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   Dear Editor,

.

Quadratic  programming  problems  (QPs)  receive  a  lot  of  attention
in various fields of science computing and engineering applications,
such as manipulator control [1]. Recursive neural network (RNN) is
considered to be a powerful QPs solver due to its parallel processing
capability and feasibility of hardware implementation [2]. In particu-
lar, a large number of RNN models, such as gradient neural network,
are  proposed  as  powerful  alternatives  for  online  solving  QPs  [3].
However,  it  is  worth noting that  most  of  the above neural  networks
are  essentially  designed  for  solving  static  QPs  with  time-invariant
parameters. These neural algorithms cannot solve time-varying (TV)
QPs because they cannot adapt to change in parameters, such as kine-
matic control of redundant arms [4]. Zeroing neural network (ZNN)
is specially designed for real-time solution of time-varying problems.
It uses the time derivative (TD) of time-varying parameters to solve
the  zero-finding  problem  [5].  The  Taylor-type  discrete-time  ZNN
(DTZNN) model is proposed in [6], which outperforms other models
are  inherently used to  address  the static  QPs,  such as  Newton itera-
tions.  Although the  DTZNN model  makes  full  use  of  the  TD infor-
mation  of  the  problem to  be  solved,  it  still  does  not  explicitly  con-
sider  the  influence  of  noise.  In  the  real-time  solution  of  nonlinear
system, there are system errors or external disturbances in hardware
implementation, which can be regarded as noise [7]. Different RNN
models are constructed by choosing different error functions (EFs) or
utilizing different  activation functions (AFs)  in existing models,  but
the design process is  roughly similar.  However,  the AF should be a
monotone increasing odd function. Therefore, the ZNN-based model
can be drawn by relaxing the convex constraint of the AF for TVQPs
with  equality  and  inequality  constraints  (EAICs)  in  the  presence  of
noises

Problem  description: Considering  joint  angle,  joint  velocity,
wheel  angle  and  wheel-velocity  limits  of  the  RMC  for  the  OMMs,
which can be viewed as the following TVQPs with EAICs [5]:
 

min
1
2
πT (t)M(t)π(t)+ΞT (t)π(t)

s.t. K(t)π(t) = η(t), W(t)π(t) ≤ ν(t) (1)

M(t) ∈ Rn×n Ξ(t) ∈ Rn

K(t) ∈ Rm×n η(t) ∈ Rm

π(t) ∈ Rn T
W(t)=[I, I]T ∈ Rp×n

ν(t) = [ℓ+, ℓ−]T ∈ Rp ℓ− ℓ+

where Hessian matrix  is positive-definite, and ,
 being of full row rank,  is all smoothly nonsta-

tionary.  is to be solved in real time; Symbol  indicates the
transpose operator of a matrix or a vector; ; I rep-
resents  identity  matrix;  with  and  denote
the  lower  and  upper  limits  of  the  joint,  wheel,  joint-velocity  and
wheel-velocity, respectively.

ℵ(·)αFBOwing to the disturbed FB function  and the Karush-Kuhn-
Tucker condition, the TVQPs (1) can be rewritten as follows:
 

M(t)π(t)+ΞT (t)π(t)+KT (t)ζ∗(t)+WT (t)ς∗(t) = 0
K(t)π∗(t)−η(t) = 0
ℵαFB((ν(t)−W(t)π∗(t)), ς∗T (t)) = 0.

(2)

Equation (2) can be reorganized as the following equation:
 

Υ(ϖ(t), t) = Q(t)ϖ(t)−µ(t) (3)

µ(t) =
[
−Ξ(t),η(t),z(t)− ν(t)

]T
where  and
 

Q(t) =

 M(t) KT (t) WT (t)
K(t) 0 0
W(t) 0 I

 , ϖ(t) =

 π(t)ζ(t)
ς(t)


z(t) =

√
E(t)◦E(t)+ς(t)◦ς(t) E(t) =W(t)π(t)− ν(t)

◦
, , where the sym-

bol “ ” represents the Hadamard product.
Design and theoretical analyses:

Nonconvex activation function noise-tolerant zeroing neural net-
work (NAFNTZNN) model: The NAFNTZNN dynamic model can
be designed as
 

Υ̇(t) = −γOΩ(Υ(t))−λ
w t

0
Υ(δ)dδ (4)

γ > 0 λ > 0 OΩ(·)where  and . The NAF  is the projection from set Λ to
set Ω. The NAF is defined as
 

OΩ(ai) =


η1, if γΓp(ai) > η1
γΓp(ai), if −η2 < γΓ

p(ai) < η1
−η2, if γΓp(ai) < η2

(5)

where
 

Γp(ai) =


|ai| , if |ai| > 0
0, if |ai| = 0
−|ai| , if |ai| < 0

(6)

p ∈ (0 1) η1 = η2 > 0 η1 = η2 = 1
p = 0.2
χ(t)

and ; .  Correlation  parameters  are 
and , respectively. The NAFNTZNN model with external dis-
turbance , which can be called as measurement noise (MN), can
be obtained as follows:
 

Q(t)ϖ̇(t) = µ̇(t)− Q̇(t)ϖ(t)−γOΩ(Q(t)ϖ(t)−µ(t))

−λ
w t

0
Q(δ)ϖ(δ)−µ(δ)dδ+χ(t). (7)

Convergent analyses of NAFNTZNN in the exist of MN:

ϖ(0)
ϖ∗(t)

π∗(t)

Theorem  1:  For  the  TVQPs  with  EAICs  (1),  the  proposed
NAFNTZNN  (7),  starting  from  a  randomly  initial  state  glob-
ally converges to a TV optimal solution , where the first n ele-
ments  composing  the  TV theoretical  solutions  to  TVQPs  with
EAICs (1).

Proof: The Lyapunov function (LF) can be constructed as
 

L(t) =
1
2
ΥT (t)Υ(t)+

1
2
λ(

w t

0
Υ(δ)dδ)T

w t

0
Υ(δ)dδ ≥ 0.

The above equation can be organized into a compact form
 

L(t) =
1
2
∥Υ(t)∥2 + 1

2
λ

∥∥∥∥∥w t

0
Υ(δ)dδ

∥∥∥∥∥2 ≥ 0. (8)

Υ(t) , 0 L(t) > 0
Υ(t) = 0 L(t) = 0 L(t)

According  to  the  LF  selected  above,  when ,  is
obtained,  and  only  when , ,  it  indicates  that  is
positive. Then, calculate its time derivative as 
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L̇(t) = Υ(t)Υ̇(t)+λΥ(t)(
w t

0
Υ(δ)dδ)Υ(t)(−γOΩ(Υ(t))

−λ
w t

0
Υ(δ)dδ)+λΥ(t)

w t

0
Υ(δ)dδ ≤ −1

2
γ(OΩ(Υ(t)))2 ≤ 0

λ > 0where .  On  the  based  of  Lyapunov  stability  theorem (LST),  it
deduces that (2) converges to zero globally, which clarifies the theo-
retical solution of NAFNTZNN model (7) converges to TVQPs with
EAICs (1). ■
Robustness analyses of NAFNTZNN in the exist of MN: The per-
turbation model of NAFNTZNN (7) is as follows:
 

Q(t)ϖ̇(t) = − (∆Q(t)+ Q̇(t))ϖ(t)−γOΩ(Q(t)ϖ(t)−µ(t))

−λ
w t

0
Q(δ)ϖ(δ)−µ(δ)dδ+ µ̇(t)+∆χ(t). (9)

∆χ(t)
∆Q(t) ∥ ∆Q(t)∥F ≤ b1 ∈ R ∥ ∆χ(t)∥2 ≤ b2 ∈ R

∥ Q−1(t)∥F ≤ b3 ∈ R ∥ µ(t)∥2 ≤ b4 ∈ R t ∈ [0,+∞] 0 < b1,
b2,b3,b4 < +∞

Υ(ϖ(t), t) = Q(t)ϖ(t)−µ(t)

t→ +∞ n
π∗(t) t→ +∞

Theorem  2:  Considering  TVQPs  with  EAICs  (1),  and  assuming
that the model is perturbed by model disturbance  and differen-
tiation  error .  If , ,

, ,  for  all  and 
,  then the upper bound (UB) of the absolute value of

TV  error  function  (TVEF)  of  the  pro-
posed  NAFNTZNN  (7)  with  an  NAF  and  it  will  converge  to  0  as

, that is, the first  elements composing of the TV theoretical
solution  to (1) as .

Proof: The derivative of (8) can be obtained as follows:
 

L̇(t) = −ΥT (t)Z(t)Υ(t)−ΥT (t)∆Q(t)Q−1(t)µ(t)

−γΥT (t)OΩ(Υ(t))+ΥT (t)∆χ(t) (10)
Z(t) = ∆Q(t)Q−1(t)

|λmax(·)| ≤ || · ||F
where .  Due  to  the  following  inequality

, the first term on the right-hand side of (10) is rewrit-
ten as
 

Υ⊤(t)
ZT (t)+Z(t)

2
Υ(t) ≤ ΥT (t)Υ(t) ∥ Z(t)∥F . (11)

∥ ∆Q(t)Q−1(t)∥F ≤∥ ∆Q(t)∥F ∥ Q−1(t)∥F
Due  to  the  theory  of  matrix  analysis,  the  following  inequality

.  Thus,  (11)  is  rewritten  as
follows:
 

ΥT (t)
ZT (t)+Z(t)

2
Υ(t) ≤ ΥT (t)Υ(t)b1b3. (12)

max 1≤i≤
m+n+p

|∆χi(t)| ≤||∆χi(t)||∑m+n+p
i=1 |Υi(t)|b2 = g

The last term on the right-hand side of (10) is based on the maxi-
mum value of the elements of the TV vector whose each element is
less  than or  equal  to  the TV vector,  and ,
set , then
 

ΥT (t)∆χ(t) ≤
m+n+p∑

i=1

|Υi(t)| max
1≤i≤

m+n+p

||∆χi(t)|| ≤ g (13)

b2 ∆χ(t)where  is the UB of . The second term on the right-hand side
of (10) has the following formula:
 

ΥT (t)Z(t)µ(t)||µ(t)|| ≤
m+n+p∑

i=1

|Υi(t)|b1b2b3. (14)

Substituting (12)–(14) into (10), then
 

L̇(t) ≤
m+n+p∑

i=1

|Υi(t)|b2 −
m+n+p∑

i=1

|Υi(t)|b1b2b3 −γΥT (t)

×OΩ(Υ(t))−ΥT (t)Υ(t)b1b3 ≤
m+n+p∑

i=1

|Υi(t)|O(Υi(t)) (15)

O(Υi(t)) = −(|Υi(t)|b1b3 +b1b2b3 +γOΩi(|Υi(t)|)−b2).where  There-
fore, it can be discussed in the following two cases.

O(Υi(t)) ≥ 0 L̇(t) ≤ 0
L(t) ≥ 0 L̇(t) ≤ 0 ϖ(t)

ϖ(t)
ϖ∗(t)

L(t) = 0

1) Given that , then  can be obtained. Based on
the LST, if  and , the TVEF  formed by the vec-
tor  converges  to  zero,  which  shows  that  the  TV  state  variable 
converges to the optimal solution . Furthermore, the model will
reach a steady state, i.e., the LF will not decrease with .

O(Υi(t)) < 0 L̇(t) ≤ 0
L̇(t) ≤ 0 L̇(t) > 0

2)  Assumed  that ,  then  has  a  positive  UB.  It
can be divided into the following two cases, i.e.,  or .

L̇(t) ≤ 0 L(t) ≥ 0 Υ(t)

L̇(t) > 0

i) If  and , based on the LST, the TVEF with  as a
vector converges to zero, and the model reaches a steady state. ii) If

,  based  on  the  definition  of  the  NAF,  following  three  cases
are discussed.

ai < 0 Γp(ai) = −|ai|p γΓp(ai) = −γ|ai|pCase  1:  If  and ,  then ,  the
NAF can be divided into the following two cases:

−η1 < −γ|ai|p < η1 OΩ(ai) = −γ|ai|p1)  If ,  the  NAF  is  defined  as ,
(15) is rewritten as
 

L̇(t) ≤ −
m+n+p∑

i=1

|Υi(t)|(|Υi(t)|y− z|Υi(t)|p − r) (16)

y = b1b3 z = γ2 r = b2 −b1b2b3where , , .
|Υi(t)| > 1 |Υi(t)| > |Υi(t)|pi) If , then , (16) can be rearranged as

 

L̇(t) ≤ −
m+n+p∑

i=1

|Υi(t)|(y− z)(|Υi(t)| − h̄) (17)

h̄ = r/(y− z) h̄ > 0
L̇(t) > 0 L̇(t)

|Υi(t)|
L̇(t) ≤ 0

|Υi(t)| L̇(t) = 0
|Υi(t)| = h̄/2 |Υi(t)|(|Υi(t)| − h̄) = 0

|Υi(t)|
|Υi(t)|(|Υi(t)| − h̄) > 0

|Υi(t)| > 0 j |Υ j(t)| |Υ(t)|
i = 1,2, . . . ,m+n+ p i = 1,2, . . . ,m+n+ p−1

|Υi(t)|(|Υi(t)| − h̄) L̇(t) = 0

where .  In  the  case  of ,  considering  the  TD  of  LF
,  it  deduces  that  the  UB  on  the  TD  of  the  LF  will

decrease  as  of  the  TVEF increases.  So,  there  exists  a  certain
moment  satisfies ,  which  shows  the  model  is  stable  again,
therefore,  has an UB. When , the left-hand side of (16)
is equal to zero. When , , which can
be seen as a quadratic function of , reaches negative minimum
value.  Besides,  always  holds  if  and  only  if

. In addition, the th term  serves as an UB on ,
 if and only if the rest of 

terms of  obtain the minimum values. When ,
(17) can be rewritten as
 

|Υ j(t)|2 − |Υ j(t)|h̄+
m+n+p∑
i=1,i, j

|Υi(t)|(|Υi(t)| − h̄) = 0. (18)

|Υi(t)| = h̄/2 i = 1,2,3, . . . ,n+m+ p
i , j

Substitute  into (18),  when  and
, then (18) can be rewritten as

 

m+n+p∑
i=1

|Υi(t)|(|Υi(t)|+ h̄) = |Υ j(t)|2 − |Υ j(t)|h̄−υ1 = 0

υ1 =
m+n+p−1

4 h̄2 |Υi(t)| = h̄−
√

h̄2+4υ1
2

|Υn+m+p(t)| t→∞
where ,  thereby,  the  UB  and

 will driven to zero as .
0 < |Υi(t)| < 1 |Υi(t)| < |Υi(t)|p < 1ii)  If ,  then ,  (17)  can  be  com-

puted as
 

L̇(t) ≤ −
m+n+p∑

i=1

|Υi(t)|g(|Υi(t)| − l) (19)

g = b1b3, l = (b2 + r2 −b1b2b3)/(b1b3)where . The analysis method is
the same as the previous i), which is omitted here.

−γ|ai|p < φ2 OΩ(ai) = −η22) If ,  the NAF is  defined as ,  therefore,
(15) can be obtained as
 

L̇(t) ≤ −
m+n+p∑

i=1

|Υi(t)|(|Υi(t)|-λ2 − -λ1) (20)

-λ1 = b2 −b1b2b3 −γη2 -λ2 = b1b3
b2 −b1b2b3 −γη2 > 0

where  and . Assume that the condi-
tion  holds. The following analysis is similar to
Case 1, which is omitted here.

ai = 0 Γp(ai) = 0 γΓp(ai) = 0
OΩ(ai) = 0 L̇(t) ≤ 0

Case  2:  If  and ,  then ,  the  NAF  is
defined  as ,  therefore,  (15)  is  rewritten  as ,  it
means that the model is stable.

ai > 0Case 3:  If ,  the  analysis  method is  the  same as  the previous
Case 1, which is omitted here. ■

γ = 103 λ = 4×103 x0 = [1.4;1.4;−1.4;−1.4;
π/12;π/12;π/12;π/3] π+ = [3.5;3.5;4.5;4.5;
0.4;1;1;1.5] π+ = −π− π̇+

Numerical validation: In this section, the effectiveness, superior-
ity  and  physical  realizability  of  the  developed  NAFNTZNN  model
(7) in solving TVQP problem with EAICs are verified by an RMC of
the  OMMs.  Specifically,  the  initial  values  of  variables  are  set  as

, ,  and the initial  state  is 
 rad.  Joint-angle  limits 

 rad with ; The joint-velocity upper limit  of
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1.2 π̇+ = −π̇−each joint is set as  rad/s and . As illustrated in Figs. 1(a)
and 1(b),  joint  angles,  wheel  angles,  joint  velocities,  and  wheel
velocities  eventually  fluctuate  back  to  the  initial  state  and  always
limited  within  the  predetermined  limit  boundaries,  which  ensure
repeated motion of the OMMs and show the effectiveness of the pro-
posed  NAFNTZNN  (7)  in  the  presence  of  noise.  Moreover,  from
Figs. 1(c)  and 1(d),  it  observes  that  the  actual  trajectory  of  the  end-
effector  is  very  close  to  the  desired  Lissajous  trajectory  [5].  There-
fore,  it  verifies  that  the  NAFNTZNN model  (7)  is  globally  conver-
gent to the theoretical solution of TVQPs (1) with EAICs in the pres-
ence  of  noises.  Numerical  simulations  verify  the  superiority  of  the
NAFNTZNN model for the TVQPs with EAICs with noises.

Conclusion: The NAFNTZNN model with NAF and FB function
was  developed  for  TVQPs  with  EAICs  under  different  noises.  It
demonstrated  that  the  NAFNTZNN  model  has  global  convergence
and  robustness  to  external  disturbances.  A  numerical  example
demonstrated  the  effectiveness  of  the  NAFNTZNN  model  for  real-
time  solution  of  TVQPs  with  EAICs.  The  motion  planning  of  the
OMMs  affected  by  moving  obstacles  will  be  mainly  considered  in
the future.
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χ(t) = [1,1,1, . . . ,n+m]T

Υ = [Υx,Υy,Υz]T

Fig. 1. Numerical  results  of  the  NAFNTZNN model  with  MN  for  RMC of  the  OMMs.  (a)  Joint  angles  and  wheels  of  the  OMMs;
(b) Joint velocities and wheel velocities of the OMMs; (c) Tracking results of the OMMs; (d) Position error .
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