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Abstract: With the growing awareness of data privacy, federated learning (FL) has gained increasing attention in recent years as a
major paradigm for training models with privacy protection in mind, which allows building models in a collaborative but private way
without exchanging data. However, most FL clients are currently unimodal. With the rise of edge computing, various types of sensors
and wearable devices generate a large amount of data from different modalities, which has inspired research efforts in multimodal feder-
ated learning (MMFL). In this survey, we explore the area of MMFL to address the fundamental challenges of FL on multimodal data.
First, we analyse the key motivations for MMFL. Second, the currently proposed MMFL methods are technically classified according to
the modality distributions and modality annotations in MMFL. Then, we discuss the datasets and application scenarios of MMFL. Fi-

nally, we highlight the limitations and challenges of MMFL and provide insights and methods for future research.
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1 Introduction

With the development of big data, the field of artifi-
cial intelligence is increasingly prosperous. The prolifera-
tion of edge devices in modern society, as mobile devices
and Internet of Things devices, has led to a rapid in-
crease in private data from distributed sources. While
abundant data present huge opportunities for solving
various tasks, most of the data are not centralized but
distributed on the servers of various enterprises, which
are highly sensitive in nature. The low-quality, incom-
plete and insufficient data among multiple parties results
in data silos. This is additionally important in the health-
care sector, where medical data are highly sensitive. The
data are often kept in different healthcare facilities and
are not publicly availablell"4. As increasing attention is
drawn to privacy protection, many laws and regulations
such as the General Data Protection Regulationl)
China’s Cyber Security Law of the People's Republic of
Chinalfl and the General Principles of the Civil Law of
the People’s Republic of Chinall have been proposed to
protect users’ privacy and data security.
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Federated learning (FL)E11 has received extensive at-
tention as a major paradigm for training models in a pri-
vacy-preserving manner. Compared with centralized
learning, FL proposes a distributed learning framework
that does not transmit private data of each client but
only model parameters or intermediate results, which pro-
tects the privacy among clients while saving communica-
tion costs. The core idea is to perform distributed model
training among multiple data sources with local data.
The global model is constructed by exchanging model
parameters or intermediate results, thus achieving a bal-
ance between privacy and accuracy. By eliminating the
need to aggregate all data on a single device, FL over-
comes the challenges of the privacy concerns mentioned
above and allows models to learn from decentralized data.

While FL enables the training of global models
without sharing local data, most of the existing FL ap-
proaches are trained using unimodal data. With the con-
tinuous development of edge computing, various types of
sensors and devices generate data from different modalit-
ies (e.g., sensory, visual, audio, etc.)l!?. For example, in
the medical field, physical examinations usually include
X-ray, CT, and MRI; in a smart home, human activities
may be recorded by body sensors or by RGB cameras in
the room. For clients with different device settings, some
of them may have multimodal local data (i.e., multimod-
al clients) while others may have unimodal local data
(i.e., unimodal clients). Therefore, the study of multimod-
al federated learning (MMFL) is necessary.
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Multimodal learning provides higher accuracy and ro-
bustness than unimodal learning because multimodal
learning combines information from multiple sources at
the signal level or semantic level. It better accomplishes
the tasks by means of representation/!3-15] alignment[16-18],
and fusionl!% 20l Representation finds the contextual
properties that reflect the given task by analysing the ad-
ditional knowledge provided by different modalities.
Alignment identifies the mapping between modalities,
while fusion combines information from multiple modalit-
ies to achieve a prediction task. These methods facilitate
FL to use the data uploaded by each client more effect-
ively to accomplish the task, and utilizing these different
modalities of client data is the key to achieving better
results in FL. Real-world applications of multimodality
such as mental health monitoring using wearable
sensors2ll, medical imaging with RGB and depth maps[22],
and language translation using text and images?3] have
all shown better accuracy and robustness than unimodal
models.

MMFL investigates the problem of learning a global
model when each client’s local data are of different mod-
alities, which makes it a dark horse in the field of FL for
processing multimodal data. MMFL can realize the effect-
ive use of complementary information between different
modalities and obtain a global model that is superior to
unimodal data. This paper is dedicated to a thorough
study of current MMFL, including recent advances, chal-
lenges and applications. We believe this is the first relat-
ively detailed survey of MMFL. Our main contributions
are summarized as follows:

1) We provide a brief overview of FL and analyse in
detail the shortcomings of existing FL algorithms when
faced with multimodal data. We then introduce the key
motivations and application scenarios for using multimod-
al data for FL. Through these, the proposed taxonomy
for MMFL is introduced, and the existing work is intro-
duced and summarized in detail.

2) We propose a modality distribution-based and
modality annotation-based classification method for
MMFL to showcase existing work on MMFL, highlight-
ing their challenges, their main ideas and assumptions.

3) We introduce MMFL datasets and usage scenarios
and envision future MMFL research efforts, and discuss
new data-combination methods and more trustworthy
methods to build MMFL systems.

The rest of the paper is structured as follows: Section
2 presents related work, including the basics of FL, mul-
timodal learning, and the vision of using multimodal data
in FL. The proposed taxonomy is presented in Section 3.
In Section 4, some commonly used multimodal federated
datasets are introduced. In Section 5, the application of
MMFL in reality is given. The current difficulties of
MMFL and future perspectives are presented in Section
6. Finally, the paper concludes with the conclusion in
Section 7.
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2 Related works

With the growing interest in privacy-preserving and
multimodal data, FL and multimodal learning have been
proposed and increasingly applied in real-life applications.
In this section, we will introduce the basic concepts of FL
and multimodal learning and will give the visions of mul-
timodal data in FL accordingly. This section is the basis
for our systematic and comprehensive survey of MMFL.

2.1 Multimodal learning

In the context of human-computer interaction, a mod-
ality is the classification of a single independent channel
of sensory input/output between a computer and a hu-
manf?4, Devices such as cameras and microphones dir-
ectly act on human senses of the computing world, while
devices such as sensors are indirect. Multimodality com-
bines multiple modalities to help us better understand the
world around us and provide a better experience25l. With
the popularization of smart devices and the continuous
progress of deep learning, research questions naturally
point to the problem of larger and more complex mul-
timodal data. Multimodal learning can learn the charac-
teristics of data representation at different levels of ab-
straction and extract useful features from multiple modal-
ities, which makes it more attractive when dealing with
different types of data. For example, Bayoudh et al.[26] fo-
cused on computer vision-related fields such as vision and
language, summarizing six perspectives in the current lit-
erature on deep multimodal learning. Then this paper
surveys current multimodal applications and proposes a
set of benchmark datasets to address problems in various
vision domains. Gao et al.2”l mainly explored the fusion
field in the multimodal challenge, summarized the cur-
rent pioneering multimodal fusion model, and introduced
some challenges and future topics faced by the model.
Muhammad et al.28 aimed to fill the gap in comprehens-
ive research on multimodal learning in the field of smart
healthcare, outlining existing multimodal signal fusion
and device fusion schemes, different fusion strategies, and
the importance of security and privacy. These reviews all
demonstrate in detail the superior performance of mul-
timodal learning. As a method of collaborative learning,
FL has also aroused the deep interest of researchers in
the field of multimodality.

2.2 Federated learning

Since it was proposed as a privacy-preserving ma-
chine learning paradigm, FL has made multimodal learn-
ing more secure by providing a distributed and privacy-
enhanced efficient scheme. With recent advances in mo-
bile hardware and growing concerns about privacy leaks,
FL is particularly attractive for building distributed mul-
timodal systems. Homomorphic encryption and other
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methods are introduced in information aggregation to
avoid violating individual privacy. Thus, user data will
only be kept locally, which is beneficial to each parti-
cipant in the multimodal system in terms of saving com-
munication costs and protecting privacy. Here, we intro-
duce the key concepts of FL in multimodal systems and
present some FL categories that are frequently used in
multimodal learning.
2.2.1 Key concepts

In a multimodal system, client data for FL can come
from a single modality or multiple modalities, such as
cameras and sensors in the same scene. The client trains
the model locally to extract shared or correlated repres-
entations between different modalities, and the original
data are kept locally on the client. The server utilizes al-
gorithms such as FedAvgl/l% to combine encrypted inform-
ation from multiple sources to build a better performing
global modell®: 29I, The objective function F(w) of the
central server is usually expressed as

F(w) =Y "= Fi(w) (1)
k=1
where m is the total number of clients involved in
training, m = ni,--- ,nk is unimodal or multimodal data
and Fy(w) is the local objective function of the k-th
device,

Filw) = - 3 flaiyiw) 2)

iedy,

where di is the local dataset of the k-th client and
f(xs,yi;w) is the loss function generated by the model
with parameter w for the instances (z;,y;) in dataset di.

The sum of the loss functions generated by all in-
stances in di divided by the total amount of data in cli-
ent k is the average loss function of the local clients, and
the loss function is inversely proportional to the model
accuracy. Therefore, objective function optimization is
usually used to make the loss function reach the minim-
um value.

2.2.2 FL classifications

Depending on how the data are distributed in the fea-
ture and sample space, FL frequently used in multimodal
systems can be divided into horizontal FL, vertical FL,
and federated transfer learning/30l,

Horizontal FL is suitable for scenarios in which data
holders have the same feature space and little or no over-
lap in the sample ID space. In a multimodal system, one
application of horizontal FL is intelligent monitoring,
such as using monitoring or sensors (similar feature
space) for people flow detection in different scenarios
(sample ID space does not overlap), and the model para-
meters are averaged through the server to obtain a more
efficient global model.

Vertical FL is suitable for scenarios where there is

considerable overlap in user space among participants,
and little or no overlap in feature space. An example ap-
plied in a multimodal system can be e-health, such as the
same patient in different hospitals. In this case, the dia-
gnosis results of different parts (different feature spaces)
of the same patient (the same sample ID space) are
passed through the server by performing parameter align-
ment, and the patient’s electronic medical record can be
obtained.

Federated transfer learning is a supplement to hori-
zontal and vertical settings, and is suitable for scenarios
where the user space and feature space of each parti-
cipant have less overlap. The most commonly used scen-
ario for federated transfer learning in the multimodal sys-
tems is federated medical care. Many hospitals in differ-
ent countries collect various medical images and electron-
ic medical records (different feature spaces) from differ-
ent patients (sample ID spaces do not overlap), so as to
effectively improve the model’s performance.

2.3 Visions of multimodal data in FL

With the emergence of the Internet of Things and the
popularization of cloud computing, the rate of generation
of multimodal data from heterogeneous sources continues
to grow. As a common method for edge computing, tradi-
tional FL faces the challenge of diverse client data distri-
butions. In this context, multimodal learning has gained
extensive attention from researchers due to its ability to
learn deep features from different data and has become
an effective method to address data diversity. Through
methods such as multimodal representation and fusion,
multimodal learning can effectively solve the abovemen-
tioned challenges. Therefore, many investigations on FL
have focused on areas related to multiple modalities!31-34].
For example, the Internet of Things and big data.

Nguyen et al.3% provided a comprehensive survey of
FL applications, which explores FL and Internet of
Things development, integration, and applications. Key
challenges such as FL performance, threats, and Internet
of Things heterogeneity are analysed in detail, and pos-
sible research directions are given. Gadekallun et al.[3l
conducted a comprehensive survey of big data services
and applications and reviewed the applications and key
projects of FL in big data services. The use of FL acceler-
ates the learning process and improves the accuracy of
learning while saving communication costs. In addition,
FL is also combined with multimodal learning in the
medical field. The work in [37] proposed a new dynamic
fusion-based FL method for medical diagnostic image
analysis to detect COVID-19 infection, which dynamic-
ally fuses the client’s X-ray and CT data to improve the
accuracy of diagnosis on the basis of protecting privacy.

According to the above surveys, MMFL can effect-
ively utilize the information of different modalities to
realize the alignment and fusion of modalities and solve
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some problems of multimodal learning. In the following
sections, we conduct an extensive survey of existing
MMFL work and propose a taxonomy. This paper dis-
cusses in detail the role and benefits of MMFL and high-
lights gaps gained from the survey and research for fu-
ture work.

3 Proposed taxonomy

A current challenge of FL research is that there is not
a detailed taxonomy of using multimodal data. Many of
the papers discussed above, although they focus on
MMFL work, only describe its application in a specific
field and do not integrate and classify MMFL work.
Ideally, the multimodal data held by clients of MMFL are
homogeneous and well annotated. However, in real life,
multimodal data have distribution diversity, which leads
to data heterogeneity among different clients. The data
owner does not have the time or ability to label the data.

In this paper, we investigate the question of whether
client-side multimodal data are heterogeneous and wheth-
er annotated data are sufficient, introducing a new
MMFL taxonomy for the first time. Our proposed classi-
fication method, shown in Fig.1, is a key consideration
for MMFL based on modal conditions when creating an
effective global model. These conditions are the distribu-
tion of modalities among clients and the availability of
modal annotations. The taxonomy is based on two as-
pects: modality distributions and modality annotations.
For each aspect, we further provide multiple subcategor-
ies that reflect the impact of client-side multimodal data
and labels on MMFL.

3.1 Modality distributions

The client data of FL are generally unimodal and ho-
mogeneous (Fig.2(a)), which allows the aggregation serv-
er to directly use algorithms such as federated averaging.
However, with the popularization of smart devices and
the increasing demand for deep learning, client-side data
will have modal heterogeneity, and traditional FL. can no
longer meet the needs of realistic requirements. For ex-

Modality distributions

Proposed taxonomy
for MMFL

Modality annotations
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ample, in a smart home, surveillance video or motion
sensor data belong to different modalities that describe
the same thing, and either of these can be used to com-
plete the gesture recognition task, but FL cannot dir-
ectly use the uploaded data of the two to build a global
model. How to align data from different modalities, how
to take advantage of complementary information between
modalities, and how to preprocess client-side modalities
to generate a global model are all issues that this subsec-
tion focuses on. Starting from the modalities of the client,
we design the basic model for MMFL in Fig.2(b) and find
through analysis that MMFLs are generally divided into
two types: 1) homogeneous multimodality and 2) hetero-
geneous hybrid modality. A schematic diagram of these
two types is shown in Fig. 3. It is worth noting that these
works tend to be supervised learning, and related semi-su-
pervised and unsupervised work will be discussed on mod-
ality annotations classification.

3.1.1 Homogeneous multimodality

We start our discussion with homogeneous multimod-
ality, which, in simple terms, replaces the unimodal cli-
ent in FL with a client that uses multimodal data. Homo-
geneous multimodality is an initial successful attempt to
combine FL. and multimodal learning, and is mainly used
for tasks where centralized learning cannot be achieved
due to privacy or communication cost constraints/38].
These tasks are often limited by the number of samples
and privacy, and the performance of locally trained mod-
els is poor and insufficient to meet the task requirements.
With the help of the FL structure, the work in homogen-
eous multimodality overcomes the limitation of the num-
ber of samples and achieves the performance improve-
ment of each client.

Agbley et al.39 fused two modalities: skin lesion im-
ages and their corresponding clinical data. By comparing
the results of centralized learning and FL, it is demon-
strated that MMFL can effectively learn highly predict-
ive models while ensuring that training data are not
shared among participating clients. With the successful
application of MMFL in the medical field, relevant re-
searchers have set their sights on the field of autonomous
driving. Cassara et al. [0 proposed a new federated fea-

Homogeneous
multimodality

Heterogeneous
hybrid modality

Supervised MMFL

Semi-supervised MMF

Unsupervised MMFL

NN NI N N

Fig.1 Proposed taxonomy for MMFL
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by integrating training parameters from each unimodal client under the control of a central server; (b) Multimodal federated learning

that enhances the accuracy and robustness of FL.
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Fig. 3 A schematic diagram of the modality distributions classification model: (a) Homogeneous multimodality, where the local data
are multimodal and homogeneous between clients; (b) Heterogeneous hybrid modality, where local data are a hybrid modality that is

heterogeneous between clients.

ture selection algorithm that iteratively proposes the
smallest set of features selected from the local dataset.
Feature selection is carried out using the mutual informa-
tion metric, and the optimization problem is solved by
the method of cross entropy. The algorithm uses a
Bayesian-based aggregation method to send the client’s
information to the edge server. In the same period, Salehi
et al.[4l proposed a multimodal FL framework that used
multimodal data from sensors and millimeter radar to
predict optimal sectors. They also investigated the im-
pact of missing modalities during inference. The results
show that using the proposed MMFL framework reduces
sector selection time by 52% while maintaining sufficient
throughput.

It can be seen from the above investigation that ho-

mogeneous multimodal work can effectively solve the
problems of insufficient samples and high communication
costs, which is a successful attempt at FL in the mul-
timodal field. However, this classification work also has
great shortcomings; that is, it requires homogeneous data
between clients and cannot effectively deal with the prob-
lems of heterogeneous modalities. Then, we discuss the
case where data on the client side are heterogeneous.
3.1.2 Heterogeneous hybrid modality

One of the main challenges faced by MMFL is that
multimodal data in real-world scenarios often suffer from
heterogeneous modalities. Clients in this category have
data in one or more modalities, and there is data hetero-
geneity#274 among them. The main reason for this is the
heterogeneity between devices, such as hospitals in first-
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tier cities and hospitals in remote areas in smart health-
care: hospitals in first-tier cities may use CT, X-ray and
other methods to detect the same part and use EHR as
an aid, while remote areas may only have one detection
method. To solve the heterogeneous problem, MMFL util-
izes alignment, fusion and collaborative learningl46-48]
methods to effectively use heterogeneous data to build a
global model and improve the performance of each parti-
cipant model.

We study a recent paper on modality alignment[49,
and the method in the paper does not achieve modality
alignment but rather early fusion. Fused training para-
meters cannot be applied to unimodal clients, to capture
the complementarity of information between different
modalities in a distributed manner, Xiong et al.l’% pro-
posed a simple and effective multimodal FL framework.
The attention mechanism, as a common method in mul-
timodal alignment methods, is used in the framework to
capture the complementary information between each cli-
ent’s sensor data and images. Weil5!l applied FL to a mul-
timodal fusion model and proposed a new algorithm for
FL-based disease diagnosis models. The client side inde-
pendently trains the classification model for each modal
data and uploads the parameters, and then the server
side applies an aggregation algorithm to analyse their
gradient descent direction. Qayyum et al.’2 proposed a
collaborative learning framework based on clustering FL
to intelligently process visual data at the edge by train-
ing a multimodal learning model capable of diagnosing
COVID-19 in X-ray and ultrasound images. With collab-
orative learning, clustering FL can handle heterogeneous
data from different sources (i.e., X-ray and ultrasound
images).

The work in heterogeneous hybrid modality solves the
problem of heterogeneous modalities caused by the di-
versity of data distribution with the help of multimodal-
ity methods. In addition, Bernecker et al.l’3] normalized
the data with the help of slice modality information and
hard-coded mode assignment, and achieved high-perform-
ance completion of liver segmentation tasks for multimod-
al data. However, compared with homogeneous mul-
timodality, the above method consumes more computing
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resources and has the disadvantages of relying on comple-
mentary information between modalities and high time
costs.
3.1.3 Discussion

In this subsection, we propose two classifications
based on modality distributions: homogeneous multimod-
ality and heterogeneous hybrid modality. Homogeneous
multimodality follows the structure of FL, replaces unim-
odal clients with multimodal clients, and makes use of the
advantages of FL's network structure to compensate for
the lack of local sample size. It is most suitable for the
case where clients are homogeneous to each other. It is
widely used in autonomous driving and smart homes.
Heterogeneous hybrid modality takes into account the
data heterogeneity caused by device heterogeneity in
practical applications and can effectively aggregate vari-
ous clients. However, both categories default to all local
client data being annotated, which is difficult to achieve
Next,
present the work of MMFL under different annotation

in an information explosion environment. we

conditions.
3.2 Modality annotations

The continuous development of big data makes it very
easy for people to obtain data, which provides data sup-

the
However, the owners of these data may not have the time

port for development of multimodal learning.
or ability to label the data, such as judging whether the
CT or X-ray images of an organ are normal. Annotation
via user interaction is also not possible, as this would lead
to a risk of leakage of user privacy. This subsection looks
at modal annotation in MMFL, summarizing and analys-
ing supervised work, semi-supervised work(54-61 and unsu-
pervised work[62-66], The schematic diagram of modality
annotations is shown in Fig. 4.
3.2.1 Supervised MMFL

In supervised models, all samples of all modalities
have labels available. The initial implementation of
MMFL started with supervised learning on labelled data.
With the help of FL, a multimodal transfer learning

framework is studied in [67] to build a powerful global

?

Unlabelled data[Emmm-—u]

+

EEaw EEes-w

tot

(c¢) Unsupervised MMFL

[Euww

Ewww

Fig. 4 A schematic diagram of the modality annotations classification model: (a) Supervised MMFL, trained with labelled data; (b)
Semi-supervised MMFL, trained with both labelled and unlabelled data; (c¢) Unsupervised MMFL, trained with unlabelled data.
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model by aggregating labelled data from different hospit-
al organizatiosns with the help of multiple smart wear-
able devices.

The disease diagnostic multimodal modell®? uses fully
labelled CT and X-ray images for alignment to exploit
the complementary information of multiple modalities.
Chen and Zhangl68 proposed the FedMSplit framework,
which employs a dynamic graph structure to capture ad-
aptive correlations between multimodal client models.
The framework conducts experiments using a labelled
multimodal ensemble dataset, demonstrating the effect-
iveness of the method for MMFL problems with inconsist-
ent modalities among clients.

Labelled data allow researchers to explore the rela-
tionship between features and labels to quickly build cor-
responding models. However, sufficient labelled data do
not exist in real life, and the semi-supervised and unsu-
pervised MMFL described below is trained using unla-
belled data.

3.2.2 Semi-supervised MMFL

For multimodal models, two situations may occur
with the client data of semi-supervised MMFL: All cli-
ents have a small amount of labelled data and a large
amount of unlabelled data; some clients use labelled data,
and others use unlabelled data. The number of modalit-
ies is different, and the number of combinations pro-
duced is also different, such as multimodal learning using
labeled images as well as large amounts of unlabelled text
datal®% 7], Although partially labelled data exist for semi-
supervised learning, labelling data is a time-consuming
manual process and prone to errors. Therefore, it is neces-
sary to use semi-supervised MMFL methods to achieve ef-
fective utilization of multimodal data. One of the most
commonly used methods in semi-supervised is the autoen-
coder™-73] method, which enables representation learning
on the input data.

Zhao et al.[" proposed a semi-supervised FL frame-
work for human activity recognition and compared the
performance of different autoencoders. Their framework
has better performance than data augmentation schemes.
On this basis, a multimodal and semi-supervised FL
framework is proposed in [75] and assumes that unla-
belled data can come from a unimodal modality or from
multiple modalities. The framework trains an autoen-
coder to extract shared or correlated representations from
different local data patterns on the client side, and per-
forms downstream classification on auxiliary labelled data
via a global autoencoder. In addition, Yu et al.l’6l pro-
posed a federated framework based on semi-supervised
online learning, which introduces an aligned hierarchical
attention architecture for different levels of features,
which can achieve better results through unsupervised
gradient aggregation and fine-tuning.

3.2.3 Unsupervised MMFL

In unsupervised models, the training data are not la-

belled. This is because labelling these data is expensive

and challenging. Multimodality makes this step extra dif-
ficult, as each modality requires individual annotations
and some annotations require expert annotation[77.
MMFL can use unannotated multimodal data to accom-
plish the task in several ways. Data augmentation is a
method to achieve unsupervised MMFL. Xie et al.[™8 de-
signed a data augmentation procedure for unsupervised
training of FL using severely distorted and unpaired data
to complete multimodal brain synthesis.

Because of privacy, bandwidth and high annotation
cost, Saeed et al.[™¥ proposed an unsupervised method for
scalogram-signal correspondence learning. The method
learns useful representations from unlabelled sensor in-
puts by designing auxiliary tasks. To overcome the limit-
ation of huge memory and computational cost required to
directly train unlabelled data in smart healthcare, Ariku-
mar et al.B% proposed an FL-based person movement
identification algorithm. Using a deep reinforcement
learning framework to automatically label unlabelled data
achieves high accuracy while reducing computational cost
and memory usage. A federated transfer learning frame-
work was proposed in [81], which uses contrastive learn-
ing as a transfer learning strategy to learn transferable
representations from multimodal participants to help par-
ticipants work with unimodal data.

Therefore, utilizing unsupervised techniques to learn
useful representations is important for unlabelled mul-
timodal data. The above methods show good results on
the MMFL task.

3.2.4 Discussion

Supervised MMFL using annotated data can effect-
ively address the problem of heterogeneous modalities
and has higher robustness. Nevertheless, adding annota-
tions manually is time-consuming, and some annotations
require expert knowledge. The annotation of multimodal
data is more complex, and it is necessary to ensure the
alignment of annotations and modalities. Therefore, work
on semi-supervised and unsupervised MMFL is necessary
and important.

4 Multimodal federated datasets

The availability of multisource data from various
sensors and mobile devices drives the trend of multimod-
al data usage, and MMFL works by slicing multimodal
datasets to represent clients that are homogeneous or het-
erogeneous to each other. To date, a series of multimodal
datasets for various aspects has been available, which has
greatly facilitated the development of MMFL. Faced with
such a rich multimodal dataset, which data should be se-
lected for MMFL research is a matter of careful consider-
ation. To this end, in this section, we introduce several
commonly used multimodal datasets in MMFL work, in-
cluding domains such as autonomous driving, object re-
cognition, and medical diagnosis.

Kineics-40082. Tt consists of a massive dataset of
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YouTube video URLs, which includes a range of differ-
ent human actions. The dataset includes more than 300 000
video sequences of 400 human actions.

RealWorld2B3l. It is a sensor-based HAR dataset
collected from 15 probands. It includes 8 activities, such
as running, standing and lying down. Everyone wears
sensing devices on seven parts of the body, including the
chest, forearm, head, calf, thigh, upper arm and waist.

IEMOCAPB4, It consists of 4 453 video clips of re-
corded conversations. Each segment is annotated with 9
emotions (happy, angry, excited, fearful, etc.) for human
emotion analysis.

ModelNet40B5, It contains 12311 3D shapes that
are used for multiview 3D object recognition tasks, cover-
ing 40 common categories, including airplanes, bathtubs,
beds, bookshelves, and more. Every 3D CAD object has
an M = 2 mode as two views of its shape.

Vehicle sensorltl, It contains 23 instances. Each in-
stance is an individual client described by 50 acoustic fea-
tures and 50 seismic features. This dataset is often used
for vehicle identification.

mHealth dataset(7]. It contains 13 activities of daily
living and exercise, including standing still, sitting and re-
laxing, and zero activity. These activities are measured
by multimodal body sensors, including accelerometers,
ECG sensors, gyroscopes, and magnetometers.

UR fall detection dataset88]. It contains 70 video
clips of human activities recorded by an RGB camera and
a depth camera, including not lying, lying on the ground,
and temporary poses. Each video frame was labelled and
paired with sensory data from an accelerometer meas-
ured in grams.

5 Applications

The excellent performance exhibited by MMFL has
led to its integration with real-world applications. Re-
searchers have used MMFL to improve the performance
of designed tasks to better accomplish learning goals and
meet real-life needs. In this section, we discuss MMFL ap-
plication scenarios as well as recent state-of-the-art liter-
ature to introduce the advantages of MMFL in solving
real-life problems in more detail.

5.1 MMFL in internet of things

Through various devices and technologies, such as
various information sensors, radio frequency identifica-
tion technology, and infrared sensors, the Internet of
Things collect various needed information such as sound,
location, and movement, which facilitates human
lifel89-91, However, most of the data generated by sensors
are inherently sensitive and involve the private data of
different citizens and businesses. Modern applications
usually deploy different types of sensors or devices,
mostly generating data from different modalities (e.g.,
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visual, audio, and other senses). For example, in a hu-
man activity recognition task, human behavior can be re-
corded by an RGB camera or by a sensor for gesture de-
tection(92. Traditional FL or multimodal learning ap-
proaches cannot handle the problems that may arise in
the Internet of Things. MMFL, which combines the prac-
ticalities of FL and multimodal learning, is a potential
solution to the above problems. Recent research on
MMFLs used to address Internet of Things problems will
be discussed below.

Zhu et al.%] proposed a new framework based on hy-
brid policies, while introducing the edge FL model into
reinforcement learning and developing a corresponding
online algorithm to improve the system performance. The
algorithm uses sensor data, urban security surveillance,
and data from smart device users for certain types of
computing tasks to achieve tasks such as trajectory plan-
ning, data scheduling, and bandwidth allocation. The res-
ults show that the algorithm not only outperforms the
baseline in terms of the average system age but also im-
proves the stability of the training process. Considering
practical network resource constraints, Wang et al.[%4
proposed a more robust system-level multitask federated
connected autonomous vehicle perception. Perceptual er-
rors are minimized by multilayer graph resource alloca-
tion and vehicle pose comparison methods. By analysing
point clouds, images, and radar data collected by on-
board sensors, it also automatically adjusts the number of
sensors in the cases of varying complexity, enabling auto-
matic regulation of resources. The algorithms are experi-
mentally proven to greatly improve the perceptual accur-
acy for all tasks. Chen and Lil%! found the reasons why
some MMFL performance lags behind FL by analysing
the complexity of non-iid data, namely, the data distribu-
tion and modal distribution across clients and its hetero-
geneity. To address this issue, they proposed a new train-
ing algorithm, called hierarchical gradient blending,
which adaptively achieves optimal mixing of modal sub-
networks and optimal aggregation of local updates. A rig-
orous theoretical analysis is used to demonstrate the ef-
fectiveness in various non-IID multimodal data scenarios.

5.2 MMPFL in HealthCare

With the rapid development of computer software and
hardware technologies, more and more healthcare data
are available from organizations such as clinical facilities,
patients and the pharmaceutical industryl 36, 91, It has en-
abled the healthcare field to make better use of all types
of data to improve the quality of diagnosis and care.
However, because these healthcare data are often decent-
ralized and private, unauthorized and casual use of the
data can lead to personal and institutional privacy
breaches, creating a huge information security crisis. The
diagnosis of a disease is often related to multiple data,
which involves the use of multimodal learning, such as
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COVID-19, which affects the whole world, can be determ-
ined not only from lung CT or X-ray but also through
electronic health recordsl®799. This poses a challenge for
technologies applied to healthcare, and MMFL, as a tech-
nology that enables distributed learning using multimod-
al data while protecting privacy, is a key approach to this
challenge.

Parekh et al.19] explored FL that contains datasets
from different domains and is trained to solve different
tasks. The paper evaluates cross-domain FL for target de-
tection and segmentation tasks in two different experi-
mental settings: multimodal and multiorgan. The model
achieves tumor segmentation by CT and PET of the kid-
ney as well as MRI of the brain and MRI of the chest.
The results demonstrate the potential of FL in develop-
ing multidomain, multitask deep learning models without
sharing data from different domains. To diagnose COV-
ID-19 effectively without compromising privacy, Chen et
al.101] discussed a multimodal study of COVID-19 based
on collaborative joint learning and proposed a blockchain
FL model to diagnose COVID-19 by analysing CT and X-
ray images. In this model, different hospitals train the
parameters using local data and then upload them to the
blockchain for encryption, and the whole process pro-
tects the privacy of patients. The model has proven to be
highly feasible in practice. Ji et al.[l92] proposed a vertic-
al FL model for detecting human states using multimod-
al data. The model considers the speed problem due to
device heterogeneity and different modal complexities and
designs a fast and secure module that effectively reduces
the amount of transmitted data. Experiments using brain
CT images and a time-series heart rate dataset for hu-
man state detection show the feasibility of multimodal
vertical FL. Compared with single-peak learning, the ac-
curacy was improved by 5.6 percentage points, and the
time required for training was reduced by 48.1%.

6 Research challenges and future dire-
ctions

With the continuous progress and development of big
data, practical MMFL applications have started to de-
mand better models, and this area is attracting increas-
ing attention. Based on our review of MMFL classifica-
tion and MMFL applications in different domains above,
we summarize the difficulties and challenges of existing
MMFL and propose foreseen research directions to ad-
dress these research difficulties.

6.1 Multimodal alignment

Multimodal alignment is defined as finding relation-
ships and correspondences between components of mul-
tiple modal instances. For example, given an image and a
paragraph describing the image, we want to find the cor-
respondence between the textual description area and the

object of the given imagel™ 103, 104 For MMFL, aligning
the signals from different modalities is an important step
because it affects the performance of the later stages.
Most of the current MMFL models require client-side
alignment between single-peak data, while few datasets
have explicitly labelled alignments, which are typically
created manually. It requires preprocessing of multimod-
al data or finding common features in higher dimensions
of different modal data, which is a limitation for the real-
time performance of the algorithm and for reducing the
time required to train and use the model. There may be
possible alignment, not all elements in one modality have
correspondence in another modality. To address the
above issues, future research should focus on unsuper-
vised learning that does not require labelled data and
self-supervised learning that can be trained by contextu-
al relationships of unlabelled data, or semi-supervised
learning by extracting hidden representations of unla-
belled data and correlated representations between differ-
ent modalities.

6.2 Modal deficiency

Modal deficiency can be caused by 1) the heterogen-
eity of devices used by different clients, resulting in one
or more missing modes, and 2) the devices being the same
but in different scenarios, resulting in a certain modality
being interfered with and not being used[195-108]. A schem-
atic diagram of modality deficiency can be seen in Fig.5.
Although the study of overcoming modal deficiency to
complete the task has been introduced in Section 3 on
modality distribution, most of these studies obtained
more generalized results by some unsupervised methods,
which is not enough for some tasks requiring higher ac-
curacy. The modal deficiency client has higher computa-
tional costs than the modal complete client, which is the
opposite of the problem MMFL tries to solve. To solve
the modal deficiency, future research can focus on using
data augmentation to complement missing modalities or
modal normalization to achieve better results by comple-
menting modalities or ignoring the influence between
modalities.

6.3 Privacy protection

To protect the private data of clients from leakage,
existing research protects users’ data security through pri-
vacy-preserving approaches such as secure multiparty
computation and differential privacy[10% 110,  While
MMFL utilizes multimodal data to obtain better robust-
ness and accuracy, the alignment information of local cli-
ents themselves and between clients increases the risk of
data leakagel''ll. Through attacks such as poisoning at-
tacks or inference attacks, hostile participants can infer
the private data of other clients by uploading fake data
and obtaining additional information with the help of
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Fig. 5
not being used.

alignment information or update parameters. To address
this challenge, future research should, on the one hand,
continue to strengthen the research on various privacy
protection methods related to FL and, on the other hand,
consider preprocessing the alignment information to pre-
vent adversarial participants from using this information
to infer private information.

7 Conclusions

In this survey, we systematically review the strengths
as well as the weaknesses of FL. and multimodal learning
and use them to propose the need for using MMFL. We
propose a technical classification of MMFL based on the
key challenges in MMFL and existing research, and
provide a detailed explanation of the reasons for the clas-
sification. Finally, we discuss the applications of MMFL
and present the issues and directions for further research
on MMFL. We hope that the survey can help relevant re-
searchers understand the current status and importance
of MMFL research and contribute to the long-term devel-
opment of MMFL.
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