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   Abstract—As wafer circuit width shrinks down to less than ten
nanometers in recent years, stringent quality control in the wafer
manufacturing  process  is  increasingly  important.  Thanks  to  the
coupling of neighboring cluster tools and coordination of multiple
robots  in  a  multi-cluster  tool,  wafer  production  scheduling
becomes  rather  complicated.  After  a  wafer  is  processed,  due  to
high-temperature  chemical  reactions  in  a  chamber,  the  robot
should  be  controlled  to  take  it  out  of  the  processing  chamber  at
the right time. In order to ensure the uniformity of integrated cir-
cuits  on  wafers,  it  is  highly  desirable  to  make  the  differences  in
wafer post-processing time among the individual tools in a multi-
cluster tool as small as possible. To achieve this goal, for the first
time,  this  work aims to find an optimal schedule for a dual-arm
multi-cluster  tool  to  regulate  the  wafer  post-processing  time.  To
do so, we propose polynomial-time algorithms to find an optimal
schedule,  which  can  achieve  the  highest  throughput,  and  mini-
mize  the  total  post-processing  time  of  the  processing  steps.  We
propose  a  linear  program  model  and  another  algorithm  to  bal-
ance the differences in the post-processing time between any pair
of  adjacent  cluster  tools.  Two  industrial  examples  are  given  to
illustrate  the  application  and  effectiveness  of  the  proposed
method.
    Index Terms— Cluster tool, optimization, scheduling.
  

I.  Introduction

S CHEDULING  of  multi-cluster  tools  has  attracted  much
attention in recent years thanks to its popularity and com-

plexity.  A  multi-cluster  tool  is  a  combination  of  several  sin-
gle-cluster  tools.  Typically,  a  single-cluster  tool  has  a  robot
and  several  processing  modules  (PMs).  The  robot  is  sur-
rounded  by  PMs  to  transport  wafers.  A  dual-arm  robot  has
two  blades,  which  can  hold  two  wafers  at  a  time  and
import/export  of  wafers  through  the  loadlock  cassette  mod-

ules  (LLs). K (K ≥  2)  single-cluster  tools  are  integrated  lin-
early into a K-cluster tool system. An example of a four-clus-
ter tool is shown in Fig. 1. A buffering module (BM) links two
adjacent cluster tools. It can temporarily accommodate incom-
ing  and  outgoing  wafers.  The  cluster  tool  with  LLs  is  called
the head tool and it is numbered the first one. In a steady state,
the  robot  in  the  first  cluster  tool  unloads  a  wafer  from  LLs,
transfers  it  to  the  PMs  for  processing  according  to  a  prede-
fined  route  as  shown  in Fig. 1,  where  it  goes  through  the
downstream  tools  and  backs  through  the  upstream  tools  one
by one [1]. Finally, the robot in the head tool carries the com-
pleted  wafer  back  to  LLs.  A  swap  strategy  is  adopted  to
schedule a robot for a dual-blade cluster tool. The dual blades
with  a  swap  strategy  make  the  robot  task  time  much  shorter
than the wafer processing time in a PM. Therefore, two-blade
robots are more efficient than single-blade robots [2].

In  semiconductor  manufacturing  [3],  various  constraints
bring  great  challenges  to  scheduling  cluster  tools.  During  a
chemical  vapor  deposition  (CVD)  process  [4],  a  wafer  must
avoid excessive exposure to the mixed chemical gases at high
temperatures  in  a  PM.  Thus,  after  a  wafer  is  processed,  it
needs to limit the time during which it stays in a PM to avoid
being  scrapped,  which  is  called  wafer  residency  time  con-
straints  [5]−[10].  Furthermore,  the  circuit  width  on  a  wafer
has  been  reduced  to  less  than  10  nanometers  under  continu-
ous  development  [11].  To  fabricate  high-end  integrated-cir-
cuit chips, CVD equipment puts atom-thick layers of nanoma-
terials onto a wafer, which synthesizes monolayer, bilayer, or
few-layer  graphene.  Consequently,  as  circuit  width  shrinks
down, the quality of circuits on wafers is more susceptible to
chemical  reaction time in a chamber [12].  The wafer  sojourn
time in a chamber after its processing referred to as post-pro-
cessing  time  affects  the  circuit  quality.  Wafer  delay  analysis
has  been  done  for  single  cluster  tools  [13]−[15].  It  requires
proper  control  on  the  post-processing  time  in  different  pro-
cessing  steps  and  the  difference  in  post-processing  time
between two adjacent cluster tools as well.

Great  efforts  have  made  for  modeling,  analysis,  and
scheduling  cluster  tools  [5],  [13],  [14]  and  [16]−[32]  and
deadlock  analysis  in  flexible  manufacturing  systems  [33]−
[36].  The  robotic  manufacturing  systems  in  [33]−[35]  differ
from the multi-cluster tools in the following aspects. First, the
former  does  not  cover  residency time constraints  and revisit-
ing  processes.  Second,  the  former  has  one  input  station  and
another  output  station  and  it  is  configured  in  a  linear  layout;
however,  the  latter  has  the  same  input  and  output  station
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(loadlock  modules)  and  it  is  configured  in  a  circular  layout.
Due  to  these  differences,  the  methods  in  [33]−[35]  cannot
solve the deadlock problems for multi-cluster tools.

A multi-cluster tool is said to be process-dominant if its bot-
tleneck tool is process-bound. The study in [37] shows that a
one-wafer  cyclic  schedule  can  be  found  for  a  process-domi-
nant  multi-cluster  tool.  A  feasible  one-wafer  cyclic  schedule
can be found for a process-dominant multi-cluster tool under a
steady state [38]−[41],  and [5]  derives its  schedulability con-
ditions under wafer residency time constraints. Thus, one can
effectively  find  an  optimal  cyclic  schedule  if  a  feasible  one
exists.  Reference  [42]  proposes  a  non-cyclic  scheduling
method for multi-cluster tools. Now, it is rather significant to
further examine the wafer post-processing time for multi-clus-
ter  tools.  For  the  requirements  of  high-quality  functional  cir-
cuits,  field-effect  transistors  must  be  built  with  high  unifor-
mity on a wafer from transistors to circuits [43], e.g., MoS2 is
grown  by  CVD,  and  the  residual  film  is  expected  to  deposit
uniformly.  Reducing  the  difference  in  post-processing  time
among a variety of process steps is conducive to keeping good
uniformity  among  different  layers  of  circuits  on  a  wafer  sin-
ce  a  layer  of  circuits  are  typically  fabricated  by  a  processing
step.

Differently  from  the  aforementioned  existing  work,  this
study focuses on a K-cluster tool to get a better schedule with
regulations on wafer post-processing time and high productiv-
ity.  Reference  [44]  investigates  the  optimal  scheduling  of  a
dual-arm  single-cluster  tool  with  regulations  of  wafer  post-
processing  time.  However,  its  method  and  result  cannot  be
applied to a multi-cluster tool.

For  a K-cluster  tool,  it  is  very  challenging  to  regulate  the
wafer  post-processing  time.  The  challenges  come  from  the
following facts. 1) Shortening wafer post-processing time at a
given  step  requires  that  the  robot  changes  its  time  to
load/unload  a  wafer,  resulting  in  the  changes  of  time  to  per-
form  loading/unloading  actions  at  upstream  and  downstream
steps including the buffer steps, which interact with the robot
actions  in  adjacent  cluster  tools.  Such  interplay  requires  that
delicate  control  of  the  cycle  time  should  be  made  to  coordi-
nate  multiple  robots’ actions  to  keep  the  cycle  time  of  a K-
cluster  tool  constant.  If  such  coordination  is  not  well  con-
ducted, there would be cycle time fluctuation that easily prop-

agates to its adjacent cluster tools and affects their cycle time.
2)  Narrowing the  difference  in  post-processing  time between
adjacent tools is a complex issue because it is very delicate to
coordinate multiple robots to pace each tool and each step in a
single tool.

The main contributions of this paper are twofold as follows.
1) In order to realize the adjustment of post-processing time,

we  propose  effective  algorithms  to  minimize  the  total  post-
processing time and balance its difference among the process-
ing steps inside each tool.

2) We propose a linear programming model and a condition
table  to  find  the  upper  bound  for  adjusting  the  post-process-
ing time in adjacent cluster tools. Then, an efficient algorithm
is  designed  to  adjust  each  cluster  tool  to  balance  the  differ-
ence in post-processing time between adjacent cluster tools.

The  rest  of  this  article  is  structured  as  follows.  Section  II
analyzes  the  temporal  properties  of  scheduling  multi-cluster
tools.  Section  III  proposes  algorithms  to  find  an  optimal
schedule  that  can  minimize  post-processing  time  and  avoid
uneven  post-processing  time  among  the  processing  steps  or
two adjacent cluster tools. Section IV gives two examples for
applying  the  proposed  method.  Section  V  makes  a  summary
of this work.  

II.  Problem Description
  

A.  Operation and Properties of a K-Cluster Tool
Following  [27]  and  [38],  we  make  the  following  assump-

tions for a dual-arm K-cluster tool (K ≥ 2).
1)  Two  LLs  can  continuously  provide  enough  wafers  for

PMs without interruption. Thus, a K-cluster tool can run under
a steady state.

2) A BM can hold one wafer at a time without a processing
function.

3)  Every  processing  step  is  configured  with  a  PM.  There-
after, in order to facilitate the presentation, we refer to a PS as
a PM. It is obvious that a wafer is processed at a PM once and
enters a BM twice.

N+q

N+K
N+K−1

b[K] = ∅

Let Nq = {0, 1, 2, 3, …, q} and  = Nq\{0}, where q is a
given positive integer. Then, Ci denotes the ith cluster tool and
Ri denotes the robot in Ci, i ∈ . The buffering step in Ci at a
buffering  module  can  be  represented  by b[i], i ∈ .  Let

. Let n[i] denote the index of the last step in Ci. Then,
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Fig. 1.     A four-cluster tool. LLs are viewed as PM1,0; PMi,0 with i > 1 denotes a buffering module.
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⟨

⟩

the processing steps of Ci are denoted by PSi, 0, PSi, 1, …, PSi, b[i],
…,  and  PSi, n[i].  As  shown  in Fig. 1,  we  can  get  the  wafer
processing  route  in  a K-cluster  tool  as LL→ PM1,1 → ···→
PM1, b[1] (PM2,0) → PM2,1 → ···→ PM2, b[1] (PM3,0) → ··· →
PMK − 1, (b[K − 1]) (PMK, 0) → PMK, 1 → ··· → PMK, (n[K]) → ···
→ PMK,  0 (PMK − 1,  (b[K − 1]))  → PMK − 1,  (b[K − 1]  + 1) → ···  →
PM3,0 (PM2, b[2]) → PM2, (b[2] + 1) → ··· → PM2,0 (PM1, b[1]) →
···→  PM1, n[1] →  LL .  For Ci,  let ωi, j and ωi, jS denote  the
robot  waiting  time  before  unloading  and  loading  a  wafer
from/into PMi, j,  respectively.  For Ri,  it  takes μi time units  to
move between two PMs or  a  PM and an LL, λi time units  to
load/unload a wafer into/from a PM (LL), and ρi time units to
make a  rotation.  Let αi, j denote  the  wafer  processing time at
PMi, j.  The  processing  time  at  buffering  modules  and  LLs  is
zero  due  to  no  functional  processing  there.  The  symbols  for
timeliness  analysis  are  listed  in Table I.  In  addition,  the  time
required in a K-cluster tool is shown in Table II.

 
TABLE I 

Symbols for Timeliness Analysis

Symbol Meaning

Nq = {0, 1, 2, 3, …, q}, where q is a positive integer.

N+q = {1, 2, 3, …, q}.

Ci The ith cluster tool.

Ri The robot in Ci.

PMi, j The jth process module in Ci.

n[i] The index of the last step in Ci.

b[i] Index of the buffering step in Ci.

λi Time taken by Ri for unloading/loading a wafer.

μi Time taken by Ri for moving from one PM to another.

ρi Time taken by Ri’s rotation.

αij The time of processing a wafer at PMi, j.

θi, j Cycle time of PMi, j.

δi, j
The permissive longest time for a wafer to stay at PMi, j after its
processing.

ξi, j The time needed for completing a wafer at PMi, j.

Πi, jL The lower bound of θi, j.

Πi, jU The upper bound of θi, j.

Θi The cycle time of Ci.

Θ The cycle time of a K-cluster tool.

ψi Robot Ri’s cycle time.

 
 
 

TABLE II 

Decision Variables and Their Associated Variables

Symbol Meaning

ωi, j Ri’s waiting time before unloading a wafer from PMi, j.

ωi, jS Ri’s waiting time before loading a wafer into PMi, j.

τi, j Wafer sojourn time at PMi, j.

ri, j The post-processing time of a wafer at PMi, j.
  

B.  Temporal Properties of Individual Tools
By  a  swap  strategy,  robot Ri executes  the  following  sequ-

ence of operations in Ci
⟨

⟩

Moving to PMi, 0 (it takes μi time units; hereafter, only the
amount  of  time  is  presented)  →  waiting  there  for ωi,  0 time
units → unloading a wafer from PMi, 0 (λi) → rotating (ρi) →
waiting there for ωi,  0S time units  → loading a wafer gripped
by  the  other  blade  into  PMi,  0 (λi)  →  ···  →  moving  to
PMi, b[i] (μi)  → waiting there for ωi, b[i] time units  → unload-
ing a wafer from PMi, b[i] (λi) → rotating (ρi) → waiting there
for ωi, b[i]S time units → loading a wafer gripped by the other
blade  into  PMi, b[i] (λi)  →  ···  →  moving  to  PMi, n[i] (μi)  →
waiting  there  for ωi, n[i] time  units  →  unloading  the  finished
wafer  from  PMi, n[i] (λi)  →  rotating  (ρi)  →  waiting  there  for
ωi, n[i]S time  units  →  loading  a  wafer  gripped  by  the  other
blade into PMi, n[i] (λi) → moving to PMi, 0 (μi) again .

Hence, robot Ri’s (2 ≤ i ≤ K) cycle time is
 

ψi = (n[i]+1)(2λi+µi+ρi)+
n[i]∑
j=0

ωi, jS +

n[i]∑
j=0

ωi, j

= ψi,1+ψi,2 (1)

N+Kwhere ψi, 1 = (n[i] + 1)(2λi + μi + ρi), i ∈ \{1}.
Since LLs in C1 have no capacity limit, robot R1 can directly

load/unload  wafers  with  the  same  blade.  Hence,  robot R1’s
cycle time is
 

ψ1 = (n[1]+1)(2λ1+µ1)+n[1]×ρ1+

n[1]∑
j=0

ω1, jS +

n[1]∑
j=0

ω1, j

= ψ1,1+ψ1,2 (2)

where ψ1,1 = (n[1] + 1)(2λ1 + μ1) + n[1] × ρ1.

∑n[i]
j=0ωi, j+

∑n[i]
j=0ωi, jS

Therefore, by (1) and (2), a robot’s cycle time consists of its
task  time  and  waiting  time.  The  former  is  a  constant  that  is
equal to ψi, 1, while the latter is ψi, 2 = .

N+K

The  key  to  scheduling  a  multi-cluster  tool  is  to  coordinate
the  operations  of  the  multiple  robots.  To  do  so,  we  need  to
analyze its temporal properties. The time is taken to complete
a wafer at PSi, j, i ∈ , as follows:
 

ξi, j = αi, j+2λi+ρi+ωi, jS , j ∈ N+n[i] (3)

and
 

ξi,0 = 2λi+ρi+ωi,0S . (4)

N+K

In (3) and (4), ωi, jS is a decision variable, while λi, ρi, and αi, j
are given parameters.  When ωi, jS is  zero,  we get  the shortest
time for completing a wafer at PMi, j, i.e., the lower bound Πi, jL,
i ∈ , as
 

Πi, jL = αi, j+2λi+ρi, j ∈ N+n[i] (5)

and
 

Πi,0L = 2λi+ρi. (6)

After  a  wafer  is  processed at  PMi, j,  it  cannot  stay at  PMi, j
for more than δi, j ≥ 0 time units. Thus, the upper bound of Πi, j
is
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Πi, jU = αi, j+δi, j+2λi+ρi, j ∈ Nn[i]. (7)
The time between loading a wafer into PMi, j and unloading

it from there is called wafer sojourn time, which is denoted by
τi, j.  Obviously, αi, j+δi, j ≥ τi, j ≥ αi, j should  be  met,  which
means  that  a  wafer  staying  at  a  PM  subject  to  such  a  con-
straint leads to a feasible schedule. The cycle time at PSi, j is
 

θi, j = τi, j+2λi+ρi+ωi, jS , j ∈ N+n[i]. (8)

Although  BMs  and  LLs  perform  no  functional  processing,
i.e., αi,  0 =  0,  a  wafer  may  stay  at  BMs  or  LLs  for τi,  0 time
units. We get that the cycle time at PSi, 0 is
 

θi,0 = τi,0+2λi+ρi+ωi,0S . (9)
τi, j can be calculated as follows:

 

τi, j = ψi−
(
2λi+ρi+ωi, jS

)
, j ∈ Nn[i]. (10)

The  above  equation  shows  that  the  wafer  residency  time
depends on robot waiting time ωi, jS when ψi is given.

Let  Πi =  max{Πi,  0L,  Πi,  1L,…, Πi, n[i]L, ψi,  1} and Θi denote
the  cycle  time of Ci.  Then,  if  Πi ≠ ψi,  1, Ci is  process-bound.
To get a cyclic schedule, Ci should be scheduled to satisfy
 

Θi = ψi = θi, j = ξi, j, j ∈ Nn[i]\{0,b[i]}. (11)

∈ Nn[i]

∑n[i]
j=0ωi, jS

Equations (8) and (9) show that ωi, jS is a decision variable
for cycle time θi, j at PSi, j with j . Notice that (1), (2) and
(8) contain decision variables ωi, jS. Thus, (11) can be made to
be satisfied by adjusting Ri’s waiting time ωi, jS. Suppose that
Θ is the given cycle time for a K-cluster tool and let Θi = ψi =
θi, j = Θ. After ωi, jS is determined to meet (8) and (9), the robot’s
remaining idle time (ψi, 2 − ) can be assigned to ωi, j’s.

N+K

Let ri, j denote  the  wafer  post-processing  time  at  PMi, j,
which is  the time between the time when its  processing ends
and  the  time  when Ri starts  to  unload  the  wafer.  Thus,  the
post-processing time at PMi, j, i ∈ , is
 

ri, j = τi, j−αi, j, j ∈ Nn[i]\{0,b[i]}. (12)

∈ N+K ∈ Nn[i] ∈ N+K

∑
j∈N+n[i]\{b[i]}ri, j

If  the  robot  waiting  time ωi, jS is  properly  set,  (11)  can  be
satisfied.  It  implies  that  the  cycle  time  of  each  cluster  tool,
each robot,  and each PM is  equal  so  that  a  multi-cluster  tool
can yield one wafer within a cycle. Given cycle time Θi = θi, j =
Θ with i   and j  ,  by  (8)  and (9),  if ωi, jS (i  )
increases, then wafer sojourn time τi, j decreases, and by (12),
ri, j decreases  as  well.  In  the  view of  tool Ci,  minimizing  the
total post-processing time  is conducive to pro-
ducing high-quality circuit chips on wafers.  

C.  Problem Definition
The objective of this work is to regulate wafer post-process-

ing  time  such  that  high-quality  circuits  can  be  ensured  on  a
wafer. Therefore, this work aims to accomplish the following
missions.

1) Minimize the cycle time of a dual-arm K-cluster tool.∑
j∈N+n[i]\{b[i]}ri, j ∈ N+K

∈
2)  Minimize  for Ci, i   and  shorten  the

difference  in  post-processing  time  among  PSi, j, j  Nn[i]\{0,
b[i]}.

3)  Shorten  the  difference  in  post-processing  time  between
adjacent cluster tools.  

III.  Scheduling Algorithms
  

A.  Coordination of Multiple Robots

∈ N+K

The minimal  cycle  time of  a  process-bound dual-arm clus-
ter  tool Ci can  be  calculated  as  Πi =  max{Πi,  0L,  Πi,  1L,  …,
Πi, n[i]L}, i  .  When a K-cluster  tool  runs,  multiple  robots
can be coordinated such that the cycle time of Ri is  the same
as Ci, i.e., ψi = Πi.

Let Π = max {Π1, Π2, …, ΠK}. As aforementioned, Θ is the
cycle time of a K-cluster tool. Assume that Cg (2 ≤ g ≤ K–1)
has the heaviest workload among the K individual tools. Thus,
we have Π = Πg, and the bottleneck of a K-cluster tool is Cg.
For  a  process-dominant K-cluster  tool,  to  obtain  a  one-wafer
cyclic schedule, we must have
 

Θ1 = Θ2 = · · · = ΘK = Θ. (13)

N+K

This means that each cluster tool should be scheduled with
the same cycle time. The cycle time must satisfy Θ ≥ Π = Πg.
Under this premise, it can guarantee to apply a swap strategy
to each Ci, i ∈ .

Given  the  cycle  time,  the  wafer  processing  time  and  the
robot activity time are deterministic, the post-processing time
and  robot  waiting  time  are  variables,  and  interact  with  each
other. Therefore, it is necessary to ensure that the robot wait-
ing time is coordinated so that an individual tool can be sched-
uled at the same pace without conflict over its buffering mod-
ule,  and the  difference in  post-processing time among differ-
ent steps can be regulated as small as possible. Note that a BM
does  not  participate  in  the  processing  of  wafers.  Thus,  BMs
have no wafer residency time constraints.

Algorithm  1 Determine  the  Robot  Waiting  Time  for  a K-Cluster
Tool

Input: λi, μi, αi, j, δi, j, ρi
Output: Θ, ωi, jS, ωi,j
1:  Calculate ψi, 1, ψi, 2, Πi, jL, Πi, jU,, by (1), (2) and (5)–(7), respec-

tively.
∈ N+K2:  Πi ← max{Πi, 0L, Πi, 1L, …, Πi, n[i]L}for i  .

3:  Θ ← max {Π1, Π2, …, ΠK}
4:  For i =1 to K do

N+n[i]5:    If ψi, 1 ≤ Θ and Θ ≤ Πi, jU, j ∈ \{b[i]} Then
6:  　　Call Algorithm 2 //*Case 2

N+n[i]7:  　Else if Πi, jL ≤ ψi1 ≤ Πi, jU, j ∈ \{b[i]}
　  　　   Then　　　//*Case 1

Nn[i]8:  　　　ωi, jS ←0, ωi, j ←0, for j ∈ 
∩ j∈N+n[i]\{b[i]} ∅9:  　　　Else if  [Πi, jL, Πi, jU] =  Then

10:        　Call Algorithm 3 //*Case 3
11:　　　　　Else
12:　　　　　　Return //*Unschedulable
13:　　　　　Endif
14:　　　Endif
15:　EndIf
16:　If i ≠ K and τi, b[i] < 2λi+1 + ρi+1, Then
17:　　Return //*Unschedulable
18:　End if
19: EndFor
20: End
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Algorithm 2 Set Ri’s Waiting Time for Case 2

Input: λi, μi, αi, j, δi, j, Θ, ρi
Output: ωi, j, ωi, jS, ri, j
1:  　V← {j | j ≠ 0 and j ≠ b[i], j ∈ Nn[i]}∑

j∈V (2:  　 ε ← Θ − (αi, j + 2λi + ρi)
3:  　If ψi, 2 ≥ ε
4:  　　h←ψi, 2-ε
5:  　　For j∈V do
6:  　　　ri, j ←0, ωi, jS ←Θ – (αi, j + 2λi + ρi), ωi, j←h/|V|
7:  　　Endfor
8:  　Else //*ψi, 2 < ε
9:  　　h←ε-ψi, 2

∅10:　　While V ≠  Then
∅ ∅11:　　　Δ←h/|V|, A← , B← 

12:　　　For each j ∈ V do
∪13:　　　　If Δ ≤ Θ − (αi, j + 2λi + ρi) Then A←A {j}

∪14:　　　　Else B ←B {j}
15:　　　Endif
16:　　Endfor

∅17:　　If B ≠  Then
18:　　　For each j ∈ B do
19:　　　　ri, j←Θ − (αi, j + 2λi + ρi), ωi, jS ←0, ωi, j ←0
20:　　　　h←h − (Θ − (αi, j + 2λi + ρi + ωi, jS))
21:　　　EndFor
22:　　　V←V \ B
23:　　Else
24:　　　For each j ∈ A do
25:　　　　ri, j ←Δ
26:　　　　ωi, jS ← Θ − (αi, j + 2λi + ρi)− ri, j, ωi, j ←0
27:　　　EndFor

∅28:　　　V←
29:　　　EndIf
30:　　Endwhile
31:　EndIf
32:　ωi, 0S ←0, ωi, 0 ←0, ωi, b[i]S ←0, ωi, b[i] ←0
33:　End

N+K−1

It follows from [24] that if Θ ≥ Π is the cycle time of a pro-
cess-dominant K-cluster  tool  with  wafer  residency  time  con-
straints, a one-wafer periodic schedule exists if and only if, for
any pair of Ci and Ci+1, i ∈ , ωi, jS’s and ω(i+1), fS’s are set
such that the following conditions are satisfied:
 

θi, j = θ(i+1), f = Θ, j ∈ Nn[i] and f ∈ Nn[i+1] (14)
 

τi, j ∈
[
αi, j,αi, j+δi, j

]
, i ∈ N+K and j ∈ N+n[i]\{b[i]} (15)

 

τi,b[i] ≥ 2λi+1+ρi+1+ω(i+1),0S (16)
and
 

τ(i+1),0 ≥ 2λi+ρi+ωi,b[i]S . (17)
  

B.  Algorithms
By (10),  (12) and (15)−(17),  setting appropriate ωi, jS’s  can

render conditions (15)−(17) satisfied and further shorten wafer
post-processing  time.  If ωi, jS’s  are  determined,  a  one-wafer
cyclic  schedule  is  found.  Therefore,  we  propose  Algorithms
1−3 to calculate ωi, jS’s to obtain a schedule, where the cardi-

nality  of  set V is  denoted by |V|.  We propose Algorithm 1 to
handle  three  different  workload  cases  for  each  cluster  tool.
Algorithm 1  determines  the  condition  to  be  satisfied  by  a K-
cluster  tool.  Section  IV  details  the  calculation  process  for
Algorithm 1.

N+KCase 1: Πi, jL ≤ ψi, 1 ≤ Πi, jU, i ∈ , indicates that robot Ri is
always  busy  and  tool Ci is  transport-bound.  Therefore,  the
robot waiting time is zero as shown in Line 8 of Algorithm 1.

N+KCase  2: ψi,  1 ≤  Θ  and  Θ  ≤  Πi, jU, i ∈ ,  means  that  the
workloads of all processing steps in Ci are relatively balanced
and tool Ci is process-bound.

The  following  results  are  given  to  show  the  optimality  of
the schedule obtained by Algorithm 2.

N+K
Theorem 1:  Given Θ = Πg as the cycle time for a dual-arm

cluster tool, if and only if ψi, 1 ≤ Θ and Θ ≤ Πi, jU, i ∈ , are
satisfied, Algorithm 2 finds a schedule that achieves the lower
bound of its cycle time and minimizes the total post-process-
ing time.

Proof: Let Θ = Πg be the cycle time of a K-cluster tool. We
examine whether a feasible schedule with cycle time Θ can be
found and whether the post-processing time is minimal.∑

j∈V (By Lines 1 and 2, we have ε = Θ – (αi, j + 2λi + ρi)). If
ψi,  2 ≥ ε,  we set ωi, jS = Θ – (αi, j + 2λi + ρi), j ∈ V.  Then, we
have τi, j = Θ – (2λi+ρi + ωi, jS), j ∈ V. The post-processing time
at step j in Ci is ri, j = τi, j – αi, j = 0 < δi, j, j ∈ V.  Thus, ri, j is
minimized, and the wafer residency time constraints are satis-
fied.  If ψi,  2 < ε,  we  have h = ψi,  2–ε.  By  Line  11,  Δ  = h/|V|.
Lines 13 and 14 show that  if  Δ ≤ Θ – (αi, j + 2λi + ρi)  holds,
Step j is put into set A, otherwise, Step j is put into set B.

∅

∑
j∈B (

If B ≠ , ri, j = Θ – (αi, j + 2λi + ρi) and ωi, jS = 0 for j ∈ B,
Lines 18−22 deal with this situation. We have ri, j = Θ – (αi, j +
2λi + ρi) ≥ Πi, jL – (αi, j + 2λi + ρi) = 0 and ri, j = Θ – (αi, j + 2λi +
ρi) ≤ Πi, jU – (αi, j + 2λi + ρi) = δi, j. Then, h = h – ri, j. Because
of Δ = h/|V| and Δ > Θ – (αi, j + 2λi + ρi), we have h = Δ|V| >

Θ – (αi, j + 2λi + ρi)). Therefore, h > 0 always holds. By
Line 22, V = V\B.

∅

∑
j∈V ωi, jS

∑
j∈V (∑

j∈V ri, j ∑
j∈V ωi, jS∑

j∈V ri, j

If B = , ri, j = Δ and ωi, jS = Θ – (αi, j + 2λi +ρi) – ri, j for j ∈
A,  Lines  24−28  deal  with  this  situation.  We  have ri, j =  Δ  =
h/|V| ≤ Θ – (αi, j + 2λi + ρi) ≤ Πi, jU – (αi, j +2λi + ρi) = δi, j and
ri, j > 0 because of ψi, 2 < ε. Since  = Θ – (αi, j +
2λi + ρi)) –  = ψi, 2, we ensure that the value of ψi, 2 has
been  assigned  to ωi, jS’s  (j ∈ V),  i.e.,  is  maximized
and  is minimized. ■

Algorithm 2 deals with the processing steps in V = {j | j ≠ 0
and j ≠ b[i], j ∈ Nn[i]}. In the case of ε ≥ ψi, 2, we have that, for
any step j ∈ V, the available idle time for robot Ri’s waiting is
enough  so  that  the  post-processing  time  is  zero  and  it  is
unnecessary to handle this situation. In the case of ψi, 2 < ε, it
is easy to show that, for step j ∈ V, Ri’s available idle time for
waiting is not enough so that the post-processing time should
be evenly distributed. Then, Algorithm 2 solves the above two
cases. Lines 1−8 handle the case of ε ≥ ψi, 2. Lines 10−33 deal
with  the  case  of ε < ψi,  2 to  adjust  the  post-processing  time
evenly. In addition, Lines 4 and 9 can ensure the most effec-
tive  distribution of  waiting time and minimize  the  total  post-
processing time.
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Algorithm 3 Set Ri’s Waiting Time for Case 3

Input: λi, μi, αi, j, δi, j, Θ, ρi
Output: ωi, j, ωi, jS, ri, j

∈1:  　E← {j| Πi, jU < Θ, j ≠ 0, j ≠ b[i], j  Nn[i]}
∪ ∪2:  　F←Nn[i]\(E {0, b[i]}), V = E  F

∈3:  　ωi, jS ←Θ–(αi, j + δi, j +2λi +ρi), for j  E
∈4:  　ωi, jS ← 0, for j  F∑

j∈E5:  　If ωi, jS > ψi2 Then
6:  　　Return //* Unschedulable
7:  　EndIf ∑

j∈E8:  　ε←ψi, 2– ωi, jS∑
j∈F (

∑
j∈E9:  　η← Θ – (αi, j + 2λi + ρi)) + δi, j

10:　If ε ≥ η
11:　h←ε–η

∈12:　　For each j  V do
13:　　　ri, j ← 0, ωi, jS ← Θ – (αi, j + 2λi + ρi), ωi, j ← h/|V|
14:　　EndFor
15:　Else //*ε < η
16:　　h← η – ε

∅17:　　While V ≠  Then
∅ ∅18:　　　Δ←h/|V|, A← , B← 

∈19:　　　For each j  V do
∪20:　　　　If Δ ≤ Θ – (αi, j + 2λi + ρi + ωi, jS) Then A←A {j}

∪21:　　　　Else B ←B {j}
22:　　　　EndIf
23:　　　Endfor

∅24:　　　If B ≠  Then
∈25:　　　　For each j  B do

26:　　　　ri, j←Θ – (αi, j + 2λi + ρi + ωi, jS),
  　　　　　ωi, jS ←0, ωi, j ←0
27:　　　　h←h – (Θ – (αi, j + 2λi + ρi + ωi, jS))
28:　　　　Endfor
29:　　　　V←V\B
30:　　　Else
31:　　　　For each j ∈ A do
32:　　　　ri, j ←Δ
33:　　　　ωi, jS ← Θ – (αi, j + 2λi + ρi) – ri, j, ωi, j ←0
34:　　　　EndFor

∅35:　　　　V←
36:　　　EndIf
37:　　Endwhile
38:　EndIf
39:　ωi, 0S ←0, ωi, 0 ←0, ωi, b[i]S ←0, ωi, b[i] ←0
40:　End

In  Algorithm 2,  all  the  statements  make  calculations  based
on  closed-form  expressions.  The  number  of  iterations  in  the
For-loop  of  Lines  5−7  is  no  more  than n[i].  The  number  of
iterations  in  the  For-loop  of  Lines  10−30  is  no  more  than
(n[i])2.  It  is  obvious  that  the  computational  complexity  of
Algorithm 2 is polynomial.

∩ j∈N+n[i]\{b[i]}
∅ N+KCase 3: [Πi, jL, Πi, jU] = , i ∈ , means that the

workloads of the processing steps are unbalanced. In this case,
Algorithm  3  is  proposed  to  find  a  feasible  schedule  so  that
each processing step can achieve the cycle time of a K-cluster
tool.

∩ j∈N+n[i]\{b[i]} ∅
N+K

Theorem  2: If [Πi, jL,  Πi, jU]  =  holds  with i ∈
,  Algorithm  3  can  determine  whether  a  feasible  schedule

exists. If so, Algorithm 3 finds a schedule that minimizes the
total post-processing time.

∑
j∈Eωi, jS∑

j∈Eωi, jS

Proof: By Lines 1 and 2, we have E = {j| Πi, jU <Θ, j ≠ 0, j ≠
b[i], j ∈ Nn[i]}, F = Nn[i]\E∪{0, b[i]}, and V = E∪F. For j ∈ E,
we set ωi, jS = Θ – (αi, j + δi, j + 2λi + ρi). Hence, we have τi, j =
Θ – (2λi + ρi + ωi, jS) = αi, j + δi, j. Then, by Line 5, if 
≤ ψi, 2, all steps in E can satisfy the wafer residency time con-
straints. If  > ψi, 2, ∃i ∈ E such that ωi, jS < Θ – (αi, j +
δi, j + 2λi + ρi) holds, which leads to τi, j > αi, j + δi, j. Therefore,
tool Ci is not schedulable, which is given by Line 6 in Algo-
rithm 3. ∑

j∈Eωi, jS∑
j∈F (

∑
j∈E δi, j

By  Lines  8  and  9,  we  have ε = ψi,  2 –  and η =
Θ – (αi, j + 2λi + ρi)) + .

If ε ≥ η, then Lines 10−14 present that ωi, jS = Θ – (αi, j + 2λi +
ρi), j ∈ V. We have τi, j = Θ – (2λi + ρi + ωi, jS) = αi, j, j ∈ V. The
post-processing  time  at  PMi, j is ri, j = τi, j – αi, j =  0  < δi, j,
j ∈ V.  Thus, ri, j is  minimized,  and  the  wafer  residency  time
constraints are satisfied.

If ε < η,  we  have h = ε – η.  By  Line  18,  Δ  = h/|V|.  Lines
19−22 show that for j ∈ V, if Δ ≤ Θ – (αi, j + 2λi + ρi + ωi, jS)
holds,  Step j is  put  into  set A,  otherwise,  it  is  put  into  set B.
Lines  24−29  set  the  post-processing  time  and  robot  waiting
time at steps in B.

∅

∑
j∈B (

If B ≠ , ri, j = Θ – (αi, j + 2λi + ρi+ ωi, jS) and ωi, jS = 0 for
j ∈ B. We have ri, j = Θ – (αi, j + 2λi + ρi + ωi, jS) ≥ Πi, jL – (αi, j +
2λi + ρi+ ωi, jS) = 0 and ri, j = Θ – (αi, j + 2λi + ρi+ ωi, jS) ≤ Πi, jU
– (αi, j +2λi +ρi + ωi, jS) = δi, j. Then, h = h– ri, j. Because of Δ =
h/|V| and Δ> Θ – (αi, j + 2λi + ρi + ωi, jS), h = Δ|V| >  Θ –
(αi, j + 2λi+ρi + ωi, jS)) holds. Therefore, h > 0 always holds. By
Line 29, V = V \ B.

∅

∑
j∈V ωi, jS

∑
j∈V (∑

j∈V ri, j ∑
j∈V ωi, jS∑

j∈V ri, j

If B = ,  Lines 31−35 set  robot waiting time and post-pro-
cessing time at steps in A. We have ri, j = Δ and ωi, jS = Θ – (αi, j +
2λi + ρi) – ri, j for j ∈ A. Then, ri, j = Δ = h/|V| ≤ Θ – (αi, j + 2λi +
ρi + ωi, jS)  ≤  Πi, jU – (αi, j +  2λi + ρi+ωi, jS)  = δi, j and ri, j >  0
because of ψi,  2 < ε.  Since  = Θ– (αi, j + 2λi +
ρi)) –  = ψi,  2,  we have that the value of ψi,  2 has been
assigned  to ωi, jS’s  (j ∈ V),  i.e.,  is  maximized  and

 is minimized. ■
∩ j∈N+n[i]\{b[i]}

∅ N+K

∩ j∈N+n[i]\{b[i]}
∅

Algorithm  3  deals  with  the  situation [Πi, jL,
Πi, jU] = , i ∈ , which implies that some steps have a heav-
ier workload than other steps. Given the cycle time of Θ, the
robot  waiting  time  is  pre-allocated  in E and F.  Then,  check
whether  a  cluster  tool  is  schedulable  or  not  in  Line  5.  After
that,  according  to  the  workloads  of  a  robot  and  processing
steps,  Lines  10–40  can  assign  post-processing  time  evenly
which is also minimized. Notice that Condition [Πi, jL,
Πi, jU] =  for Algorithm 3 indicates that the workloads of the
processing  steps  are  significantly  unbalanced.  That  is  to  say,
the  processing  steps  in E are  much  faster  than  others  and  a
feasible schedule can be obtained only by carefully setting the
robot waiting time at different steps.

In  Algorithm  3,  all  the  statements  make  the  calculations
based on closed-form expressions. The number of iterations in
the For-loop of Lines 3 and 4 is no more than n[i]. The num-
ber  of  iterations  in  the  For-loop  of  Lines  10−30  is  no  more
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than (n[i])2. It is obvious that the computational complexity of
Algorithm 3 is polynomial.
 

TABLE III 

Conditions for Adjusting Post-Processing Time in a Tool

Zi–1 > 0 Zi > 0 Zi+1 > 0 Operation

False False False
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

False False True
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

False True False Unchanged

False True True Unchanged

True False False
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

True False True
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

True True False
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

True True True
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

× True True Unchanged

× True False Unchanged

× False True
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

× False False
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

False False ×
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

False True × Unchanged

True False ×
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

True True ×
∑

j∈N+n[i]\{b[i]}ri, jIncrease 

False × × Unchanged

True × ×
∑

j∈N+n[i]\{b[i]}ri, jIncrease 
  

C.  Post-Processing Time of Two Adjacent Cluster Tools

∑
j∈N+n[i]\{b[i]}ri, j∑

j∈N+n[i]\{b[i]}ri, j∑
j∈N+n[i]\{b[i]}ri, j

To  keep  a  high  quality  of  circuit  chips  on  wafers,  in  real-
world production, it is not recommended that the sum of post-
processing time  in some cluster tools is longer
than  that  in  others  and  in  particular,  between  two  adjacent
tools,  the  difference  in  for  them  is  too  large.
Consequently, it is necessary to adjust  for two
adjacent cluster tools. ∑

j∈N+n[i]\{b[i]}ri, j∑
j∈N+n[i]\{b[i]}ri, j

∑
j∈N+n[i]\{b[i]}ri, j

∑
j∈N+n[i+1]\{b[i+1]}ri+1, j N+K−1

By Algorithms 1−3,  for each tool Ci is mini-
mized. Therefore,  cannot be reduced anymore.
However, we can appropriately increase the sum of post-pro-
cessing time of a cluster tool to reduce the difference between

 and , i ∈ .∑
j∈N+n[i]\{b[i]}ri, j

∑
j∈N+n[i+1]\{b[i+1]}ri+1, j N+K−1

∑
j∈N+n[i]\{b[i]}ri, j N+K

Let Zi =  – , i ∈ ,
denote  the  difference  in  total  post-processing  time  between
two  adjacent  cluster  tools. Table III determines  the  cluster
tools whose , i ∈ , should be increased.

Reducing  the  robot  waiting  time  for  an  individual  tool  at
some processing steps leads to an increase in its robot waiting
time at LLs and BMs. As a result,  its post-processing time is
also  increased.  During  such  an  adjustment  for  robot  waiting
time,  (15)−(17)  should  be  satisfied.  It  is  known  that  Algo-
rithms 2 and 3 determine the post-processing time ri, j,  which
should now be adjusted. After ri, j is adjusted, its new value is

∑
j∈N+n[i]\{b[i]}r′i, j

∑
j∈N+n[i]\{b[i]}ri, j

N+K

N+K

denoted by r′ i, j.  Let υi =  –  be
an increment in post-processing time. Let υi ∈ [0, γi], i ∈ ,
where γi is  the  upper  bound of υi.  To  find  each  minimum υi,
i ∈ , a linear programming model is given as follows.

Linear programming model (LPM):
 

Maximize γi

s.t.

γi ≤
∑

j∈N+n[i]\{b[i]}
ωi, jS , i ∈ N+K (18)

 

γi ≤ τ(i+1),0− (2λi+ρi+ωi,b[i]S ), i = 1 (19)
 

γi ≤ (τ(i−1),b[i]− (2λi+ρi+ωi,0S ))

+ (τ(i+1),0− (2λi+ρi+ωi,b[i]S ))

2 ≤ i ≤ K −1 (20)
 

γi ≤ (τ(i−1),b[i]− (2λi+ρi+ωi,0S )), i = K (21)
 

γi ≤ |Zi| , i = 1 (22)
 

γi ≤ |Zi| , 2 ≤ i ≤ K −1 (23)
 

γi ≤ |Zi−1| , 2 ≤ i ≤ K −1 (24)
 

γi ≤ |Zi−1| , i = K (25)
 

0 ≤ γi, 0 ≤ i ≤ K. (26)

The above LPM can get the maximum γi. In LPM, (18) indi-
cates  that  there  should  be  enough  robot  idle  time  at  the  pro-
cessing  steps  to  be  moved to  be  a  part  of ri, j.  Inequalities  in
(18)  make  sure  that  a  part  of  robot  idle  time  can  be  moved
from ωi, jS’s (j ∈Nn[i]\{0, b[i]}) to ωi, j’s (j ∈ {0, b[i]}).

Inequalities  (19)−(21)  indicate  that  the  increased  post-pro-
cessing  time  should  satisfy  (16)  and  (17).  By  (17),  we  have
τ(i+1), 0 ≥ 2λi + ρi + ωi, b[i]S. While adjusting the waiting time of
R1, we need to make (17) hold, leading to that τ2,0 ≥ (2λ1 + ρ1
+ ω1, b[1]S) holds.  Note that λ1 and ρ1 are  constant,  and τ2,0 is
unchanged  when  a  schedule  is  given  by  Algorithm  1.  Let χ
denote the increment in ω1, b[1]S. Then, we have τ2,0 ≥ (2λ1 + ρ1
+ ω1, b[1]S + χ). Thus, τ2,0 − (2λ1 + ρ1+ω1, b[1]S) ≥ χ = γ1. Simi-
larly, we can get (21) for CK.

While  adjusting  the  waiting  time  of Ri,  2  ≤ i ≤ K – 1,  we
should  make  (16)  and  (17)  hold  for  the  adjacent  cluster  too-
ls. Thus, τ(i – 1), b[i] ≥ (2λi + ρi + ωi, 0S) and τ(i + 1), 0 ≥ (2λi + ρi +
ωi, b[i]S)  hold. λi and ρi are  constants,  and τ(i–1), b[i] and τ(i+1),  0
are unchanged when a schedule is given by Algorithm 1. Let
χ1 and χ2 denote  the  increments  in ωi,  0S and ωi, b[i]S,  respec-
tively.  Then,  we  have τ(i – 1), b[i] ≥  (2λi + ρi + ωi,  0S+χ1)  and
τ(i+1), 0 ≥ (2λi + ρi + ωi, b[i]S + χ2). Thus, (τ(i – 1), b[i] – (2λi + ρi +
ωi, 0S)) + (τ(i + 1), 0 – (2λi + ρi + ωi, b[i]S)) ≥ χ1 + χ2 = γi.

Inequalities (22)−(25) mean that the increased post-process-
ing  time  cannot  exceed  the  difference  between  the  adjacent
cluster  tools.  Obviously,  the  increased  post-processing  time
should  satisfy  (26)  and  an  efficient  adjustment  on  post-pro-
cessing  time  ranges  from  0  to γi.  After γi is  determined  by
LPM, the increment in post-processing time υi ∈ [0, γi] can be
given according to a real-world production scenario.
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Algorithm 4. Adjusting Post-Processing Time for Ci

Input: υi
Output: ωi, j, ωi, jS, ri, j

∅1:  　V← Nn[i] \ {0, b[i]}, M← 
2:  　For j ∈V do

∪3:  　　If Πi, jU < Θ Then M←M {j}
4:  　　EndIf
5:  　EndFor
6:  　ωi, j←ωi, j +υi /|V| for j ∈V

∅7:  　While V ≠  Then
∅ ∅8:  　　Δ←υi /|V|, A← , B← 

9:  　　For j ∈ V do
10:　　　If j ∈ M Then

∪11:　　　　If Δ ≤ Πi, jU – Πi, jL – ri, j then A←A {j}
∪12:　　　　Else B ←B {j}

13:　　　　EndIf
14:　　　Else

∪15:　　　　If Δ ≤ ωi, jS then A←A {j}
∪16:　　　　Else B ←B {j}

17:　　　　EndIf
18:　　　EndIf
19:　　EndFor

∅20:　　If B ≠  Then
21:　　For each j ∈ B do
22:　　　If j ∈ M Then
23:　　　　υi←υi–(Πi, jU–Πi, jL–ri, j), ri, j←Πi, jU–Πi, jL, ωi, jS ←Θ–Πi, jU
24:　　　Else
25:　　　　υi←υi–ωi, jS, ri, j←Θ–Πi, jL, ωi, jS ← 0
26:　　　EndIf
27:　　EndFor
28:　　V←V\B
29:　　Else
30:　　For each j ∈ A do
31:　　　ri, j ←Δ + ri, j, ωi, jS ←Θ – (αi, j + 2λi + ρi) – ri, j
32:　　EndFor

∅33:　　V←
34:　　EndIf
35:　EndWhile
36:　End

.

Table III determines a set of tools, denoted by C_A in which
post-processing  time  should  be  adjusted.  LPM  gives  the
adjusted  value υi for  the  post-processing  time  in Ci ∈ C_A.
Then, Algorithm 4 calculates the post-processing time adjust-
ment for Ci ∈ C_A

Theorem 3: For ∀υi ∈ [0, γi], Algorithm 4 can find an effi-
cient  schedule,  which  balances  the  post-processing  time
between a pair of adjacent cluster tools.

Proof: By Table III,  we determine the robots’ waiting time
that should be adjusted. By LPM, we find the maximum value
γi that  is  set  for  a  certain  cluster  tool. υi ranges  from 0  to γi,
and obviously a schedule can still be obtained. Then, when we
balance the post-processing time of adjacent tools, we ensure
that the difference in post-processing time at each processing
step in the cluster tool remains unchanged.

By Lines 1 and 3 of Algorithm 4, we have V = {j | j ≠ 0 and
j ≠ b[i], j ∈ Nn[i]} and M = {j | Πi, jU <Θ, j ∈ V}. For j ∈ V, we

set ωi, j = ωi, j + υi/|V| in Line 6. Then, Lines 7−35 present the
specific adjustment operations for each processing module. By
Lines 8,  23 and 31, Δ = υi/|V|  means that  the post-processing
time at a processing step is increased.

∅

For j ∈ V, when j ∈ M, if Step j satisfies Δ ≤ Πi, jU – Πi, jL –
ri, j, it is put into set A, otherwise, it is put into set B. Lines 15
and 16 indicate that when j ∈ V \ M, if Step j satisfies Δ ≤ ωi, jS,
it  is  put  into  set A,  otherwise,  it  is  put  into  set B.  If B ≠ ,
Lines  20−28  present  the  adjustment  of  post-processing  time
for step j ∈ B as follows:

1) If j ∈ M, we have υi = υi – (Πi, jU – Πi, jL – ri, j), ri, j = Πi, jU –
Πi, jL, and ωi, jS = Θ – Πi, jU, and

∅

2) if j ∈ B \ M, we have υi = υi – ωi, jS, ri, j = Θ – Πi, jL, ωi, jS =
0. Lines 30−33 present the adjustment of post-processing time
for step j ∈ A, i.e., when B = , we have ri, j = Δ + ri, j, ωi, jS =
Θ – (αi, j + 2λi + ρi) – ri, j.

∑
j∈N+n[i]\{b[i]}ri, j

∑
j∈N+n[i+1]\{b[i+1]}ri+1, j N+K−1

So far, we have carried out the adjustment of post-process-
ing  time  for  tool Ci.  The  wafer  post-processing  time  in Ci
increases  so  that  |Zi–1|  and  |Zi|  become  smaller. Zi =

 – , i ∈ ,  means  the
difference in post-processing time between two adjacent clus-
ter tools. The smaller the value of |Zi| is, the smaller the post-
processing time difference between two adjacent cluster tools
becomes.  Thus,  the  wafer  post-processing  time  in  adjacent
cluster tools is balanced as well as possible. ■

Algorithm  4  makes  calculations  based  on  closed-form
expressions.  The  number  of  iterations  in  the  For-loop  of
Lines 2−5 and Line 6 is no more than n[i]. The number of iter-
ations  in  the  For-loop  of  Lines  7−35 is  no  more  than  (n[i])2.
Thus, the computational complexity of Algorithm 4 is polyno-
mial.  

D.  Algorithm Analysis
Algorithm 1 decides whether a K-cluster tool is schedulable;

if so, then Algorithm 1 checks the case that each tool belongs
to,  and calls  Algorithms 2 or 3 to calculate the robot waiting
time. By doing so, a schedule can be found to reach the opti-
mal cycle time of a K-cluster tool and minimize the total post-
processing time. Upon such an initial schedule solution, Table
III determines the robot  waiting time to be adjusted for  clus-
ter  tools.  LPM, Table III,  and  Algorithm  4  can  well  balance
the  post-processing  time  difference  between  adjacent  cluster
tools.

maxi∈N+K n [i]

∑K
i=1e2

As aforementioned, the computational complexity of Algo-
rithms  2–4  is O((n[i])2).  Let e = .  Then,  by  the
“For loop” in Lines 4–19 of Algorithm 1, the number of calcu-
lations for ωi, jS and ωi, j depends on the total number of pro-
cessing  modules  in  a K-cluster  tool,  which  is  no  more  than

 = e2 × K.  Notice  that e is  a  small  constant  and  is  no
more than six. Overall, the computational complexity of Algo-
rithms 1−4 is polynomial.  

IV.  Examples

Example 1: In a four-cluster tool, PM1,0 is LLs. PM1,0, PM2,0,
PM3,0, PM4,0, PM1,2, PM2,2, and PM3,2 are BMs. The time unit
is  second  and  omitted  hereafter.  For C1,  we  have  (α1,0, α1,1,

ZHU et al.: SCHEDULING DUAL-ARM MULTI-CLUSTER TOOLS WITH REGULATION OF POST-PROCESSING TIME 1737 



α1,2, α1,3, α1,4; λ1, μ1, ρ1) = (0, 47, 0, 50, 52; 2, 2, 2); for C2, we
have (α2,0, α2,1, α2,2, α2,3, α2,4; λ2, μ2, ρ2) = (0, 38, 0, 37, 53; 2,
2, 2); for C3, we have (α3,0, α3,1, α3,2, α3,3, α3,4; λ3, μ3, ρ3) = (0,
57, 0, 56, 38; 2, 2, 2); and for C4 we have (α4,0, α4,1, α4,2, α4,3,
α4,4; λ4, μ4, ρ4) = (0, 54, 49,44, 34; 2, 2, 2). The wafer process-
ing route is LLs→ PM1,0 → PM1,1 → PM1,2 (PM2,0) → PM2,1
→  PM2,2 (PM3,0)  →  PM3,1 →  PM3,2 (PM4,0)  →  PM4,1 →
PM4,2 → PM4,3 → PM4,4→ PM4,0 (PM3,2) → PM3,3 → PM3,4
→  PM3,0 (PM2,2)  →  PM2,3 →  PM2,4 →  PM2,0 (PM1,2)  →
PM1,3 →  PM1,4 →  LLs.  After  being  processed,  a  wafer  can
stay at  PMi, j for no more than δ1,1 = 20, δ1,3 = 20, δ1,4 = 20,
δ2,1 = 20, δ2,3 = 20, δ2,4 = 20, δ3,1 = 20, δ3,3 =20, δ3,4 = 16, δ4,1 =
20, δ4,2 = 20, δ4,3 =10, and δ4,4 = 13, respectively. There are no
residency time constraints at LLs and BMs.

By (4), (10) and (12), the cycle time of this four-cluster tool
is Θ = 63. By Algorithm 1, we have

N+n[1]1) For C1, ψ1,1 ≤ Θ and Θ ≤ Π1, jU, j ∈ \{b[1]}, are satis-
fied and Algorithm 2 is applied;

N+n[2]2) For C2, ψ2,1 ≤ Θ and Θ ≤ Π2, jU, j ∈ \{b[2]}, are satis-
fied and Algorithm 2 is also applied;

∅
3) For C3,  [Π3,1L,  Π3,1U]  ∩ [Π3,3L,  Π3,3U]  ∩ [Π3,4L,  Π3,4U]  =

 is satisfied and Algorithm 3 is applied; and

∅
4) For C4,  [Π4,1L,  Π4,1U] ∩ [Π4,2L,  Π4,2U] ∩ [Π4,3L,  Π4,3U] ∩

[Π4,4L, Π4,4U] =  is satisfied and Algorithm 3 is applied.
For C1, by Algorithm 2, ε = 22 satisfies ε < ψi, 2 = 25. Then,

we  have  (ω1,0S, ω1,1S, ω1,2S, ω1,3S, ω1,4S)  =  (0,  10,  0,  7,  5),
(ω1,0, ω1,1, ω1,2, ω1,3, ω1,4) = (0, 1, 0, 1, 1), and (r1,1, r1,3, r1,4) =
(0, 0, 0).

For C2, by Algorithm 2, ε = 43 satisfies ψi, 2 = 23 < ε. Obvi-
ously, by Δ and Θ – (α2, j +2λ2 + 3ρ2) for j ∈ {1, 3, 4} we have
A = {1, 3} and B = {4}. Let r2,4 = Θ – (α2,4 +3λ2 + ρ2). Then,
V = V\B, we have (ω2,0S, ω2,1S, ω2,2S, ω2,3S, ω2,4S) = (0, 11, 0,
12,  0),  (ω2,0, ω2,1, ω2,2, ω2,3, ω2,4)  =  (0,  0,  0,  0,  0),  and (r2,1,

r2,3, r2,4) = (8, 8, 4).
For C3, by Algorithm 3, E = {4} and F = {1, 3}, and V = {1,

3, 4}. By Lines 3 and 4, the waiting time can be set as (ω3,1S,
ω3,3S, ω3,4S) = (0, 0, 3). Then, we have ε = 20 > η = 17. Thus,
we  have  (ω3,0S, ω3,1S, ω3,2S, ω3,3S, ω3,4S)  =  (0,  0,  0,  1,  19),
(ω3,0, ω3,1, ω3,2, ω3,3, ω3,4) = (0, 1, 0, 1, 1), and (r3,1, r3,3, r3,4) =
(0, 0, 0).

For C4, by Algorithm 3, E = {3, 4} and F = {1, 2}, and V =
{1, 2, 3, 4}. By Lines 3 and 4, the waiting time can be set as
(ω4,1S, ω4,2S, ω4,3S, ω4,4S)  =  (0,  0,  3,  10).  Then,  we  have ε =
10  < η =  34.  Obviously,  by  Δ  and  Θ – (α4, j +  2λ4 + ρ4)  for
j ∈ {1, 2, 3, 4}, we have A = {2, 3, 4} and B = {1}. Let r4, j =
Θ – (α4, j +4λ4 + ρ4) for j ∈ B. Then, V = V\B, we have (ω4,0S,
ω4,1S, ω4,2S, ω4,3S, ω4,4S)  =  (0,  0,  1,  6,  16),  (ω4,0, ω4,1, ω4,2,
ω4,3, ω4,4) = (0, 0, 0, 0, 0), and (r4,1, r4,2, r4,3, r4,4) = (3, 7, 7, 7).

N+K

By Table II,  we know that  the  post-processing time should
be adjusted for C1 and C3. By LPM, we have γ1 = 20 and γ3 =
20. Then, we have υ1 ∈ [0, 20] and υ3 ∈ [0, 20]. Assume that
the post-processing time difference between adjacent tools of
this  multi-cluster  tool  cannot  exceed  16.  Then,  we  let υ1 =  6
and υ3 = 6. By Algorithm 4, (ω1, 0S, ω1, 1S, ω1, 2S, ω1, 3S, ω1, 4S) =
(0, 8, 0, 5, 3), (ω1,0, ω2,1, ω2,2, ω2,3, ω2,4) = (0, 3,0, 3, 3), (r1,1,
r1,3, r1,4) = (2, 2, 2), (ω3,0S, ω3,1S, ω3,2S, ω3,3S, ω3,4S) = (0, 0, 0,
0,  14),  (ω3,0, ω3,1, ω3,2, ω3,3, ω3,4)  =  (0,  3,0,  3,  3),  and  (r3,1,
r3,3, r3,4) = (2, 2, 2). It can be found that τi, j ∈ [αi, j, αi, j + δi, j], i
∈  holds.

After  the  post-processing  time  is  adjusted,  the  Gantt  chart
for this schedule is shown in Fig. 2. The horizontal axis repre-
sents  time  and  each  horizontal  lane  marks  the  activities  per-
formed at  a  PM,  which  is  drawn in  different  colors.  Vertical
axis represents different PMs. In each horizontal lane of a PM,
let yellow stand for a wafer being processed, blue for a robot’s
moving, red for a wafer that is waiting to be unloaded after its
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Fig. 2.     Gantt chart for the schedule in Example 1 (a four-cluster tool).
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processing,  green  for  a  robot’s  unloading  a  processed  wafer,
brown for a robot’s rotation, a white bar for a PM being idle,
and dark blue for a robot’s loading a wafer.

Fig. 2 shows that the post-processing time marked with red
is  short  and  the  differences  among  the  post-processing  time
marked by red bars are small. In Fig. 2, we use arrows to illus-
trate the operation routes of robots.

The  algorithms  in  [24]  give  a  schedule  by  setting  the  fol-
lowing robot waiting time:

(ω′1,0S, ω′1,1S, ω′1,2S, ω′1,3S, ω′1,4S) = (0, 0, 0, 0, 0)
(ω′1,0, ω′1,1, ω′1,2, ω′1,3, ω′1,4) = (0, 0, 0, 0, 25)
(r′1,1, r′1,3, r′1,4) = (10, 7, 5)
(ω′2,0S, ω′2,1S, ω′2,2S, ω′2,3S, ω′2,4S) = (0, 0, 0, 0, 0)
(ω′2,0, ω′2,1, ω′2,2, ω′2,3, ω′2,4) = (0, 0, 0, 0, 23)
(r′2,1, r′2,3, r′2,4) = (19, 20, 4)
(ω′3,0S, ω′3,1S, ω′3,2S, ω′3,3S, ω′3,4S) = (0, 0, 0, 0, 3)
(ω′3,0, ω′3,1, ω′3,2, ω′3,3, ω′3,4) = (0, 0, 0, 0, 20)
(r′3,1, r′3,3, r′3,4) = (0, 1, 16)
(ω′4,0S, ω′4,1S, ω′4,2S, ω′4,3S, ω′4,4S) = (0, 0, 0, 3, 10)
(ω′4,0, ω′4,1, ω′4,2, ω′4,3, ω′4,4) = (0, 0, 0, 0, 10)
(r′4,1, r′4,2, r′4,3, r′4,4) = (3, 8, 10, 13).
Let ri, jmax and ri, jmin denote the maximum ri, j and minimum

ri, j in Ci, respectively. Obviously, we can get∑
j∈N+n[i]\{b[i]}ri, j

∑
j∈N+n[i]\{b[i]} r′i, j N+4∑4

i=1
∑

j∈N+n[i]\{b[i]}ri, j
∑4

i=1
∑

j∈N+n[i]\{b[i]}r
′
i, j

 < , i ∈ ,  and
 =  56,  =  116.  Thus,

the  total  post-processing  time  of  this  four-cluster  tool  is
decreased  by  51.7%.  Furthermore,  we  have  the  following
results.

N+4
{ j, f } ∈ N+n[i]\{b[i]}

1)  |ri, jmax − ri, fmin|  <  |r′ i, jmax− r′ i, fmin|, i ∈ , j ≠ f,
; and
N+42) |Zi| < |Z′i|, i ∈ .

Example 2: In  a  two-cluster  tool,  PM1,0 is  LLs.  PM2,0,  and
PM1,2 are BMs. The time unit is second and omitted hereafter.
For C1, we have (α1,0, α1,1, α1,2, α1,3, α1,4; λ1, μ1, ρ1) = (0, 22, 0,
25,  27;  1,  1,  1);  for C2,  we have (α2,0, α2,1, α2,2, α2,3, α2,4; λ2,
μ2, ρ2)  =  (0,  32,  27,  23,  25;  1,  1,  1).  The  wafer  processing
route is LLs→ PM1,0 → PM1,1 → PM1,2 (PM2,0) → PM2,1 →
PM2,2 → PM2,3 → PM2,4 → PM2,0 (PM1,2) → PM1,3 → PM1,4
→ LLs.  After  being processed,  a  wafer  can stay at  PMi, j for

no  more  than δ1,1 = δ1,3 =δ1,4 = δ2,1 = δ2,2 = δ2,3 = δ2,4 =  10,
respectively. There are no wafer residency time constraints at
LLs and BMs.

By (4), (10) and (12), the cycle time of this two-cluster tool
is Θ = 35. By Algorithm 1, we have

N+n[1]1) For C1, ψ1,1 ≤ Θ and Θ ≤ Π1, jU, j ∈ \{b[1]}, are satis-
fied and Algorithm 2 is applied;

N+n[2]2) For C2, ψ2,1 ≤ Θ and Θ ≤ Π2, jU, j ∈ , are satisfied and
Algorithm 2 is also applied.

For C1, by Algorithm 2, ε = 22 satisfies ε > ψi, 2 = 19. Then,
we have (ω1,0S, ω1,1S, ω1,2S, ω1,3S, ω1,4S) = (0, 8, 0, 5, 3), (ω1,0,
ω1,1, ω1,2, ω1,3, ω1,4) = (0, 0, 0, 0, 0), and (r1,1, r1,3, r1,4) = (2,
2, 2).

For C2, by Algorithm 2, ε = 21 satisfies ε > ψi, 2 = 23. Then,
we have (ω2,0S, ω2,1S, ω2,2S, ω2,3S, ω2,4S) = (0, 0, 3, 7, 5), (ω2,0,
ω2,1, ω2,2, ω2,3, ω2,4) = (0, 0, 0, 0, 0), and (r2,1, r2,2, r2,3, r2,4) =
(0, 2, 2, 2).

Fig. 3 shows that the post-processing time marked with red
is  short  and  the  post-processing  time  difference  between  the
adjacent  tools  marked by red  bars  is  small.  In Fig. 3,  we use
arrows to illustrate the operation routes of robots.

The  algorithms  in  [24]  give  a  schedule  by  setting  the  fol-
lowing robot waiting time:

(ω′1,0S, ω′1,1S, ω′1,2S, ω′1,3S, ω′1,4S) = (0, 0, 0, 0, 0)
(ω′1,0, ω′1,1, ω′1,2, ω′1,3, ω′1,4) = (0, 0, 0, 0, 16)
(r′1,1, r′1,3, r′1,4) = (10, 7, 5)
(ω′2,0S, ω′2,1S, ω′2,2S, ω′2,3S, ω′2,4S) = (0, 0, 0, 0, 0)
(ω′2,0, ω′2,1, ω′2,2, ω′2,3, ω′2,4) = (0, 0, 0, 0, 15)
(r′2,1, r′2,3, r′2,4) = (0, 5, 9, 7).
Obviously, we can get∑

j∈N+n[i]\{b[i]}ri, j
∑

j∈N+n[i]\{b[i]} r
′
i, j N+2 < , i ∈ ∑2

i=1
∑

j∈N+n[i]\{b[i]}ri, j
∑2

i=1
∑

j∈N+n[i]\{b[i]} r
′
i, j =  12,  =  43.  Thus,

the  total  post-processing  time  of  this  four-cluster  tool  is
decreased  by  72.0%.  Furthermore,  we  have  the  following
results.

N+2 { j, f } ∈
N+n[i]\{b[i]}

1) |ri, jmax − ri, fmin|  < |r′ i, jmax − r′ i, fmin|, i ∈ , j ≠ f, 
; and

N+22) |Zi| < |Z′i|, i ∈ .
The results of the above examples have been shown as bar
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Fig. 3.     Gantt chart for the schedule in Example 2 (a two-cluster tool).
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graphs  in Figs. 4 and 5.  It  is  obvious  that  the  total  post-pro-
cessing time and the post-processing time difference between
different  steps  are  significantly  less  for Ci than  that  for Ci′.
Compared  with  the  schedule  obtained  by  [24],  the  obtained
schedule  by  the  proposed  method  achieves  the  following
goals.
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Fig. 4.     Comparison for Example 1.
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Fig. 5.     Comparison for Example 2.
 ∑

j∈N+n[i]\{b[i]}ri, j N+K1) Minimize  for Ci, i ∈ ;
2)  Balance  the  difference  in  post-processing  time  among

PSi, j, j ∈ Nn[i]\ {0, b[i]}; and
3)  Balance  the  post-processing  time  difference  between

adjacent cluster tools.  

V.  Conclusion

Multi-cluster  tools  are  widely used in  wafer  manufacturing
in the semiconductor manufacturing industry due to their high
efficiency.  In  order  to  load/unload  wafers  according  to  the
wafer  route,  proper  cooperation  between  the  robots  of  each
cluster  tool  is  demanded.  Furthermore,  after  a  wafer  is  pro-
cessed  in  a  processing  module,  the  robot  is  scheduled  to
unload  it  timely  because  the  decreasing  narrow circuit  width
demands  limit  the  post-processing  time.  This  study  finds  an
optimal  schedule  for  a  multi-cluster  tool  to  minimize  the
wafer post-processing time. Besides, we make efforts to avoid
uneven post-processing time among the processing steps. The
proposed method can handle the case where the difference in
post-processing  time  between  two  adjacent  cluster  tools  is
large.  The  method  can  greatly  lead  to  high-yield  and  high-
quality integrated-circuit chips on a wafer.

In  future  work,  we  will  investigate  how  to  regulate  the

wafer  post-processing  time  for  a  multi-cluster  tool  when  its
processing time is disturbed.
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