2N +O(L3)+8(L−K)L2+20L2

m < 24

root-MUSIC  in  MATLAB  flops  are  shown  in Fig. 1,  where
the  number  of  flops  required  by  the  root-MUSIC  is  rough

 [99].  Obviously,  the  ICE
is  generally  more  efficient  than  the  MUSIC  for  a  moderate
power  order m (i.e., ),  even  if  the  number  of  flops
required  by  the  ICE  becomes  very  large  in  case  of  the  large
power order m.
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Fig. 1.     Comparison of computational complexities between the MUSIC and
the ICE in MATLAB flops versus (a) the number of snapshots ( ); (b) the
number of sensors ( ); and (c) the number of power order ( ,

) (dashed line: MUSIC, and solid line: ICE).
 

Remark  4: The  ICE  can  be  extended  to  the  coherent  (i.e.,
fully correlated) incident signals by using the forward or for-
ward-backward  spatial  averaging  (see,  e.g.,  [100]–[102]),
though the  incident  signals  are  considered  to  be  uncorrelated
to simplify the statistical analysis in this paper.  

IV.  Statistical Analysis

f̂ICE(θ)Because  the  ICE cost  function  in  (29)  is  a  compli-
cated nonlinear function of the finite received array data, and
its statistical behavior for “small” number of snapshots is dif-
ficult  to  analyze  like  the  other  DOA  estimators  [37],  [38],
[44],  [103],  we  study  the  asymptotic  statistical  properties  of
the ICE for a large number of snapshots in this section.  

A.  Consistency of ICE Estimate

f̂ICE(θ)
The  consistency  of  the  ICE estimate  obtained  by  minimiz-

ing the cost function  in (29) is given below.
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{θ̂k} {θk}
Lemma 1: As  the  number  of  snapshots N tends  to  infinity,

the ICE estimates  approach the true parameters  with
the probability one (w.p.1) under any of the following condi-
tions i) the power order m is sufficiently large, or ii) the SNR
is sufficiently large, or iii) the power order m and the SNR are
both sufficiently large.

N→∞
R̂

R̂−1 E{R̂} = R E{R̂−1} = R−1

E{ûl} = ul E{λ̂l} = λl
l = 1,2, . . . ,L

R̂
f̂ICE(θ)

Proof: Firstly, from (6), when , we easily obtain the
consistencies  of  the  sample  covariance  matrix  and  its
inverse  as ,  w.p.1 [39], [42], [90],
and  consequently  we  have  and  for

.  By  using  the  eigenpairs  of  the  sample  covari-
ance  matrix  in  (6),  from  (11)  and  (27),  the  cost  function

 in (29) can be rewritten as
 

f̂ICE(θ) =
K∑

l=1

1
λ̂m

l

|aH(θ)ûl|2+
L∑

l=K+1

1
λ̂m

l

|aH(θ)ûl|2 (31)

λ̂1 ≥ · · · ≥ λ̂K ≥ λ̂K+1 ≥ · · · ≥ λ̂L > 0where .
N→∞ m→∞ σ2/λl < 1 (σ2/λl)m→ 0

l = 1,2, . . . ,K
i)  If  and ,  then  and 

for , hence we get
 

lim
N→∞

f̂ICE(θ) =
1
σ2m

K∑
l=1

(σ2

λl

)m
|aH(θ)ul|2+

1
σ2m fMUSIC(θ)

→ 1
σ2m fMUSIC(θ). (32)

N→∞ SNR→∞ λl≫ σ2 σ2/λl→ 0
l = 1,2, . . . ,K

ii) If  and , then  (i.e., )
for , and similarly we obtain
 

lim
N→∞

f̂ICE(θ)→ 1
σ2m fMUSIC(θ). (33)

N→∞ m→∞ SNR→∞ (σ2/λl)m→ 0
l = 1,2, . . . ,K limN→∞ fICE(θ)→

(1/σ2m) fMUSIC(θ)

iii)  If ,  and ,  then 
for ,  hence  we  also  have 

.

fICE(θ)→ 1/(σ2)m fMUSIC(θ) = f̄ICE(θ)

f̄ICE(θ) θ = θk
f̄ICE(θk) = 0

As a result, under any of the above three conditions, we can
get ,  where  the  MUSIC
is a consistent estimator (see, e.g., [44]), and consequently the
minima  of  are  achieved  if  and  only  if ,  i.e.,

 w.p.1. ■  

B.  Asymptotic MSE Expression
N ≫ 1Now we study the asymptotic (for ) MSE of the esti-

mation  error  in  order  to  evaluate  the  estimation  accuracy  of
the ICE presented in Section III-C.

fICE(θ)
{θ̄k}Kk=1 {θ̄k}Kk=1

{θk}Kk=1

∆θk ∆θ̄k
∆θk = θ̄k − θk ∆θ̄k = θ̂k − θ̄k

{θ̂k} f̂ICE(θ)
{θ̄k} var{θ̂k}

{θ̂k}

As discussed above, since the estimation performance of the
ICE is dominated by the power order m, we represent the min-
imizers  of  the  asymptotic  ICE  cost  function  in  (26)
with , where these asymptotic estimates  may be
significantly  different  from  the  true  DOAs  under
adverse conditions such as low SNR or/and small power order
m (see,  e.g.,  [37],  [38],  [42],  [83]).  Herein  by  defining  the
asymptotic  bias  and  the  additional  bias  as

 and , when the number of snapshots
N is large, the ICE estimates  obtained with  in (29)
will  fluctuate  around  with  a  variance ,  and  hence
the asymptotic MSE of the estimates  can be expressed by
[37]–[39], [42] 

MS E(θ̂k) = E{(θ̂k − θk)2}
= E{(∆θ̄k)2}+2E{∆θ̄k}∆θk + (∆θk)2

= var{θ̂k}+ (∆θk)2 (34)
var{θ̂k}where the variance  is defined as

 

var{θ̂k} = E{(∆θ̄k)2} (35)
E{∆θ̄k} = 0
θ̂k ∆θk

∆θ̄k
var{θ̂k}

and .  Obviously  the  actual  error  of  the  ICE  esti-
mate  can  be  obtained  by  the  asymptotic  bias  and  the
additional bias . Then we can obtain the expression of the
variance  of the ICE by the following theorem.

θ̂k
var{θ̂k}

Theorem 1: For the estimates  obtained by minimizing the
ICE  cost  function  in  (29),  its  large-sample  variance 
defined in (35) is given by
 

var{θ̂k} =
1

2NH2
k

m∑
r=1

m∑
p=1

(Γrp+Υrp) (36)

where
 

Hk = Re
{
dH(θ̄k)R−md(θ̄k)+ d̃H(θ̄k)R−ma(θ̄k)

}
(37)

 

Γrp = Re
{(
κH

k R−(m−r+p−2)νk
)× (
κH

k R−(m+r−p−2)νk
)}

(38)
 

Υrp =
(
κH

k R−(2m−r−p−1)κk
)× (
νH

k R−(r+p−3)νk
)

(39)
κk = R−1d(θ̄k) νk = R−1a(θ̄k) d(θ̄k) = da(θ)/dθ|θ=θ̄k

d̃(θ̄k) = dd(θ)/dθ|θ=θ̄k
while , , , and

.
Proof: See Appendix. ■

m = 1
m = 2

More  especially,  from  Theorem  1,  after  some  straightfor-
ward manipulations, when the power order m is set to  or

,  we  can  easily  get  the  corresponding  asymptotic  MSE
expression of the ICE estimate.

m = 1
Remark 5: From Theorem 1,  by setting the power order  as

,  we  can  easily  obtain  the  asymptotic  MSE of  the  SCB
[31], [35] as
 

MS ESCB{θ̂k} =
1

2NH2
k

(
dH(θ̄k)R−1d(θ̄k)aH(θ̄k)R−1a(θ̄k)

− |dH(θ̄k)R−1a(θ̄k)|2
)
+ (θ̄k − θk)2 (40)

which equals to the expression derived in [37], [38], [42].

m = 2
Remark 6: From Theorem 1, when the power order is set to

, the asymptotic MSE of the MCB [10] is given by
 

MS EMCB{θ̂k} =
1

2NH2
k

(
2(κH

k κkν
H
k νk − |κ

H
k νk |

2)

+κH
k RκkνH

k R−1νk +κ
H
k R−1κkν

H
k Rνk

+2Re{κH
k RνkκH

k R−1νk}
)
+ (θ̄k − θk)2 (41)

W̄ = IL

which  equals  to  the  expression  of  the  WCB  with  the  weight
matrix  derived in [38].

∆θ̄k

fSCB(θ) θ̄k

θ̄k
fICE(θ)

Remark  7: The  asymptotic  bias  was  approximated  by
exploiting the first- and second-order Taylor series expansion
of  around  in  [39],  [42].  However,  as  discussed  in
Section  III-C,  since  this  bias  may  be  larger  for  small  power
order m,  the  asymptotic  estimate  obtained  from  the  cost
function  in  (26)  can  be  used  to  directly  calculate  the
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∆θ̄kasymptotic bias  in (34),  similarly to the statistical  analy-
ses of the SCB and the WCB studied in [37], [38].  

C.  Analytic and Numerical Study of Performance

var(θ̂) MSE(θ̂)

In order to gain insights into the ICE, here we specialize in
the case of one signal impinging on a ULA with sensor spac-
ing d and  study  the  asymptotic  (i.e., )  of  the
ICE estimator in detail. Further we quantitatively compare the
asymptotic  MSE of  the ICE with that  of  the MUSIC and the
stochastic  CRB,  which  is  the  lower  bound  on  the  estimation
error for any unbiased estimator [44].

K = 1In this case (i.e., ), we readily have [29]
 

A(θ)= a(θ1)= [1,ejω(θ1),ej2ω(θ1), . . . ,ej(L−1)ω(θ1)]T (42)
 

d(θ1) = jω̄(θ1)[0,ejω(θ1), . . . , (L−1)ej(L−1)ω(θ1)]T (43)
 

d̃(θ1) = − jω̄(θ1)[0,ejω(θ1), . . . , (L−1)ej(L−1)ω(θ1)]T

− ω̄2(θ1)[0,ejω(θ1), . . . , (L−1)2ej(L−1)ω(θ1)]T (44)
 

Rs = rs (45)
 

R = rsa(θ1)aH(θ1)+σ2IL (46)
ω(θ) = 2π(d/λ) sinθ ω̄(θ) = 2π(d/λ)cosθ

d̃ ω̄
a(θ1) d(θ1) d̃(θ1) ω̄(θ1)

where , and . To avoid
a complication of notation, a, d, , and  are used as the brief
notation for , , , and , respectively, in the
following. From (44)−(46), we can obtain [29]
 

aH a = L (47)
 

dH a = −jω̄
L−1∑
l=1

l = −jω̄
L(L−1)

2
(48)

 

dH d = ω̄2
L−1∑
l=1

l2 = ω̄2 L(L−1)(2L−1)
6

(49)

 

d̃H a = − jω̄
L−1∑
l=1

l− ω̄2
L−1∑
l=1

l2

= − jω̄
L(L−1)

2
− ω̄2 L(L−1)(2L−1)

6
. (50)

SNR = rs/σ
2By setting  and using matrix inversion lemma,

from (48), we have
 

R−1 = σ−2
(
IL + ξaaH

)
(51)

 

R−m = σ−2m
(
IL + ξaaH

)m
(52)

ξ = −(L+SNR−1)−1

aH a = L
where .  Then  by  using  the  fact  that

 and the binomial theorem, from (54), we can obtain
 

R−m = σ−2m(
C(m,0)IL +C(m,1)ξaaH +C(m,2)ξ2

×LaaH + · · ·+C(m,m)ξmLm−1aaH)
= σ−2m(

IL +
(
C(m,1)ξ+C(m,2)ξ2L+ · · ·

+C(m,m)ξmLm−1)aaH)
= σ−2m(

IL +
1
L
(
(1+ ξL)m−1

)
aaH)

(53)

C(m, m̄) C(m, m̄) =
m!/m̄!(m− m̄)! 1 ≤ m̄ ≤ m
where  is the binomial coefficient given by 

 for .

Finally,  from  (37)–(39),  (49)–(52)  and  (55),  after  some
straightforward calculations, we get
 

Hk = Re
{
dH R−md+ d̃H R−ma

}
= − ω̄2σ−4m L(L2−1)

12
((L×S NR+1)−m−1) (54)

 

Γrp = Re
{(

dH R−(m−r+p)a
)(

dH R−(m+r−p)a
)}

= − ω̄2σ−4m L2(L−1)
12

(
(3L−3)(L×S NR+1)−2m

+ (L+1)(L×S NR+1)−(r+p−1)) (55)
 

Υrp =
(
dH R−(2m−r−p+1)d

)(
aH R−(r+p−1)a

)
= ω̄2σ−4m L2(L−1)2

4
(L×S NR+1)−2m. (56)

varICE(θ̂)
Then by substituting (56)–(58) into (36), we can obtain the

asymptotic variance  as
 

varICE(θ̂) ≈ 1
ω̄2N

6
(L2−1)

1
((L×S NR+1)−m−1)2

·
m∑

r=1

m∑
p=1

(L×S NR+1)−(r+p−1). (57)

MSEICE(θ̂)

Further when the number of sensors L and the power order
m are  reasonably  larger,  from  (34)  and  (59),  we  can  get  the
asymptotic MSE expression  as [29], [44]
 

MS EICE(θ̂) ≈ 1
ω̄2N

6
S NR

1
L(L2−1)

(
1+

1
L

1
S NR

)
= MS EMUSIC(θ̂) =CRB(θ̂). (58)

i.e.,  the  asymptotic  MSE  of  the  ICE  will  near  that  of  the
MUSIC  and  the  asymptotic  MSE  of  the  ICE  asymptotically
achieves the stochastic CRB.  

V.  Numerical Examples

d = λ/2
θ1 θ2

W̄ = IL

q = 4

{θ̂k}

Now we  evaluate  the  effectiveness  of  the  ICE  for  estimat-
ing  DOAs  of  uncorrelated  narrowband  signals  impinging  on
the ULA and confirm the derived theoretical analysis through
numerical  examples,  where  the  sensors  are  separated  by  a
half-wavelength  (i.e., ),  and  two  signals  with  equal
power  come  from  far-field  with  the  angles  and .  In  the
simulations,  some  existing  DOA estimators  such  as  the  SCB
[31], the MCB/WCB with the weight matrix  [38], the
MUSIC [20], [104], the GCB [71] (with ), the sparse and
parametric approach (SPA) [105], the enhanced principal-sin-
gular-vector  utilization  for  modal  analysis  (EPUMA)  [106],
and the multi-snapshot Newtonized orthogonal matching pur-
suit  (MNOMP) [107] are carried out for comparison, and the
stochastic  CRB  [44],  [103]  is  also  calculated  as  a  reference.
Additionally  we  define  an  empirical  root-MSE  (ERMSE)  by
averaging the estimated directions  as
 

ERMS E{θ̂k} =

√√√
1

KN̄

K∑
k=1

N̄∑
i=1

(θ̂(i)k − θk)2 (59)

θ̂(i)k N̄where  denotes  the  estimates  at  the ith  trial,  and  is  the
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N̄ = 1000

number of trials. The SNR is defined as the ratio of the power
of the incident signals to that of the additive noise at each sen-
sor,  and the results  shown below are all  based on 1000 inde-
pendent trials (i.e., ).

θ1 = −4◦ θ2 = 7◦

L = 5
N = 100

Example 1—Estimation Performance Versus SNR: Two dis-
tinct DOAs are  and , and the SNR varies from
−5 dB to 20 dB, while the number of sensors is , and the
number of snapshots is .

S NR = 5
m = 2,3,4

m = 1

m = 3,4

1/(σ2)m

When  dB, the averaged spatial spectra of the ICE
with  different  power  orders m such  as  are  plotted
and compared with the SCB and the spectral MUSIC in Fig. 2.
Clearly  the  SCB  (i.e.,  the  ICE  with )  cannot  provide
clear peaks at the incoming directions and fails to distinguish
two  DOAs  due  to  the  severe  influence  of  signal  subspace
components  at  low  SNR.  However,  by  increasing  the  power
order m,  the influence of signal subspace components is effi-
ciently  weakened,  so  that  the  resolution  of  the  ICE is  gradu-
ally  improved,  and  the  DOAs  can  be  successfully  estimated
with  in  this  empirical  scenario.  Further  when  the
power order m becomes larger, the spatial spectrum of the ICE
can accurately approximate that of the MUSIC with a scale of

.
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Fig. 2.     The averaged spatial spectra of the SCB, the MUSIC and the ICE
with different power order m for Example 1 (  dB, , ,
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The  empirical  and  theoretical  RMSEs  of  the  estimated
DOAs against the SNR are shown in Fig. 3, where the theoret-
ical  results  presented  in  [40]  (denoted  as  VB-MSE),  and  the
stochastic  CRB  are  also  plotted  for  comparison.  Obviously
and  the  ICE estimation  performance  becomes  better  than  the
SCB as the power order m increases especially in the case of
low SNRs, and the ICE and the MUSIC provide similar small
estimation errors for high SNRs. Compared with the theoreti-
cal  derivations  of  [40],  the  empirical  RMSEs  of  the  ICE  are
very  close  to  the  theoretical  ones  derived  in  Section  IV-C
(except for low SNR and small m) and the difference between
the theoretical RMSEs and the stochastic CRBs is small when
the power order m is larger. Although the GCB performs bet-
ter  than the SCB, the ICE with higher  power order  generally

outperforms  the  GCB.  Although  the  SPA,  the  MNOMP  and
the  EPUMA  perform  better  only  in  the  case  of  low  SNRs
and/or  for  few  snapshots,  but  the  SPA  and  the  MNOMP  are
based  on  the  spars  signal  representation  and  require  quite
complicated calculations, while the EPUMA estimation crite-
rion is equivalent to that of the direction estimation (MODE)
[24],  [25]  (see  [108]  for  details),  and the EPUMA requires a
priori knowledge  about  the  number  of  incident  signals  and
several computationally complex iterations.

Example  2 —Estimation  Performance  Versus  Number  of
Snapshots: The  simulation  conditions  are  similar  to  those  in
Example 1, except that the SNR is set at 0 dB, and the num-
ber of snapshots varies from 10 to 1000.

m > 1

As  illustrated  in Fig. 4,  the  estimation  performance  of  the
ICE can be effectively improved by increasing the number of
snapshots N or  the  power  order m,  and  the  ICE  with  larger
power  order  performs  better  than  the  SCB  and  the  MCB.
Obviously  as  the  number  of  snapshots  increases,  both  the
empirical and theoretical RMSEs of the ICE decrease signifi-
cantly,  and the the empirical  RMSEs agree with the theoreti-
cal RMSEs very well for , while the RMSEs of the SCB
remain  large  for  all  numbers  of  snapshots  due  to  the  lower
SNR. In addition, we can find that the empirical and theoreti-
cal  RMSEs  of  the  ICE  become  close  to  the  RMSE  of  the
MUSIC  and  the  CRB  by  increasing  the  power  order m,
although the number of snapshots is small. Although the ICE
performs  worse  than  the  computationally  complicated  spar-
sity-based  MNOMP  and  SPA  and  the  eigentruscture-based
EPUMA  for  small  number  of  snapshots,  the  ICE  generally
performs better than the EPUMA, the MNOMP, and the SPA
by increasing the number of snapshots.
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Fig. 3.     The  empirical  and  theoretical  RMSEs  of  the  ICE  estimates  versus
the  SNR  for  Example  1  (red  dotted  line:  SCB;  red  dashed  line:  MCB;  red
dash-dotted  line:  ICE  ( );  red  solid  line:  ICE  ( ); “+”:  T.-MSE
( ); “ ”:  T.-MSE  ( ); “ ”:  T.-MSE  ( ); “ ”:  T.-MSE  ( );
black  dotted  line:  VB-MSE  ( );  black  dashed  line:  VB-MSE  ( );
black dash-dotted line: VB-MSE ( ); black solid line: VB-MSE ( );
blue line: GCB; green line: SPA; yellow line: EPUMA; dotted line with “ ”:
MNOMP;  purple  line:  MUSIC;  and  dash-dotted  line  with “ ”:  CRB)
( , , , and ).
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−4◦ −4◦+∆θ
∆θ 5◦ 37◦ ∆θ = 4◦

Example  3—Estimation  Performance  With  Versus  Angular
Separation: The simulation conditions are  similar  to  those in
Example  1,  except  that  the  SNR  is  fixed  at  0  dB,  and  the
DOAs  of  two  incident  signals  are  and ,  respec-
tively,  where  is  varied  from  to  with .  As
shown in Fig. 5, the ICE with the larger power order m gener-
ally  estimates  the  directions  of  closely  spaced  signals  more
accurately  with  a  much  smaller  RMSE  than  the  SCB,  the
empirical RMSEs of the estimated DOAs are close to the the-
oretical  RMSEs  derived  in  Section  IV.  Additionally  the
empirical  and theoretical  RMSEs decrease with with increas-
ing angular separation rather than monotonously.  

VI.  Conclusions

In  this  paper,  a  modified  Capon  estimator  called  the  ICE
was investigated for DOA estimation of uncorrelated narrow-
band  signals,  where  where  the  higher-order  inverse  array
covariance matrix is used in the Capon-like cost function. The
relationship  between  the  ICE  and  the  MUSIC  was  studied,
where  the  serious  influence  of  the  signal  subspace  compo-
nents on the DOA estimation can be eliminated by increasing
the  power  order  of  the  covariance  matrix,  so  that  the  perfor-
mance  of  ICE  is  better  than  the  SCB.  Further  the  statistical
properties  of  the  ICE  were  analyzed,  and  the  closed-form
asymptotic  MSE  expressions  of  the  DOA  estimates  were
derived.  Finally  the  effectiveness  of  the  ICE  and  and  the
validity of the theoretical analysis are verified through numer-
ical examples.  

Appendix
Proof of Theorem 1

θ̂kProof: Since the estimate  is  obtained by minimizing the

f̂ICE(θ)

f̂ICE(θ) θ̄k

cost function  in (29), for a sufficiently large number of
snapshots N, we can obtain the second-order approximation of
the  derivative  of  about  the  parameter  as  (cf.,  [27],
[29], [38], [44], [103], [109], and references therein)
 

0 = f ′(θ̂k) ≈ f ′(θ̄k)+ f ′′(θ̄k)(θ̂k − θ̄k) (60)
f̂ICE(θ) f (θ)

f (θ)

where  is represented by  for simplicity of notation,
the  second-  and  higher  order  terms  in  (60)  can  be  neglected,
and the first- and second-order derivatives of  with respect
to the scalar variable θ are given by
 

f ′(θ) =
d f (θ)

dθ
= 2Re{dH(θ)R̂−ma(θ)} (61)

 

f ′′(θ) =
d f ′(θ)

dθ
= 2Re{dH(θ)R̂−md(θ)

+ d̃H(θ)R̂−ma(θ)}. (62)
∆θ̄kFrom (60), the estimation error (i.e., the additional bias) 

can be asymptotically obtained as
 

∆θ̄k ≈ −
f ′(θ̄k)
f ′′(θ̄k)

≈ − Re{dH(θ̄k)R̂−ma(θ̄k)}
Re{dH(θ̄k)R−md(θ̄k)+ d̃H(θ̄k)R−ma(θ̄k)}

= − Re{µk}
Hk

(63)

R̂

θ̂k

where the sample array covariance matrix  in the denomina-
tor  of  (63)  (i.e.,  (62))  is  replaced  by  the  true  one R without
affecting  the  asymptotic  property  of  estimate  [27],  [29],
[38], [44], [103], [109], [110], while
 

µk = dH(θ̄k)R̂−ma(θ̄k). (64)

∆θk

Consequently,  from  (63),  the  variance  of  the  estimation
error  is given by 
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Fig. 4.     The empirical  and theoretical  RMSEs of the ICE estimation versus
the number of snapshots for Example 2 (red dotted line: SCB; red dashed line:
MCB; red dash-dotted line: ICE ( ); red solid line: ICE ( ); “+”: T.-
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( );  black  dotted  line:  VB-MSE  ( );  black  dashed  line:  VB-MSE
( ); black dash-dotted line: VB-MSE ( ); black solid line: VB-MSE
( );  blue line:  GCB; green line:  SPA; yellow line:  EPUMA; dotted line
with “ ”:  MNOMP;  purple  line:  MUSIC;  and  dash-dotted  line  with “ ”:
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Fig. 5.     The empirical  and theoretical  RMSEs of the ICE estimation versus
the angular separation for Example 3 (red dotted line: SCB; red dashed line:
MCB; red dash-dotted line: ICE ( ); red solid line: ICE ( ); “+”: T.-
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var{θ̂k} = E
{
(∆θk)2

}
≈ 1

2H2
k

Re
{
E{µ2

k}+E{|µk |2}
}

(65)

Re{µi}Re{µk} = 0.5(Re{µiµk}+Re{µiµ
∗
k})where the identity that 

is used implicitly.
µ̄k

dH(θ̄k) R−1 a(θ̄k)
Now  by  defining  an  auxiliary  variable  with  the  true

parameters ,  and  being
 

µ̄k = dH(θ̄k)R−ma(θ̄k) (66)
and  by  using  the  following  formula  for  the  derivative  of
matrix power term with respect to the matrix [111]
 

daT Xnb
dX

=

n∑
r=1

(Xn−r)T abT (Xr−1)T (67)

µk

R−1
the first-order Taylor series expansion of  in (64) around the
inverse covariance matrix  is given by
 

µk ≈ µ̄k + tr


(

dµ̄k

d
(
R−1) )T (

R̂−1−R−1)
= µ̄k +

m∑
r=1

tr
{(

R−(m−r))T d∗(θ̄k)aT (θ̄k)

× (
R−(r−1))T

∆R−1

}
= µ̄k +

m∑
r=1

dH(θ̄k)R−(m−r)∆R−1 R−(r−1)a(θ̄k) (68)

O(∆R−1 )
R̂−1 R−1 N→∞
∆R−1

R̂−1

where the second- and higher-order terms  in (68) can
be  neglected  since  converges  to  as  [44],
[103],  and  the  bias  of  the  sample  inverse  array  covari-
ance matrix  is given by [37], [38]
 

∆R−1 = R̂−1−R−1 = R̂−1(R− R̂)R−1

= (R−1+∆Y)∆XR−1

= R−1∆XR−1+∆Y∆XR−1

≈ −R−1(R̂−R)R−1 (69)
∆X = R̂−R ∆Y = R̂−1−R−1

∆Y∆XR−1
where  and ,  while  the  second-
order small quantity  has been neglected. By substi-
tuting (69) into (68), we obtain
 

µk ≈ µ̄k −
m∑

r=1

κH
k R−(m−r)(R̂−R)R−(r−1)νk

= (m+1)dH(θ̄k)R−ma(θ̄k)+
m∑

r=1

µ̄kr (70)

where
 

µ̄kr = −κH
k R−(m−r)R̂R−(r−1)νk (71)

r = 1,2, . . . ,m
{θ̄k}Kk=1 fICE(θ)
for .  In  addition,  since  the  asymptotic  estimates

 are the minimizers of the cost function  in (26),
we have
 

0 = f ′ICE(θ̄k) =
d fICE(θ)

dθ

∣∣∣∣∣
θ=θ̄k

= 2Re{dH(θ̄k)R−ma(θ̄k)}. (72)

E{µ2
k}

E{|µk |2}
Hence,  from  (70)−(72),  we  obtain  the  terms  and

 in (65) as
 

E{µ2
k} = E{µ̄2

k1+ µ̄k1µ̄k2+ · · ·+ µ̄k1µ̄km

+ µ̄k2µ̄k1+ µ̄
2
k2+ · · ·+ µ̄k2µ̄km+ · · ·

+ µ̄kmµ̄k1+ µ̄kmµ̄k2+ · · ·+ µ̄2
km} (73)

 

E{|µk |2} = E{|µ̄k1|2+ µ̄k1µ̄
∗
k2+ · · ·+ µ̄k1µ̄

∗
km

+ µ̄k2µ̄
∗
k1+ |µ̄k2|2+ · · ·+ µ̄k2µ̄

∗
km+ · · ·

+ µ̄kmµ̄
∗
k1+ µ̄kmµ̄

∗
k2+ · · ·+ |µ̄km|2}

(74)

Re{dH(θ̄k)R−ma(θ̄k)} = 0where  the  fact  in  (72)  is  implicitly
used.

Under  the  basic  assumptions  on  the  data  model,  and  by
using  the  well-known  formula  for  the  expectation  of  four
Gaussian random variables with zero-mean (e.g., [112])
 

E{x1x2x3x4} = E{x1x2}E{x3x4}+E{x1x3}E{x2x4}
+E{x1x4}E{x2x3} (75)

and  by  performing  some  straightforward  manipulations,  we
can obtain the terms in (73) and (74) as
 

E{µ̄krµ̄kp} =
1

N2

N∑
n=1

N∑
t=1

E
{
κH

k R−(m−r)x(n)xH(n)R−(r−1)νk

×κH
k R−(m−p)x(t)xH(t)R−(p−1)νk

}
=

1
N2

N∑
n=1

N∑
t=1

{
E{κH

k R−(m−r)x(n)xH(n)R−(r−1)νk}

×E{κH
k R−(m−p)x(t)xH(t)R−(p−1)νk}

+E{κH
k R−(m−r)x(n)xT (t)(R−(m−p))∗κ∗k}

×E{νTk (R−(r−1))∗x∗(n)xH(t)R−(p−1)νk}

+E{κH
k R−(m−r)x(n)xH(t)R−(p−1)νk}

×E{νTk (R−(r−1))∗x∗(n)xT (t)(R−(m−p))∗κ∗k}
}

= (κH
k R−m+2νk)2+0

+
1
N
κH

k R−(m−r+p−2)νkν
T
k (R−(m+r−p−2))∗κ∗k

= (κH
k R−m+2νk)2+

1
N

(
κH

k R−(m−r+p−2)νk
)

× (
κH

k R−(m+r−p−2)νk
)

(76)
and
 

E{µ̄krµ̄
∗
kp} =

1
N2

N∑
n=1

N∑
t=1

E
{
κH

k R−(m−r)x(n)xH(n)R−(r−1)νk

×κTk (R−(m−p))∗x∗(t)xT (t)(R−(p−1))∗ν∗mk
}

=
1

N2

N∑
n=1

N∑
t=1

{
E{κH

k R−(m−r)x(n)xH(n)R−(r−1)νk}

×E{κTk (R−(m−p))∗x∗(t)xT (t)(R−(p−1))∗ν∗mk}

+E{κH
k R−(m−r)x(n)xH(t)R−(m−p)κk}

×E{νH
k R−(r−1)x(n)xH(t)R−(p−1)νk}
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+E{κH
k R−(m−r)x(n)xT (t)(R−(p−1))∗ν∗mk}

×E{νTk (R−(r−1))∗x∗(n)xH(t)R−(m−p)κk}
}

= |κH
k R−m+2νk |2+

1
N
κH

k R−(2m−r−p−1)κk

×νTk (R−(r+p−3))∗ν∗k +0

= |κH
k R−m+2νk |2+

1
N

(
κH

k R−(2m−r−p−1)κk
)

× (
νH

k R−(r+p−3)νk
)
. (77)

Additionally by using the relation in (72), we can get
 

Re
{
(κH

k R−m+2νk)2+ |κH
k R−m+2νk |2

}
=

(
Re

{(
κH

k R−m+2νk
)})2

=
(
Re

{
(dH(θ̄k)R−ma(θ̄k)

} )2
= 0. (78)

var{θ̂k}

Therefore  by  substituting  (73)–(78)  into  (65)  and  perform-
ing  some  straightforward  manipulations,  the  large-sample
variance  in (36) can be established immediately. ■
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