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and Experiment

Zhongcai Zhang, Jinshan Bian, and Kang Wu

   Dear Editor,
This letter investigates the fixed-time trajectory tracking controller

design  for  nonholonomic  chained  systems  with  static  state  con-
straints. Firstly, a fixed-time tracking control law is given to carry out
relay  switching,  which  divides  the  controller  development  process
into  two  stages.  For  the  goal  of  designing  fixed-time  tracking  con-
troller in the second stage and avoiding the explosion of complexity,
fixed-time  filters  are  introduced.  Under  these  preparations,  a  fixed-
time tracking controller is elaborated by applying barrier-Lyapunov-
function-based backstepping. In addition, a new tracking controller is
also proposed to guarantee that the tracking error system is bounded
before  switching.  It  has  been  proved  that  the  resulting  closed-loop
tracking error system states converge to a small neighborhood around
zero within a fixed time and output states are kept in the predefined
constrained regions.

Recently,  the  control  of  nonholonomic  systems  has  attracted
increasing attention due to their broad application in practice, such as
the wheeled mobile cars [1]. Based on scholars’ previous works, sta-
bilization control strategies for nonholonomic systems can be divided
into inconsecutive method [2], time-varying smooth method [3], and
method with hybrid feedback [4]. In terms of tracking control, schol-
ars  usually  adopt  the  relay-switching-based  method  to  achieve  the
effect of tracking [5]. In addition, [6] solved the arbitrary configura-
tion stabilization problem by a trajectory approach.

−Fi1(t) < xi(t) < Fi2(t), (Fi j(t) > 0, j = 1,2)
Generally,  the  general  form  for  describing  state  constraints  is

.  Up  to  now,  the  main
methods for solving state constraint problems have invariant set the-
ory  [7],  model  prediction  [8],  barrier  Lyapunov function  (BLF)  [9],
and state-dependent functions (SDF), etc. In view of literature, BLF-
based [10] and SDF-based [11] methods are also utilized to manage
nonholonomic control systems under state constraints in recent years.

In  addition,  fixed-time  control  is  more  useful  in  practice  than
finite-time control  [12].  So far,  the main methods for solving fixed-
time  problems  have  terminal  sliding  mode  control  [13],  adding  one
power integrator technique [14], etc. At the same time, a few results
have  been  achieved  for  the  fixed-time  study  of  nonholonomic  con-
trol  systems,  such  as  [15].  Up  to  now,  although  many  works  have
been reported on nonholonomic systems, it has seldom been consid-
ered how to design a tracking controller in the presence of state con-
straints and fixed-time control simultaneously.

Motivated  by  these  points,  this  paper  investigates  the  fixed-time
trajectory  tracking  controller  design  for  nonholonomic  chained  sys-
tems with static state constraints. The main works are summarized as:

1) The fixed-time tracking control is addressed initially for an out-
put-state-constrained  chained  nonholonomic  system.  The  designed
tracking  controller  can  ensure  that  system tracking  error  states  con-
verge to a bounded set within a fixed time and output states are kept

in the pre-specified state constraints regions.
2) Generally, introducing filters in fixed-time control problem will

lead to virtual controller in each backstepping step not differentiable.
To remedy this difficulty, we have proposed “compound virtual con-
trollers”, which further extends the previous results.

Problem statement: The studied nonholonomic system is [2]
 

ẋ0 = u0, ẋ1 = x2u0, . . . , ẋn−1 = xnu0, ẋn = u1 (1)
x0 x = (x1, . . . , xn)T ∈ Rn u0 u1

x0d xd = (x1d , . . . ,
xnd)T

where  and  are  system states,  and  are
control  inputs.  The  tracking  trajectory  states  and 

 are system states of a virtual system as
 

ẋ0d = u0d , . . . , ẋ(n−1)d = xndu0d , ẋnd = u1d (2)
u0d u1d

x0e = x0 − x0d x1e = x1 − x1d . . . xne = xn − xnd

where  and  are virtual control inputs. In order to formulate the
trajectory tracking dynamic equation, let us introduce tracking errors
as , , , .  Then,  the  track-
ing error dynamic equations are described as
 

ẋ0e = u0 −u0d , ẋie = x(i+1)eu0d + xi+1(u0 −u0d)
ẋne = u1 −u1d , 1 ≤ i ≤ n−1. (3)

u0
u1 x0e x1e . . . xne

Ωxie ≜ {xie : −ki1 < xie(t) < ki1} (i = 0,1)
ki1 > 0

The control goal is expressed as: designing tracking controllers ,
 to  ensure  that , , ,  converge  to  zero  within  a  fixed

time, and output tracking error states always stay in the desired con-
strained  regions   with  con-
stants .

u0d(t) ū0d > 0
u0d > 0 ū0d > u0d(t) > u0d > 0

Assumption 1:  is continuous, and there are constants 
and  such that .

x0e

x0e V0 =
1
2 ln

k2
0

k2
0−x2

0e
u0

Fixed-time  tracking  control  of -subsystem: Now,  we  con-
sider -subsystem and choose a candidate BLF as .
The fixed-time tracking control signal  is picked as
 

u0 = u0d −α0sig(x0e)
m0
n0 ω01(k2

0 − x2
0e)

−β0sig(x0e)
p0
q0 ω02(k2

0 − x2
0e) (4)

sig(µ)σ = sign(µ)|µ|σ ω01 = [1/(k2
0 − x2

0e)]γ01 , ω02 = [1/(k2
0−

x2
0e)]γ02 α0, β0 > 0, 0 < m0

n0
< 1, p0

q0
> 1, 1

2 < γ01 = ( m0
n0
+1)/2 < 1,

γ02 = ( p0
q0
+1)/2 > 1 m0 n0 p0 q0

V0

where , 
, 

, , , , and  are odd integers. By comput-
ing the time derivative of , in view of (4), one has
 

V̇0 ≤ −α0x2γ01
0e ω01 −β0x2γ02

0e ω02. (5)
Moreover, utilizing Lemma 1 in [11], one concludes that

 

2γ01 Vγ01
0 ≤

x2γ01
0e

k2
0 − x2

0e

, 2γ02 Vγ02
0 ≤

x2γ02
0e

k2
0 − x2

0e

. (6)

With the help of (6), one has
 

V̇0 ≤ −α02γ01 Vγ01
0 −β02γ02 Vγ02

0 . (7)
κ1 = α02γ01 , κ2 = β02γ02

t1 t1 ≥ 1
κ1(1−γ01)+

1
κ2(γ02−1)

Let . According to the fixed-time stability in
[16], we can pick switching time  in such a way that 

.

−k01 < x0e(0) < k01
x0e−

x0e = x0 − x0d u0 −u0d
k0 < k01

|x0e(t)| < k0 < k01 t > 0

Proposition  1: Assume  that ,  the  fixed-time
tracking control strategy (4) designed for  subsystem, can guar-
antee that  and  tend to zero within a fixed time
and  keep  zero  afterwards.  Meantime,  by  choosing ,  then

 for , that is, state constraint is realized.
(x1e, . . . , xne) t ≥

t1 u0 −u0d = 0 t ≥ t1
(x1e, . . . , xne)

Fixed-time tracking control of -subsystem when 
: Owing to  when , we can obtain that the dynamic

equation of -subsystem is written as
 

ẋ1e = x2eu0d , . . . , ẋ(n−1)e = xneu0d , ẋne = u1 −u1d (8)

zi = xie − ϵid
yi = ϵid − ϵ∗i (2 ≤ i ≤ n) ϵ∗i ϵid

for  which  backstepping  design  can  be  applied.  For  the  subsequent
design,  we introduce  the  following transformations  and

  where  represent  virtual  controllers  and 
are  filter  states  which are  generated by the following fixed-time fil-
ters [17] : 
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τiϵ̇id = sign(ϵ∗i − ϵid)
m1
n1 + sign(ϵ∗i − ϵid)

p1
q1 (9)

τi > 0where  denote filter-related small parameters. Next, we provide
controller development in detail.

V1 =
1
2 ln

k2
1

k2
1−z2

1
+ 1

2 y2
2, z1 = x1e ϵ∗2

Step 1:  In  this  step,  we choose  a  candidate  Lyapunov function  as
.  The  first  virtual  controller  is

designed as
 

ϵ∗2 = −
k2

1 − z2
1

u0d

z1ϵ̄
∗2
2√

z2
1ϵ̄
∗2
2 +ε

2
(10)

ϵ̄∗2 = α1sig(z1)
m1
n1 ω11 +β1sig(z1)

p1
q1 ω12 +

1
2

z1u2
0d

(k2
1−z2

1)2where .  Moreover,
we can get that
 

y2ẏ2 ≤ −
y2γ1

2
τ2
−

y2γ2
2
τ2
+

1
2

y2
2 +

1
2

M2
2

(11)

S 2 = −
∂ϵ∗2
∂z1

ż1 −
∂ϵ∗2
∂u0d

u̇0d S 2

|S 2| ≤ M2 M2 > 0
(10) (11)

where .  Since  is  a  continuous  function,  in
view of Assumption 1, it is bounded in a compact set, which in turn
means that  with  being a constant. Now, by combin-
ing  and  with some deductions, it yields that
 

V̇1 ≤ −α1z2γ1
1 ω11 −β1z2γ2

1 ω12 −
y2γ1

2
τ2

−
y2γ2

2
τ2
+ y2

2 +
u0dz1z2

k2
1 − z2

1

+Θ1 (12)

Θ1 =
1
2 M2

2 +ε ω11 = [1/(k2
1 − z2

1)]γ1 , ω12 = [1/(k2
1 − z2

1)]γ2

α1, β1 > 0, 0 < m1
n1
< 1, p1

q1
> 1, 1

2 < γ1 =

m1
n1
+1

2 < 1, γ2 =

p1
q1
+1

2 > 1

m1 n1 p1 q1
u0dz1z2
k2

1−z2
1

where , ,

,
, , ,  and  are odd integers.  The term  will  be handled

later.
i (2 ≤ i < n)

Vi = Vi−1 +
1
2 ln ki

2

ki
2−zi

2 +
1
2 y2

i+1 ϵ∗i+1

Step  :  In this step, the candidate Lyapunov function is
configured as . Virtual controller  is
designed as
 

ϵ∗i+1 = −
k2

i − z2
i

u0d

ziϵ̄
∗2
i+1√

z2
i ϵ̄
∗2
i+1 +ε

2
(13)

where
 

ϵ̄∗i+1 = −
ϵ̇id

k2
i + z2

i

+αisig(zi)
m1
n1 ωi1 +βisig(zi)

p1
q1 ωi2

+
u0dzi−1

k2
i−1 − z2

i−1

+
1
2

ziu2
0d

(k2
i − z2

i )2
. (14)

Similar  to  step  1,  after  some  tedious  calculation  processing,  one
can deduce a desired result as
 

V̇i ≤ −
i∑

j=1

(
α jz

2γ1
j ω j1 +β jz

2γ2
j ω j2

)
+

i∑
j=1

y2
j+1

−
i∑

j=1

( y2γ1
j+1

τ j+1
+

y2γ2
j+1

τ j+1

)
+

u0dzizi+1

k2
i − z2

i

+

i∑
j=1

Θi. (15)

n
Vn = Vn−1 +

1
2 ln k2

n
k2

n−z2
n

u1

Step :  Now  we  choose  the  last  Lyapunov  candidate  function  as
.  After  some  computations,  the  actual  control

input  can be proposed as
 

ϵ̄∗n+1 = αnsig(zn)
m1
n1 ωn1 +βnsig(zn)

p1
q1 ωn2

+
u0dzn−1

k2
n−1 − z2

n−1

− u1d + ϵ̇nd

k2
n − z2

n
,

u1 = −
(k2

n − z2
n)znϵ̄

∗2
n+1√

z2
nϵ̄
∗2
n+1 +ε

2
. (16)

Similar to (15), we generate the ultimate result as
 

V̇n ≤ −
n∑

j=1

(
α jz

2γ1
j ω j1 +β jz

2γ2
j ω j2

)

−
n−1∑
j=1

( y2γ1
j+1

τ j+1
+

y2γ2
j+1

τ j+1

)
+

n−1∑
j=1

y2
j+1 +Θ (17)

Θ =
∑n

j=1Θi

y 1 ≤ h ≤ l, |yh+1| ≥ 1,
l+1 ≤ d ≤ n−1, 0 ≤ |yd+1| < 1

1
τ j+1

1
τ j+1
= τ̄ j+1 + τ̂ j+1

0 ≤ |yd+1| < 1

where . Like [18], to prove the tracking error system (8)
is  practically  fixed-time  stable,  let  us  rearrange  the  subscript  serial
number  of  variable  in  the  following  way: 

.  And for the coming stability analysis
presentation,  are  divided  into .  Owing  to

, we can obtain the following inequalities:
 

τ̂d+1y2γ1
d+1 ≥ τ̂d+1y2

d+1, τ̂h+1y2γ2
h+1 ≥ τ̂h+1y2

h+1. (18)
Under these, the following inequality is obtained as:

 

V̇n ≤ −
n∑

j=1

(
α jz

2γ1
j ω j1 +β jz

2γ2
j ω j2

)

−
n−1∑

d=l+1

(
τ̄d+1y2γ1

d+1 + τ̂d+1y2
d+1

)
−

l∑
h=1

(
τ̄h+1y2γ1

h+1 + τ̂h+1y2
h+1

)
+

n−1∑
j=1

y2
j+1

−
l∑

h=1

y2γ1
h+1
τh+1

−
n−1∑

d=l+1

y2γ2
d+1
τd+1

+Θ. (19)

τi
min{τ̂d+1, τ̂h+1} ≥ 1

Note that it is not difficult to choose filter parameters  such that
. Under which, the following inequality is further

obtained as:
 

V̇n ≤ −
n∑

j=1

(
α jz

2γ1
j ω j1 +β jz

2γ2
j ω j2

)

−
l∑

h=1

y2γ1
h+1
τh+1

−
n−1∑

d=l+1

τ̄d+1y2γ1
d+1

−
n−1∑

d=l+1

y2γ2
d+1
τd+1

−
l∑

h=1

τ̄h+1y2γ2
h+1 +Θ. (20)

α =min{α j} β =min{β j} χ1 =min{ 1
τh+1

τ̄d+1} χ2 =

min{ 1
τd+1

τ̄h+1} A =min{α,χ1} B =min{β,χ2}
Define , , , , 

, ,  and  let , .  Meanwhile,
according  to  Lemma  1  in  [11]  and  Lemmas  3.3  and  3.4  in  [16],  it
yields the following result:
 

V̇n ≤ −aVγ1
n −bVγ2

n +Θ (21)
a = An1−γ1 2γ1 b = B2γ2where , .

x1e, . . . , xne

|x1e(t)| < k11 t ≥ t1

Proposition 2: Let us study the tracking error system (8). Tracking
controller specified by (16) can ensure that  converge to a
small  region  around  zero  within  a  fixed  time.  Additionally,

 for , that is, output state constraint is achieved.
ϖ =max{(Θ/((1− c)a))1/γ1 , (Θ/((1− c)b))1/γ2 }

V̇n ≤ −c
(
aVγ1

n +bVγ2
n
)
≤ 0 0 < c < 1

Vn ≥ϖ {Vn ≤ϖ}
ϖ ≥ 1 ϖ < 1 ϖ ≥ 1

V̇n ≤ −cbVγ2
n Vn ≤ϖ t ≥ϖ/(cb(γ2 −1)) ϖ < 1

V̇n ≤ −caVγ1
n Vn = 1 Vn ≤ϖ

t ≥ 1/(ca(1−γ1))−ϖ1−γ1/(ca(1−γ1))

|zi(0)| < ki (1 ≤ i ≤ n) zi(t) (1 ≤ i ≤ n)
|zi(t)| < ki (1 ≤ i ≤ n) z1 = x1e

k1 < k11 |x1e(t)| = |z1(t)| < k1 < k11

Proof:  Define .  Due
to  (21),  it  holds  that  with  when

.  Therefore  is  an  invariant  set.  In  the  sequel,  two
possible  cases:  or  will  be  discussed.  If ,  since

,  it  yields  that  for .  If ,
since , the time that taken to get from  to 
should  satisfy ,  therefore,
tracking error system (8) is practically fixed-time stable. Meanwhile,
since ,  it  is  known  that   are
bounded  and .  Further,  since ,  hence  by
choosing , we have . ■

(x1e, . . . , xne) [0, t1]

[0, t1]

Tracking  control  of -subsystem  for : Further,
we  will  establish  that  tracking  error  system  (3)  is  bounded  during
time interval .

u0d >
α0k0 +β0k0

Assumption 2: Except for Assumption 1, it is supposed that 
.

u0(t) > 0 t ≥ 0 u0Assumption  2  results  in  for .  In  addition,  since 
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u0d u1d xid (2 ≤ i ≤ n)
|ϕn| = | −u1d | < ζn |ϕi| = |x(i+1)d(u0 −u0d)| < ζi (1 ≤ i ≤ n−

1) ζi (1 ≤ i ≤ n)

specified by (4), , , and   are bounded. As a con-
sequence, ,  

 with   being  positive  constants.  For  the  simplicity  of
presentation, system (3) is rewritten as
 

ẋ1e = x2eu0 +ϕ1, ẋie = x(i+1)eu0 +ϕi, ẋne = u1 +ϕn (22)
iwhich has a similar form with system (3). In fact, in Step , an addi-

tional inequality should be added as
 

ziϕi

k2
i − z2

i

≤ |ziϕi|
k2

i − z2
i

≤
µiz2

i ζ
2
i

(k2
i − z2

i )2
+

1
4µi
. (23)

u1Subsequently, system control input  is designed as
 

ϵ̄∗n+1 = αnsig(zn)
m1
n1 ωn1 +βnsig(zn)

p1
q1 ωn2

+
u0zn−1

k2
n−1 − z2

n−1

+
µnznζ

2
n

(k2
n − z2

n)2
− ϵ̇nd

k2
n − z2

n

u1 = −
(k2

n − z2
n)znϵ̄

∗2
n+1√

z2
nϵ̄
∗2
n+1 +ε

2
. (24)

[0, t1] |x1e(t)| < k11 0 ≤ t ≤ t1

Proposition 3: Let us study the resulting closed-loop tracking error
system  (22)  and  (24).  The  designed  tracking  controller  (24)  can
ensure  that  the  error  system  (22)  is  bounded  in  the  operation  time
interval  and  for .

xie(0) ∈Ωxie ≜ {−ki1 < xie(t) < ki1}
(0 ≤ i ≤ n) u0 u1
u0 = (4) t ≥ 0 u1 = (24) 0 ≤ t < t1 u1 = (16) t ≥ t1

limt→t1 x0e(t) = 0 −ki1 < xie(t) < ki1 (0 ≤ i ≤ 1) t ≥ 0

Theorem  1:  For  the  closed-loop  tracking  error  system  (3),  we
assume  that  system  initial  states 

 and  tracking  controllers  and  are  actualized  as:  1)
 for ;  2)  for  and  for ,

then  the  following  control  objectives  can  be  achieved  as:  1)
;  2)   for  any ;  and

3)  all  signals  in  closed-loop  system  (3)  converge  to  a  bounded  set
within a fixed time.

ẋ = vcos(θ) ẏ = vsin(θ) θ̇ = w (xd ,yd , θd)
ẋd = 0.1cos(0.5t) ẏd = 0.1sin(0.5t) θ̇d = 0.5

x0=θ x1= xsin(θ)−ycos(θ)
x2 = xcos(θ)+ ysin(θ) u0 = ω u1 = v− x1u0

Experiment results analysis: We use the QBot2e wheeled mobile
robot manufactured by Quanser (detailed description can be found in
[5])  to  demonstrate  the  effectiveness  of  the  presented  tracking
method.  The  kinematic  model  of  this  robot  can  be  expressed  as

, , .  Assume  that  is  generated
by , , . By applying the fol-
lowing state and control transformations , ,

, ,  to the kinematic system,
and applying some similar transformations to the virtual system, we
can obtain a tracking error system like (3).

α0 = 0.6
β0 = 0.6 α1 = 0.4 β1 = 0.5 α2 = 0.6 β2 = 0.5 m0 = 7 n0 = 9
p0 = 9 q0 = 7 m1 = 5 n1 = 7 p1 = 7 q1 = 5 ζ1 = ζ2 = 0.01
µ1 = µ2 = 1 ε = 0.05 τ2 = 0.05 k0 = 0.6 k1 = 1.2 k2 = 1.2

[xd(0),yd(0), θd(0)]T = [0,0,0]T

x y θ

For  experiment,  the  control  parameters  are  picked  as ,
, , , , , , ,

, , , , , , ,
, , , , , . The ini-

tial  system states  are set  as .  In view
of Fig. 1, it follows that system trajectory states , , and  can track

xd yd θdtheir desired trajectory states , , and , respectively.
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Fig. 1. The state and speed responses of the QBot2e.
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