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ABSTRACT

The paper describes the CASIA speech synthesis system en-
try for challenge M2VoC 2021. The low similarity and nat-
uralness of synthesized speech remains a challenging prob-
lem for speaker adaptation with few resources. Since the end-
to-end acoustic model is too complex to interpret, overfitting
will occur when training with few data. To prevent the model
from overfitting, this paper proposes a novel speaker adapta-
tion framework that decomposes the prosody and voice char-
acteristics in the end-to-end model. A prosody control atten-
tion is proposed to control the phonemes’ duration of differ-
ent speakers. To make the attention controlled by the prosody
information, a set of phoneme-level transition tokens is auto-
learned from the prosody encoder in our framework and these
transition tokens can determine the duration of phonemes in
the attention mechanism. Secondly, when we need to use
small data set for speaker adaptation, we just need to adapt the
speaker related prosody model and decoder, which can pre-
vent the model from overfitting. Further, we use a data puring
model to automatically optimize the quality of datasets. Ex-
periments demonstrate the effectiveness of speaker adaptation
based on our method, and we (team identifier is T03) get the
top three results in competition M2VoC by using this frame-
work.

Index Terms— speech synthesis, end-to-end model,
prosody and voice factorization, few-shot speaker adapta-
tion, the M2VoC challenge

1. INTRODUCTION

With the development of deep neural networks (DNN) [1],
a significant amout of efforts has been made to improve the
naturalness of text-to-speech (TTS), such as Tacotron [2–4],
wavenet [5]. Apart from the naturalness, people also expect a
TTS system to be able to synthesize the voice of any speaker
with few training data. To respond to this problem, many
speaker adaptation methods are proposed and get effective re-
sults on several benchmark datasets [6–10]. The primary idea

is to use a small amount of corpus to fine tune the model pa-
rameters. However, when there are fewer data, such as several
of sentences, speaker adaptation remains a change.

The main challenge faced by few-shot speaker adaptation
is that it is easy to overfit [11] when the dataset for training
is too limited. Especially for the end-to-end acoustic models,
such as Tacotron [2, 3], due to the complexity of the model
structure, the encoder, the model parameters are larger, the
loss function can be optimized to a very low level and the
model will ignore the inherent laws of text pronunciation. To
prevent the model from overfitting, there have been quite a
few studies in machine learning [11]. A common method is
to select a small hypothesis space for fine tuning which has
small complexity, thus requiring fewer samples. Many re-
searchers have tried to make the acoustic model to be more in-
terpretable, so as to adapt new speaker with small hypothesis
space [6–8]. However, due to the parameters of the encoder,
decoder and attention mechanism are coupled with each other,
it is difficult to find the hypothesis space that specifically con-
trols the speaker’s pronunciation characteristics. Therefore
the factorization of the acoustic model is the key to make the
model more interpretable. From a linguistic point of view, the
prosody and voice are two dominant factors in TTS synthesis.
Factorizing the prosody and voice may make the model more
interpretable. Inspired by the forward attention [12] that can
control the speed of speech, we can intergrate prosody control
into the attention mechanism and factorizate the prosody and
voice characteristics.

In this paper, we propose a prosody and voice factoriza-
tion framework for few-shot speaker adaptation task. Firstly,
we use a data puring model to automatic select the unmatch-
ing data pairs, which improves the efficiency of manual
checking process. Secondly, a prosody control attention
is proposed to control the phonemes’ duration of different
speakers. To make the attention mechanism controlled by
the prosody information, a set of phoneme-level transition
tokens is learned from the prosody encoder in our framework
and these tokens determine the probability of each phoneme’s
transition in the attention mechanism. Thirdly, when we need
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Fig. 1. An overview of our system. The acoustic model is based on the encoder and decoder model, and LPCNet is used as the
vocoder.

to use a small amount of corpus to adapt new speakers, we
only need to adapt the speaker related prosody model and de-
coder, which can prevent over fitting effectively. In summary,
the main contributions are as follows:

• We use a data puring model to automatically select the
unmatching data pairs, which improves the efficiency
of manual checking process and shorts the time on the
dataset building.

• A prosody control attention is proposed to control the
duration of each phoneme of different speakers by us-
ing a set of phoneme-level transition token learned from
prosody encoder.

• When facing speaker adaptation with few data, we only
need to fine tune the prosody encoder and the decoder
with smaller parameters, which can prevent the model
from over fitting effectively.

2. PROPOSED METHOD

When the dataset is small, such as only several sentences, it is
easy to overfit by adapting on the end-to-end acoustic model
directly. In this section, we will introduce the prosody and
voice factorization framework with prosody control attention
for few-shot speaker adaptation. Firstly, we will give an in-
troduction of the dataset processing.

2.1. Data selection and auto-labeling

We use an ASR model and silence detection model to auto-
matic segmentation of the provided data. But there are still a
lot of mistakes in the corpus. We use the force alignment by
the ASR technology to further check the matching between
the audio and the text. Furthermore, we also use a trained
model to eliminate the unmatching audio-text data pairs. The
model can find the mistakes of the text more thoroughly than
the force alignment by ASR. Since some of the tracks (track
1b & 2b) are allowed to use additional open source data, we
have added some additional open source data to improve the

performance of our system. All the data are processed by the
same technologies and checked by annotators.

The provided data contains some utterances that are too
loud or too small. So we train a model by acoustic features
to recognize these over expressive utterances. Experiments
show that the system will be more stable after deleting some
outlier utterances. In order to make sure that we really delete
those over expressive utterances, we manually listen those
deleted data and correct some mistakes. Then we use these
manually checked data that need to be deleted as the negative
samples to retrain the recognition model.

2.2. The factorization of prosody and voice

There are mainly two aspects of speaker characteristics. One
is the prosody. For example, different people read the same
text in different ways. The phonemes’ durations of differ-
ent speakers are different, which can reflect many character-
istics of prosody, such as stress, speaking speed and so on.
The other aspect is the voice of the speaker. This differ-
ence is mainly due to the different vocal organs of each per-
son. To decompose the parameters of prosody part and voice
part in the end-to-end acoustic model, our proposed frame-
work is shown in the Fig. 1. The whole framework con-
sists of four parts: the content encoder is mainly responsible
for encoding text information into hidden features with con-
textual information. The prosody encoder learns phoneme-
level transition tokens for each phoneme according to the in-
put phonemes and speaker features automatically. The struc-
ture is shown in the Fig. 2. The phoneme-level transition to-
kens will determine the probability of transition of phonemes
based on forward attention [12]. Suppose that in the process
of attention decoding, the probability of the n-th phoneme
transferring to the next is qn, and the qn is only determined
by the features of phonemes and speakers. We can use the
qn as an indicator which describes the probability that the
phoneme should move forward to the next one or keeping
unmoved, which likes the transition agent in forward atten-
tion. Tacotron is used with the speaker features. It is worth
noting that the speaker features here only need to be a vector
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Fig. 2. The structure of prosody encoder.

with a fixed dimension, such as one-hot coding, global style
token (GST) [13], ivector [14], dvector [15] and so on. The
attention connects the two encoder modules and the decoder
module, and controls the duration of each phoneme according
to the phoneme-level transition tokens. The decoder gener-
ates acoustic features, which can be restored to speech by the
vocoder. The prosody encoder’s framework is shown in Fig.
2, and the purpose of the last layer is to make the output value
between [0,1].

In the neural vocoder, we deploy the LPCNet [16], which
significantly improve the efficiency of speech synthesis and
remain high quality. In the frame rate network of LPCNet,
we combine the trainable speaker embeddings from Tacotron
with the output of convolution layer and the acoustic features
that predicted by Tacotron .

2.3. Prosody and voice style adaptation

When we need to use a small amount of corpus for speaker
adaptation, we only need to transfer the parameters related to
speaker characteristics. As shown in the Fig. 1, since the pa-
rameters in the content encoder and attention mechanism are
not related to speaker characteristics, these parameters have
universal ability after we use the multi speaker dataset to pre-
train the model parameters.

When we do speaker adaptation, we only need to fine tune
the prosody encoder and the decoder module, which is shown
in Fig. 3. Because the network structure of prosody encoder
is composed of several convolutional networks, the parame-
ters are small and the model is not easy to overfit, which can
improve the stability of the fine-tuned model.

3. EXPERIMENTS

To verify the validity of the method, we conduct experi-
ments to evaluate our proposed method. The multi speaker
training datasets are AIShell-3 [17] and MST-Originbeat for
track1a and track2a. Based on this, we add extended data
(Data Baker [18], and DiDiSpeech [19]) to participate in the
track1b and tracks2b. The testing set is divided into two
cases, one is given three target speakers with different speech
styles (game, chat, story), and each speaker has 100 speech
samples, the other is given three target speakers with different
speech styles (game, chat, story), each speaker has 5 speech
samples. All the target speakers are not seen in the training
dataset. Through these two testing sets, we can evaluate the

(a) The architecture of prosody and voice factorization framework 

content 
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Pre-trained by 
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Target-speaker
task
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Fig. 3. The method of adapting the prosody and voice style.

ability of speaker adaptation in low resource and extremely
low resource situations of our proposed model. All the wav
files are sampled at 24KHz.

3.1. Model details

The speaker feature which conditions the prosody encoder
and the decoder is used as global style tokens (GST). The
structures of the content encoder and the decoder module are
the same as the encoder and decoder in tacotron2 [3]. Acous-
tic features are extracted with 10 ms window shift. LPC-
Net [16] is utilized to extract 32-dimension acoustic features.
To evaluate the effect of prosody control attention and the
ability of speaker adaptation based on few data, the follow-
ing systems are established for comparison.

• FA forward attention and without prosody encoder.
When adapting new target speaker, we only fine tune
the decoder module which is conditioned by the speaker
features.

• PCA our proposed framework with prosody control att-
tention, when adapting new target speaker, all parame-
ters of the model are fine tuned.

• Proposed our proposed framework with prosody con-
trol atttention, when adapting new target speaker, only
adapt the prosody encoder and decoder modules.

• For vocoder, the LPCNet vocoder is denoted as L, and
the world vocoder [20] is denoted as W. For example,
FA+W is expressed as forward attention based acoustic
model plus world vocoder.

3.2. Evaluations for quality with different systems

Firstly, we compare different vocoders and different acoustic
features with multi-speaker speech synthesis. Eight Chi-
nese native speakers participate in the evaluations. In each
experimental group, 20 parallel sentences are selected ran-
domly from testing sets of each system. By observing the
scores of subjective evaluations in the Table 1, it can be
found that the LPCNet can significantly improve the quality
of synthetic speech. Besides, since the dimension of acoustic
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Table 1. Average perference score (%) on speech qual-
ity among different acoustic models and different vocoders,
where N/P stands for ”no perference”. The p-values <0.01.

System Scores N/P Scores System
A A(%) Neural(%) B(%) B

FA+W 16.73 13.01 70.26 FA+L
FA+W 28.65 43.64 27.71 Proposed+W
FA+L 25.64 47.64 26.72 Proposed+L

Proposed+W 12.57 8.83 78.60 Proposed+L

Table 2. Average perference score (%) on speech similar
among different systems, where N/P stands for ”no perfer-
ence”. The p-values <0.01.

FA PCA Proposed N/P
FA vs PCA 38.52 54.32 – 7.16

FA vs Proposed 31.47 – 58.83 9.7
PCA vs Proposed – 25.64 36.52 37.84

features for LPCNet is 32, while the dimension of acoustic
features for WORLD is 187. The decreasing of dimension
of predicted acoustic features can reduce the complexity of
Tacotron model. Therefore, in the following sections we
mainly concentrate on LPCNet vocoder.

3.3. Evaluations for few-shot speaker adaptation

We also conduct an ABX subjective perference test for sim-
ilarity of speech. The results are listed in Table 2. In each
experimental group, 20 parallel sentences are selected ran-
domly from testing sets of each system. It is obvious that
speaker adaptation based on our framework can achieve bet-
ter similarity, this is because the prosody control attention can
decompose prosody information from voice information. By
comparing PCA and proposed system, we can find that only
adapting the prosody encoder and decoder can achieve better
results, because fine tuning on less parameter can effectively
prevent model from over fitting.

3.4. Evaluations in the challenge M2VoC

The method in this paper is used to participate in the 2021
multi-speaker multi-style voice cloning (M2VoC) challenge
[21]. The M2VoC challenge aims to provide a common siz-
able dataset as well as a fair testbed for benchmarking the
voice cloning task. Using the provided dataset, we took part
in the track1a (100 sentences and 18 teams, only using pro-
vided datasets), track1b (100 sentences and 22 teams, can use
other open source datasets, track2a (5 sentences and 17 teams,
only using provided datasets, and track2b (5 sentences and 19
teams, can use other open source datasets) respectively.

The results are shown in Table 3 and Table 4. Our team
identifier is T03. It can be found that we have achieved the top
three results in each track on speech quality, style and speaker
similarity, ranking at the leading level, which can also show
the effectiveness of our proposed model.

Table 3. The final score (average MOS score on speech qual-
ity, style and speaker similarity) of challenge M2VoC by us-
ing the data provided by the competition only (track 1a and
track 2a). Our team is shown in bold.

First Second Third Fourth
100 sentences (track1a)

SpeakerSimilarity 4.2484 4.1455 4.1370 3.8832
SpeechQuality 4.2373 4.1741 4.0623 4.0214
StyleSimilarity 4.1488 4.1212 3.9348 3.8027

5 sentences (track2a)
SpeechQuality 4.0905 3.9568 3.8941 3.8768

SpeakerSimilarity 3.2250 3.2205 3.2168 3.1368

Table 4. The final score (average MOS score on speech
quality, style and speaker similarity) of challenge M2VoC by
using the data provided by the competition and other open
source datasets (track 1b and track 2b). Our team is shown in
bold.

First Second Third Fourth
100 sentences (track1b)

SpeakerSimilarity 4.2466 4.1427 4.1027 4.0305
SpeechQuality 4.3132 4.3005 4.2636 4.2486
StyleSimilarity 4.1056 4.0624 3.9574 3.9438

5 sentences (track2b)
SpeechQuality 4.1650 4.1086 3.8718 3.4818

SpeakerSimilarity 3.2409 3.1964 3.1445 3.0255

4. CONCLUSION

In this paper, the multi-speaker end-to-end speech synthesis
system built for the challenge M2VoC is introduced. There
are several improvements based on the end-to-end speech
synthesis. The first one is the use of data puring model. Sec-
ondly, we present an end-to-end TTS model with prosody
control attention mechanism for prosody and voice factoriza-
tion, aiming to improve the similarity of speaker adaptation
based on few data. A set of auto-learned phoneme-level tran-
sition tokens are learned from prosody encoder to help the
attention mechanism to control prosody information. Thirdly,
when adapting speaker with small dataset, only the prosody
encoder and the decoder is needed to fine tune. Experiments
demonstrate that the effectiveness of our proposed model, and
we achieve the top three results in the challenge M2VoC. In
the future, we will continue to explore the ways to decompose
prosody and voice characteristics and the strategy of speaker
adaptation.
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