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Abstract:   Due to the complexity of emotional expression, recognizing emotions from the speech is a critical and challenging task. In
most of the studies, some specific emotions are easily classified incorrectly. In this paper, we propose a new framework that integrates
cascade attention mechanism and joint loss for speech emotion recognition (SER), aiming to solve feature confusions for emotions that
are difficult to be classified correctly. First, we extract the mel frequency cepstrum coefficients (MFCCs), deltas, and delta-deltas from
MFCCs to form 3-dimensional (3D) features, thus effectively reducing the interference of external factors. Second, we employ spatiotem-
poral attention to selectively discover target emotion regions from the input features, where self-attention with head fusion captures the
long-range dependency of temporal features. Finally, the joint loss function is employed to distinguish emotional embeddings with high
similarity to enhance the overall performance. Experiments on interactive emotional dyadic motion capture (IEMOCAP) database in-
dicate  that  the method  achieves  a positive  improvement  of  2.49%  and  1.13%  in weighted  accuracy  (WA)  and unweighted  accuracy
(UA), respectively, compared to the state-of-the-art strategies.
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 1   Introduction

As artificial  intelligence continues  to  evolve,  the  field

of affective computing has attracted a lot of interest from

researchers. The purpose of emotion recognition, a major

branch of  affective  computing,  is  to  recognize  significant

information  from  the  data,  including  face,  speech,  and

text. Speech is a reliable source of emotional information

among these data, containing not only textual content as

well  as  paralinguistic  elements  such  as  emotions.  In  re-

cent  years,  speech  emotion  recognition  (SER)  has  been

extensively  utilized  in  many  fields,  including  distance

education, personalized customer service, and medical sci-

ence.  However,  SER remains  a  difficult  problem because

of  the  variation  in  speech  and  the  complication  of  ex-

pressed  emotions.  Therefore,  the  works  of  SER have  re-

ceived much focus in recent years.

Feature extraction is  a vital  process  in SER systems,

aiming  to  produce  valid  high-level  feature  representa-

tions  for  various  emotions.  In  terms  of  acoustic  feature

extraction, several feature sets based on low-level descri-

ptors  (LLDs) and high-level  statistic  functionals  (HSFs),

including  INTERSPEECH-2010,  GeMAPS,  AVEC-2013,

and ComParE,  have  been developed for  a  wide  range  of

applications[1].  However,  these  hand-crafted  feature  sets

might  not  be  ideal  for  representing  emotions  in  speech,

thus  leading  to  suboptimal  performance.  With  the  in-

crease  in  computing  power,  deep  learning  has  become

mainstream, which provides superior capabilities for high-

level feature capturing. For example, Schmidt and Kim[2]

employed  the  deep  belief  network  (DBN)  to  extract  the

representation  of  emotional  features  from the  magnitude

spectrum and exhibited improved performance compared

to hand-crafted features. Han et al.[3] used the highest en-

ergy segments  to train a deep neural  network (DNN) to

extract the mel frequency cepstrum coefficients (MFCCs)

and  pitch,  which  contain  valid  emotional  information.

Mao  et  al.[4] first  employed  a  convolutional  neural  net-

work (CNN) to extract emotional highlighted features for

SER, which displayed excellent results on a few common

datasets.

Although DNNs have gained enormous success in the

field of SER, they still utilize personalized features as in-

put  that  are  sensitive  to  various  speaking  styles,  speech

contents, and environments. Despite that most of the cur-

rent research for SER is related to personalized emotion-

al features and has gained excellent recognition perform-

ance,  particularly  for  specific  speakers,  it  is  still  challen-

ging  to  decrease  huge  differences  in  individualized  fea-

tures  for  different  speakers  and  the  modes  of  speaking.

Recently, researchers introduced the rate of change to re-
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flect the change in emotion during speech as a way to ob-

tain  speaker-independent  and  stable  speech  emotion  fea-

tures.  For  example,  Chen  et  al.[5] utilized  deltas  and

delta-deltas  of  log  mel-spectrogram  to  reduce  the  differ-

ences  in  personalized  features  across  individuals.  Howe-

ver,  the  deltas  and  delta-deltas  of  personalized  features

reflect  the process of  emotional  changes and retain valid

affective information while decreasing the impact of emo-

tional-irrelevant factors. In addition, MFCCs are features

that accurately describe the short-time power spectral en-

velope of speech, which combines the auditory perceptual

properties  of  the  human  ear  with  the  mechanism  of

speech production and emphasizes prior knowledge of hu-

man beings.  Therefore,  we compute MFCCs,  deltas,  and

delta-deltas as inputs to the proposed network in this pa-

per.

Since emotions are expressed just in specific moments

of utterance, how to efficiently highlight emotional-relev-

ant  regions  becomes  a  pivotal  point  for  SER.  In  recent

years, the attention mechanism has attracted widespread

focus[6, 7].  Chen  and  Huang[8] proposed  dual  attention-

based  bidirectional  long  short-term  memory  (BLSTM)

network  in  order  to  extract  sequence  information  from

MFCCs  and  spatiotemporal  features  from  log-mels  for

SER.  Nevertheless,  for  3-dimensional  feature  inputs,  the

attention  mechanism  treats  each  channel′s  attention

equally, while the features of each channel have different

contributions  to  emotion.  To  address  this  issue,  a  re-

cently  developed  spatiotemporal  attention  consists  of

channel  attention  and  spatial  attention,  which  could  fo-

cus on the meaningful feature detectors and the emotion-

al  regions.  Spatiotemporal  attention  is  verified  to  be  ef-

fective in any computer vision and SER tasks.  However,

spatiotemporal attention cannot capture information over

long  distances.  Liu  et  al.[9] introduced  self-attention,

which  disregards  the  distance  between  features  to  dir-

ectly  calculate  the dependencies,  thus capturing relevant

information  in  the  features.  However,  self-attention  fo-

cuses  on  the  overall  feature  rather  than  the  regional  in-

formation about the feature. Xu et al.[10] proposed self-at-

tention  with  head  fusion  to  generate  multiple  subspaces

to produce feature points that highlight emotions, allow-

ing the model to focus on different aspects of information.

Compared to the general self-attention, the self-attention

with head fusion allows the model to focus on each part

of  the  feature  representation  in  detail  rather  than  the

overall  features  at  once.  It  is  noted  that  channel  atten-

tion locates the targeted emotional detectors, and spatial

attention  locates  the  targeted  emotional  areas  from  de-

tectors selected by channel attention, while the self-atten-

tion  with  head  fusion  focuses  on  the  degree  of  depend-

ency of each part of the feature representation, thus cap-

turing  long-distance  dependencies.  This  demonstrates

that  spatiotemporal  attention  and  self-attention  with

head fusion may be complementary to each other. There-

fore, they are integrated into the cascaded attention net-

work (CAN) to further enhance the SER performance in

this paper.

Another  critical  issue  in  SER is  the  confusion of  fea-

tures among emotion classes. Feature confusion is a phe-

nomenon in which the clusters  of  features  from different

emotion  classes  might  overlap  with  each  other.  In  most

previous  studies,  some  specific  emotions  have  been

wrongly  classified.  From  the  results  shown  in  the  inter-

active  emotional  dyadic  motion  capture  (IEMOCAP)

dataset[11],  it  is  observed that the utterances with happy

and neutral  labels  are seriously confused.  We consider it

to be the result of similar levels of happy and neutral ac-

tivation, and the subtle difference could not be captured

by  the  model.  To  tackle  this  issue,  Sahu  et  al.[12] con-

strained  the  feature  distribution  through  an  adversarial

loss.  However,  there  is  no  expanded  decision  margin

between the various categories. Dai et al.[13] utilized cen-

ter  loss  and  cross-entropy  loss  to  obtain  discriminative

features  from  variable  length  spectrograms,  which  signi-

ficantly  enhanced  the  intra-class  compactness.  However,

in  the  case  of  short  inter-class  distances,  the  decision

margin  was  not  clear.  To  address  this  problem,  Gao  et

al.[14] developed  a  framework  for  metric  learning-based

feature representation. They used triplet loss to solve the

problem of emotions being grossly misclassified. Features

from the  same class  are  pulled  closer,  and features  from

different  classes  are  pulled  further  apart  by  triple  loss,

which  eliminates  the  effect  of  feature  confusion  and  ex-

tracts more distinguishable emotion features. Inspired by

the advantages of triplet loss, we introduce cross-entropy

loss and triplet loss as a joint loss function to ensure im-

proved classification accuracy.

In  this  paper,  we  propose  an  architecture  that  integ-

rates  a  cascaded  attention  network  with  a  joint  loss  for

the  SER.  First,  we  extract  MFCCs,  deltas,  and  delta-

deltas of MFCCs features from the original speech to re-

duce the interference caused by factors unrelated to emo-

tion such as  speaker,  content,  and environment.  Second,

to enable the neural network to learn parts of speech with

salient emotion, we introduce the cascaded attention net-

work  to  locate  a  few  targeted  emotional  areas,  where

channel attention is used to select the important feature

detectors,  spatial  attention is  used to locate the location

of  emotional  regions,  and self-attention with head fusion

captures  long-distance  dependencies.  Finally,  we  intro-

duce  a  novel  joint  loss  strategy  consisting  of  triplet  loss

and cross-entropy loss, which constitutes the heart of our

contribution to solving the feature confusion problem. It

explicitly  promotes  intra-class  compactness  and  inter-

class severability among the learned features, which gives

rise to larger decision margin to improve the overall clas-

sification  accuracy.  Experimental  results  on  the  bench-

mark  dataset  IEMOCAP  demonstrate  that  our  method

achieves 80.34% and 77.91% in weighted accuracy (WA)

and unweighted accuracy (UA), respectively.

The  remainder  of  this  paper  is  organized  as  follows.

Section  2  provides  the  proposed  method  in  detail.

Section  3  provides  the  experimental  setup  in  detail.

Section  4  provides  the  experimental  results.  Section  5
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analyzes  the  experimental  results.  Finally,  Section  6

presents our conclusions and future work.

 2   Proposed method

Fig. 1 depicts an overview of the proposed framework.

First, we calculate the MFCCs (static, deltas, and delta-

deltas)  from  the  speech  signals  as  input  for  CAN.

Secondly,  we  briefly  describe  the  architecture  of  CAN,

which  integrates  CNN and  BLSTM with  a  cascaded  at-

tention  mechanism,  followed  by  a  fully  connected  layer.

Finally, the joint loss function enhances inter-class sever-

ability and intra-class compactness.

 2.1   Acoustic feature extraction

xi

i i

Given  a  speech  signal,  we  first  reduce  the  variation

among  different  speakers  by  utilizing  normalization.

Then,  the  speech  signal  is  split  into  short  frames  with

Hamming windows of 40 ms and a window shift of 10 ms.

Finally, spectrograms are mapped to mel-scale by mel fil-

ters,  and  we  use  the  logarithm  to  calculate  the  MFCCs

and extract the deltas and delta-deltas of MFCCs simul-

taneously,  which  are  used  as  the  input  to  CAN  as ,

where  represents the -th sample.

 2.2   Cascaded attention network

We  perform  feature  extraction  by  CAN.  In  the  pro-

posed  framework,  firstly,  CNN  is  utilized  for  extracting

spatial  features.  Next,  spatiotemporal  attention  is  pro-

posed  to  extract  emotional  features  from  3-dimensional

(3D)  features.  Then,  BLSTM  is  used  for  extracting  the

time  sequence  feature.  Finally,  self-attention  with  head

fusion is used for capturing long-distance dependencies.

CNN. We  use  four  convolution  layers  normalized

F0

after each convolution layer, where the kernel size of the

first three convolution layers is set to 3×3, and the pad-

ding is set to 1. Next, frequency information is convolved

in the last convolution layer to calculate , which is fed

into  the  channel  attention. Table  1 describes  the  details

of each convolutional layer.

Channel attention. Due  to  the  fact  that  the  chan-

nel  of  the  feature  maps  is  regarded  as  feature  detectors,

channel  attention  concentrates  on  the  important  feature

detectors, when searching for regions related to emotion.

F0

Fmax
c F avg

c

Fc

We first compress each channel of  to generate the

spatial  descriptors  and  by  max-pooling  and

average-pooling  operations.  Max-pooling  features  collect

contributions  from  all  features,  and  average-pooling  fea-

tures collect important clues about distinctive audio fea-

tures.  These  descriptors  are  then  used  as  input  to  the

shared network to obtain the feature weights. The activa-

tion  function  Relu  is  used  to  normalize  the  feature

weights.  Finally,  after  the  shared  network  is  applied  to

each  channel,  the  channel  weight  and  the  input  feature

map  are  summed  using  an  element-wise  summation  to

generate  the  feature  map .  We  calculate  the  channel

attention:

Fc = σ(S(Avg(F0)) + S(Max(F0))) =

σ
(
W1

(
W0

(
F avg

c + Fmax
c

)))
(1)

σ S

W0 W1

where  represents  sigmoid  function,  represents  the

shared  network,  and  and  represent  the  shared

weight matrices.

Spatial  attention. Compared  to  channel  attention,

spatial  attention  focuses  on  the  emotion  regions  of  fea-

ture  detectors  selected  by  channel  attention,  which  is

complementary to channel attention.

In order to calculate spatial attention, first, we calcu-
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Fig. 1     Details of the proposed method. This network consists of nine phases: 1) Triplet selection. 2) The extracted MFCCs, deltas, and
delta-deltas features are used as input acoustic features for CAN. 3) CNN is used to extract spatial features. 4) Channel attention is used
to  discover  the  emotion-relevant  parts  of  each  channel.  5)  Spatial  attention  is  used  to  complement  channel  attention  and  discover
emotion-relevant parts of space. 6) BLSTM is used to extract temporal features. 7) Self-attention with head fusion is used to focus on
capturing  long-distance dependencies.  8) The  fully  connected  layer  is utilized  to  obtain high-level  feature  representations  for better
classification accuracy. 9) Joint loss is used to expand the distance between different emotion samples and fuse the label information to
learn a better feature representation.
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F1 F0 Fc

Fs

Fmax
s

F avg
s

late  by multiplying  and . Then, we aggregate the

channel information of the feature maps to obtain  by

using  the  max-pooled  features  and  average-pooled

features . Then, we calculate the spatial attention:

Fs(F1) = σ (f([Avg(F1);Max(F1)])) =

σ
(
f
([
F avg

s ;Fmax
s

]))
(2)

f

σ

where  represents  a  convolution  operation  with  a  filter

size of 7 × 7, and  represents the sigmoid function.

F0

F0 F2

F3 F2 F1 Fs

F3

BLSTM. We first utilize the sequence features  ex-

tracted  from  the  four  convolutional  layers  to  perform  a

skip  connection  via  a  shortcut  and  perform  an  element-

wise  summation  operation  between  and  to  obtain

,  where  is  calculated  by  multiplying  and .

Then,  is activated by the activation function Relu. Fi-

nally,  the activated values are fed into the BLSTM net-

work with 32 cells per direction.

Xattn
j

WQ
j WK

j W V
j j ∈ (0, nhead]

Self-attention  with  head  fusion. Different  from

spatiotemporal  attention,  self-attention  intends  to  cap-

ture  the  long-range  dependencies  of  the  BLSTM  layers

output. We calculate  by using different parameter

sets , , ,  as follows:

Att(WQ
j Q,WK

j K,WQ
j V ) = sft(QjKj

T )Vj (3)

Xattn
j = Att(Qj ,Kj ,Vj) (4)

Xattn
j Q K V

sft

W

Xm

where each  is referred to as a head. , , and 

are equal to the output of the BLSTM.  represents the

softmax  function.  represents  trainable  parameters.

Then, we superimpose the heads to produce an attention

map  as follows:

Xm =

∑nhead−1
0 Xattn

j

nhead
. (5)

XmFinally, we generate a feature map for  using glob-

al average pooling (GAP) as the output of CAN.

 2.3   Joint loss

As  shown  in Fig. 2,  the  triplet  loss  training  strategy

learns  an  embedding  space  where  the  samples  from  the

same class are nearer to others than those from different

classes.

The  distance  between  positive  samples  and  anchor

samples,  which  possess  the  same  emotion  labels,  is  min-

imized by triplet loss, and the distance between negative

samples and anchor samples, which possess different emo-

tion label, is maximized by triplet loss. We calculate the

triplet loss:

pdist = ∥f (xa
i )− f (xp

i )∥2 (6)

ndist = ∥f (xa
i )− f (xn

i )∥2 (7)

LT = max(pdist− ndist+M, 0) (8)

xa
i xp

i

xn
i

f (xa
i ) , f (xp

i ) , f (xn
i )

∥f (xa
i )− f (xp

i )∥
2
2 ∥f (xa

i )−
f (xp

i ) ∥
2
2

M

where  represents  anchor  samples,  represents

positive  samples,  and  represents  negative  samples.

 and  represent  the  embeddings

learned by CAN from the anchor,  positive,  and negative

samples,  respectively.  and 

 are the Euclidean distances between the features

learned from positive pairs and negative pairs.  repres-

ents a minimum distance between two Euclidean distances.

α α

L

We  combine  the  cross-entropy  loss  and  the  triplet

loss, assigning different weights  and (1– ), where cross-

entropy loss contains emotion label information. The joint

loss  is defined as

LC = − 1

N

N−1∑
i=0

K−1∑
k=0

yi,k ln pi,k (9)

L = α× LT + (1–α)× LC (10)

LC yi,k

i k pi,k

i k

N

where  represents  the cross-entropy loss  function. 

represents  the  true  probability  distribution  and  the  true

label  of  the -th  sample  as .  represents  the

probability  output  of  the  softmax  layer  and  the

probability that the -th sample is predicted to be the -

th label.  represents the number of triplets.

 3   Experiments

 3.1   Dataset

In  order  to  assess  the  proposed  method,  we  selected

the  IEMOCAP  corpus,  which  contains  about  twelve

 

Table 1    Details of four convolution layers

Layer kernel−size channelin channelout Padding

Conv1 (3, 3) 3 8 1

Conv2 (3, 3) 8 16 1

Conv3 (3, 3) 16 32 1

Conv4 (26, 1) 32 64 0
 

 

Anchor Anchor

Positive Positive

Negative NegativeLearning objective

 
Fig. 2     Learning objective of triplet loss
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hours of audio data from 10 performers. IEMOCAP con-

sists of five sessions, where one female and one male act-

or perform in improvised and scripted scenes during each

session.  This  corpus  includes 10 039 utterances,  where

emotions  such  as  angry,  happy,  sad,  neutral,  surprise,

fear,  excited,  disgust,  and  frustrated  were  annotated  by

at  least  three  expert  evaluators.  Consistent  with  prior

methods[10, 15], the experiment uses four emotions: happy,

angry, neutral, and sad, where the excited class, which re-

places the happy class, was selected only from the impro-

vised utterances.

 3.2   Experimental setup

10−4

10−6

We randomly select 80% of the corpus as the training

corpus and the other 20% as the test corpus. In the eval-

uation,  we  employ  the  5-fold  cross-validation  approach.

In our training set, the utterances are split into segments,

where  the  window  length  is  2 s  and  the  window  shift  is

1 s.  In  our  testing  set,  the  window  shift  is  set  to  1.6

seconds, which is consistent with [10]. We obtain the last

prediction by averaging the prediction of all  segments of

an original utterance in the test process. Adam optimizer

is  selected  with  the  initial  learning  rate  of  and

weight  decay  of .  We  set  the  batch  size  to  32.  We

use  weighted  accuracy  (WA)  and  unweighted  accuracy

(UA) as evaluation criteria.

 3.3   Triplet selection

Since not all triplets contain information that contrib-

utes  significantly  to  training,  and  some  even  lead  to

slower convergence of the model, the selection of triplets

is very important to enhance the model performance[16].

In  the  experiment,  we  randomly  select  anchor,  posit-

ive  and  negative  samples  to  form  triplets.  Then,  during

the training of batches, we choose the hard triplets as fol-

lows:

∥f (xa
i )− f (xn

i )∥22 < ∥f (xa
i )− f (xp

i )∥
2
2 (11)

to  calculate  the  triplet  loss.  The  choice  of  hard  triplets

allows  the  training  to  concentrate  on  undistinguishable

samples and decreases computation complexity.

 4   Results

 4.1   Impact of joint loss weight and triplet
margin

α

M

Fig. 3 presents  the  WA  and  UA  assessed  at  various

joint  loss  weights  and  triplet  margins.  We  achieve  the

highest WA and competitive UA when  is set to 0.3 and

 is set to 0.2.

As shown in Fig. 3(a), it is difficult for the network to

α α

pull  the  confused  samples  apart  until  the  weight  of  the

triplet loss  reaches 0.3. With the increase of  from 0.3,

the  network  could  not  ensure  that  the  divided  samples

could be classified into the correct class, leading to lower

WA and UA.

M

M

As shown in Fig. 3(b), before  reaches 0.2, the con-

fused samples are pulled apart to a low degree, making it

difficult  for  the  network  to  distinguish  between  the  an-

chor  and  negative  samples.  As  increases  from  0.3,

model training becomes more challenging, and the model

has difficulty converging with poor model fits, leading to

lower WA and UA.

 4.2   Ablation study

In this section, we analyze the contribution of 3D fea-

tures,  cascaded  attention  mechanism,  and  joint  loss  to

the IEMOCAP corpus.

 4.2.1   Effects of 3D features

In this section, in order to evaluate the contribution of

individual components as the input of CAN, we have ana-
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Fig. 3     Impact  of  different  triplet  loss  weights  and  margin
values.  (a)  Prediction  accuracy  of  different  weights  between
cross-entropy loss and triplet loss. (1– ) is the cross-entropy loss
weight, and   is the triplet loss weight. (b) Prediction accuracy
of different margin values.
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lyzed  the  following  four  conditions.  The  results  of  this

analysis are shown in Fig. 4 and Table 2.
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Fig. 4     Confusion  matrices  for  the  variants  of  the  proposed
approach.  M1-1:  the  proposed  approach.  M1-2:  Proposed
without  MFCCs.  M1-3:  Proposed  without  deltas  of  MFCCs.
M1-4: Proposed without  delta-deltas  of MFCCs. The  diagonal
numbers represent the recall rate for each emotion.
 

 
 

Table 2    Ablation study for each component in 3D features.
Percentages in bold denote the best-performing method

Model Methods WA (%) UA (%)

M1-1 Proposed 80.34 77.91

M1-2 Proposed without MFCCs 76.17 75.25

M1-3 Proposed without deltas 77.64 75.98

M1-4 Proposed without delta-deltas 79.36 75.70

 
1) Model 1-1 (M1-1) is the proposed approach.

2) Model 1-2 (M1-2) deletes the MFCCs from M1-1.

3) Model 1-3 (M1-3) deletes the deltas of MFCCs from

M1-1.

4)  Model  1-4  (M1-4)  deletes  the  delta-deltas  of

MFCCs from M1-1.

Firstly,  to  verify  the  impact  of  MFCCs,  the  experi-

mental results in Table 2 indicate that M1-1 has a great

degree of improvement over M1-2 and improves by 4.17%

on WA and 2.66% on UA in the comparison of M1-1 and

M1-2. Compared to M1-2, the method learns the spectral

envelope and static characteristics of speech via MFCCs.

Secondly,  to  verify  the  impact  of  deltas  and  delta-

deltas of  MFCCs, we have compared the performance of

M1-1  with  M1-3  and M1-1  with  M1-4,  respectively.  The

method  improves  by  2.7% on  WA and  1.93% on  UA in

the comparison of M1-1 and M1-3. The method improves

by 0.98% on WA and 2.21% on UA in the comparison of

M1-1  and  M1-4.  These  results  show that  the  deltas  and

delta-deltas  of  MFCCs  represent  non-personalized  fea-

tures, which reflect the dynamic nature of speech and im-

prove the robustness of the network. The approach could

improve  the  classified  performance  by  learning  the  emo-

tional  information  included  in  the  non-personalized  fea-

tures. Fig. 4 shows the confusion matrices of these meth-

ods,  which  provide  a  more  visual  representation  and ex-

plicitly reflect the benefits of 3D features.

 4.2.2   Effects of cascaded attention mechanism

In this section, in order to evaluate the contribution of

individual  components  in  cascaded  attention,  we  have

analyzed the following four conditions. The results of this

analysis are shown in Fig. 5 and Table 3.
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Fig. 5     Confusion  matrices  for  the  variants  of  the  proposed
approach.  M2-1:  the  proposed  approach.  M2-2:  Proposed
without  channel  attention.  M2-3:  Proposed  without  spatial
attention. M2-4: Proposed without  self-attention. The diagonal
numbers represent the recall rate for each emotion.
 

 
 

Table 3    Ablation study for each component in cascaded
attention mechanism. Percentages in bold denote

the best-performing method

Model Methods WA (%) UA (%)

M2-1 Proposed 80.34 77.91

M2-2 Proposed without channel attention 77.64 75.15

M2-3 Proposed without spatial attention 78.36 76.33

M2-4 Proposed without self-attention 76.76 74.88

 
1) Model 2-1 (M2-1) is the proposed approach.

2)  Model  2-2  (M2-2)  deletes  channel  attention  from

M2-1.
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3)  Model  2-3  (M2-3)  deletes  spatial  attention  from

M2-1.

4) Model 2-4 (M2-4) deletes self-attention from M2-1.

Firstly, in order to validate the impact of channel at-

tention, the experimental results in Table 3 indicate that

M2-1 has  a  great  degree  of  improvement over  M2-2 and

improves by 2.70% on WA and 2.76% on UA in the com-

parison  of  M2-1  and  M2-2.  The  method  could  improve

classification  performance  by  focusing  on  feature  detect-

ors that highlight emotion through channel attention.

Secondly, in order to validate the impact of spatial at-

tention,  the  method  has  an  improvement  of  1.98%  on

WA  and  1.58%  on  UA  in  the  comparison  of  M2-1  and

M2-3.  Spatial  attention  locates  several  salient  emotional

regions  of  the  detectors  selected  from channel  attention,

thus improving the classification performance.

Finally,  to  validate  the  impact  of  self-attention  with

head  fusion,  M2-1  has  a  great  degree  of  improvement

over M2-4 and improves by 3.58% on WA and 3.03% on

UA  in  the  comparison  of  M2-1  and  M2-4.  The  method

captures  long-distance  dependencies  through  self-atten-

tion with head fusion, which could improve the classifica-

tion performance. The confusion matrix of these methods

is  shown  in Fig. 5,  which  provides  a  more  visual  repres-

entation  and  explicitly  reflects  the  benefits  of  the  cas-

caded attention mechanism.
 4.2.3   Effects of triplet loss

In  this  section,  to  assess  the  contributions  of  triplet

loss of joint loss, we have analyzed the two conditions be-

low.  The results  of  this  analysis  are  shown in Fig. 6 and

Table 4.
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Fig. 6     Confusion  matrices  for  the  variants  of  the  proposed
approach.  M3-1:  the  proposed  approach.  M3-2:  Proposed
without  triplet  loss. The diagonal numbers  represent  the  recall
rate for each emotion.
 

  
Table 4    Ablation study for each component in the joint loss.

Front of the bold text denotes the best performing method

Model Methods WA (%) UA (%)

M3-1 Proposed 80.34 77.91

M3-2 Proposed without triplet loss 78.05 77.30

 
1) Model 3-1 (M3-1) is the proposed approach.

2) Model 3-2 (M3-2) deletes triplet loss from M3-1.

To  verify  the  impact  of  triplet  loss,  as  is  shown  in

Table 4, the model with triplet loss has a great degree of

improvement  over  the  model  without  triplet  loss,  which

achieves  a  definite  improvement  of  0.47%  on  WA  and

0.94% on UA in  the  comparison  of  the  results  with  and

without  triplet  loss.  Similarly,  the  confusion  matrix  of

these  methods  is  shown  in Fig. 6,  which  provides  more

visual representation and explicitly reflects the benefits of

joint  loss.  It  reveals  that  the  prediction  accuracies  of

angry  and  sad  emotions  have  been  improved  by  triplet

loss.  These results  demonstrate that triplet  loss  provides

the  ability  to  reduce  intra-class  distance  and  expand

inter-class  distance,  thereby  enhancing  prediction  per-

formance.

 4.3   Comparison to state-of-the-art appro-
aches

We conducted  further  experiments  in  order  to  valid-

ate the effectiveness of our proposed approach. We com-

pared  the  proposed  method  with  other  best  methods  on

the  same  corpus,  where  the  experimental  results  are  lis-

ted  in Table  5.  The  proposed  approach  shows  an  abso-

lute  improvement  of  2.49%  on  WA  and  1.13%  on  UA

compared to state-of-the-art strategies. This is attributed

to the excellent ability of the cascaded attention mechan-

ism to focus on salient features and the good discrimina-

tion  of  joint  loss.  These  results  strongly  prove  that  the

proposed  method  could  produce  a  positive  performance

for SER.

 
 

Table 5    Classification performance of previous approaches.
Percentages in bold denote the best-performing method

Methods WA(%) UA(%)

CNN-LSTM [17] 67.30 62.00

3-D ACRNN [5] – 64.74

CNN-Attn [18] 71.75 68.06

Self-Attn [15] 70.17 70.85

ACNN [10] 76.18 76.36

CNN-LSTM (no augmentation) [16] 77.85 76.78

Proposed 80.34 77.91

 

 5   Discussions

Compared with all 2D input results, the absolute im-

provement  of  WA and  UA for  the  3D  feature  combina-

tion  input  is  0.98% and  1.93%,  respectively.  This  shows

that  the  deltas  and  delta-deltas  of  MFCCs  could  pre-

serve valid affective information and reduce the influence

of the speaking patterns, speakers, and other factors unre-

lated to emotion. MFCCs only describe the energy spec-

trum envelope in a frame of speech. However, the change

of MFCC trajectory with time, which is dynamic inform-
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ation of speech signal, could be described by these static

feature  difference  spectra.  This  is  crucial  to  enhance  the

accuracy of the classification of our model.

To better understand the role of spatiotemporal atten-

tion,  three  samples  in  a  triplet  were  randomly  selected

and  we  plotted  their  feature  maps.  For  each  of  the

samples, we plotted four kinds of pictures in Fig. 7(a) ori-

ginal  feature  map  of  MFCCs; Fig. 7(b)  feature  map

without channel  attention; Fig. 7(c)  feature map without

spatial  attention; Fig. 7(d)  feature  map  with  spatiotem-

poral attention.

 
 

(a) (b) (c) (d)
 
Fig. 7     Feature maps of three samples under different attention
mechanisms.  (a)  Original  MFCCs  feature  maps.  (b)  Feature
maps  without  channel  attention.  (c)  Feature  maps  without
spatial  attention.  (d)  Feature  maps  with  spatiotemporal
attention.
 

Comparing Fig. 7(d)  with  their  respective  feature

maps  of  the  original  MFCCs,  we  found  that  spatiotem-

poral attention could effectively highlight the speech part

of  hidden  emotional  information  and  significantly  sup-

press  the  areas  unrelated  to  emotions  at  the  same time,

including the silent part of the audio segment. To valid-

ate the impact of channel attention, we compared the fea-

ture  maps  in Figs. 7(b)  and 7(d).  There  are  significantly

more points when channel attention is removed. This in-

dicates  that  spatial  attention  plays  a  suboptimal  role  in

suppressing regions unrelated to emotions. In contrast, in

Fig. 7(d),  emotionally  irrelevant  regions  are  greatly  sup-

pressed, and emotionally relevant features are more obvi-

ous. To validate the impact of spatial attention, we com-

pare  the  feature  maps  in Figs. 7(c)  and 7(d).  We  found

that  there  is  no  significant  difference  between  both  fea-

ture  maps.  However,  in Fig. 7(d),  certain  feature  points

are more salient in the presence of spatiotemporal atten-

tion,  and  it  also  suppresses  a  part  of  the  feature  points

that  are  not  related  to  emotions.  In  conclusion,  channel

attention plays the main role in spatiotemporal attention,

and  spatial  attention  is  complementary.  Their  combina-

tion could provide better results to improve the classifica-

tion performance of the framework.

In  order  to  assess  the  impact  of  triplet  loss  learning

feature space embeddings, we used t-distributed stochast-

ic  neighbor  embedding  (t-SNE)  to  visualize  the  feature

distribution  of  the  proposed  model. Fig. 8(a)  represents

the feature distribution of the model without triplet loss,

where all classes could be roughly separated, and the fea-

ture  distribution  is  relatively  scattered. Fig. 8(b)  repres-

ents  the  feature  distribution  in  the  model  with  triplet

loss, where all  classes could be well  gathered, and differ-

ent  classes  could  be  pushed  apart  with  the  triplet  loss

function. It demonstrates that our method of learning fea-

ture  space  embeddings  through  triplet  loss  has  the  abil-

ity  to  enhance  the  convergence  of  the  feature  distribu-

tion in the feature space.

 6   Conclusions

In  this  paper,  we  trained  a  deep  learning  framework

that  combines  a  cascaded  attention  network  with  the

joint  loss  for  SER.  First,  to  eliminate  the  effect  of  emo-

tionally irrelevant factors, we stacked the MFCCs, deltas,

and  delta-deltas  of  the  MFCCs  along  with  the  channel

direction  as  input.  Then,  a  cascaded  attention  network

was  utilized,  which  integrates  CNN and  BLSTM with  a

cascaded  attention  mechanism,  to  extract  spatial  and

temporal  salient  features.  Finally,  the  joint  loss  strategy

was  utilized  to  reduce  intra-class  distance  and  expand

inter-class distance,  which forms a great decision margin

and  improves  classification  performance.  The  validity  of

the proposed approach was verified in a series of ablation

studies  and  comparative  experiments  with  the  IEMO-

CAP  corpus.  The  absolute  increment  of  WA  was  more

than 2.49%, and UA was more than 1.13% compared to

state-of-the-art methods.

For  future  work,  we  will  apply  comprehensive  data

augmentation techniques to obtain more emotional utter-
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ances  for  model  training  as  a  candidate  to  enhance  the

classification performance of the model.
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