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   Abstract—This article addresses the circular formation control
problem of  a  multi-agent  system moving on a  circle  in  the  pres-
ence of limited communication ranges and communication delays.
To  minimize  the  number  of  communication  links,  a  novel  dis-
tributed controller based on a cyclic pursuit strategy is developed
in  which  each agent  needs  only  its  leading  neighbour’s  informa-
tion. In contrast to existing works, we propose a set of new poten-
tial  functions  to  deal  with  heterogeneous  communication  ranges
and  communication  delays  simultaneously.  A  new  framework
based  on  the  admissible  upper  bound  of  the  formation  error  is
established  so  that  both  connectivity  maintenance  and  order
preservation  can  be  achieved  at  the  same  time.  It  is  shown  that
the multi-agent system can be driven to the desired circular for-
mation  as  time  goes  to  infinity  under  the  proposed  controller.
Finally, the effectiveness of the proposed method is illustrated by
some simulation examples.
    Index Terms— Circular  formation  control,  communication  delays,
cyclic pursuit, heterogeneous communication ranges.
  

I.  Introduction

C IRCULAR  formation  control  has  attracted  much  atten-
tion in recent years due to its wide range of applications,

such  as  satellite  clustering  [1],  target  enclosing  [2],  and
perimeter  defence  [3].  In  circular  formation  control,  a  group
of mobile agents is tasked to converge to/move on a common
circle.  This  problem  was  initially  studied  for  cases  where
agents are spread evenly on the circle [4]−[8]. Recent studies
have  focused  on  a  more  general  case  in  which  agents  can
achieve any desired formation pattern [3], [9]−[13]. For exam-
ple, distributed control laws that can preserve spatial order of
the  agents  on  the  circle  have  been  proposed  for  multi-agent

systems  (MASs)  with  integrator  dynamics  [3],  [9]−[12].  In
these  works,  the  desired  spacing  pattern  in  [3],  [9]  was
decided  by  using  the  heterogeneous  maximum  velocities  of
MASs  such  that  the  optimal  coverage  of  the  circle  could  be
reached.  In  [10],  any  desired  spacing  pattern  was  achievable
with  consensus-based  controllers.  Note  that  the  MASs  were
assumed to locate initially on the circle in [3], [9], [10], which
was then relaxed to any initial positions on a two-dimensional
mission  space  in  [11].  More  recently,  the  results  of  these
works [3], [9]−[11] were extended to MASs with double-inte-
grator dynamics [12] and nonholonomic dynamics [13]−[15].

Most of the aforementioned works assume that each agent is
able  to  communicate  with  its  immediate  anticlockwise  and
clockwise neighbouring agents. The assumption of interaction
with two neighbouring agents can be relaxed to unidirectional
interaction  to  further  reduce  the  amount  of  information
exchange  in  MASs.  To  this  end,  cyclic-pursuit-based  con-
trollers were proposed for integrator-type MASs [4]−[6], [16]
and nonholonomic  MASs [7],  [8].  This  design  is  inspired  by
animal behaviours in which each member of a group follows
the  member  immediately  in  front  of  it  [17].  Cyclic-pursuit-
based  controllers  are  first  developed  by  analysing  cyclic
matrices  and  their  properties  [4]−[8].  In  [16],  cyclic  pursuit-
fuzzy PD controllers are proposed to further improve the sys-
tem’s robustness. However, this result only works in an MAS
with  two agents.  Although this  strategy has  the  advantage  of
requiring  minimum  communication  links  since  each  agent
needs only its  leading neighbour’s information for its  control
law, only evenly-spaced formation tasks with order preserva-
tion  can  be  achieved  in  [4]−[8],  [16].  To  the  best  of  our
knowledge, limited attention has been paid to solving the cir-
cular  formation  problem  with  any  desired  formation  pattern
via a cyclic pursuit strategy.

Another typical assumption in most existing works [3]−[13]
on  circular  formation  control  is  that  each  agent  can  always
exchange  information  with  its  neighbouring  agent  regardless
of their Euclidean distance. In practice, however, the commu-
nication  ranges  of  agents  are  rather  limited.  When  the  dis-
tance between neighbouring agents goes beyond their commu-
nication  range,  the  information  cannot  be  exchanged,  and  a
disconnected communication topology may occur. Thus, con-
siderable  effort  has  recently  been  devoted  to  achieving  the
desired formation pattern for MASs subject to limited commu-
nication ranges [18]−[21]. One approach is to design gradient-
descent  control  laws  based  on  a  potential  function  [18],  [19]
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whose  value  increases  as  the  distance  between  neighbouring
agents  increases.  For  example,  a  potential  function  was
designed in [18] where an attractive force was applied to each
agent  to  preserve  existing  links.  In  [19],  another  potential
function  was  constructed  based  on  a  local  estimation  of  the
network’s  algebraic  connectivity.  Differently  from  potential-
function-based  controllers,  a  switching  control  strategy  was
proposed in [20] where the controller was designed to use the
maximum interaction range if the inter-agents’ distances were
unavailable.  The  study  also  showed  that  the  MAS  could
achieve  the  prescribed  circular  formation  pattern  even if  net-
work connectivity was not always maintained. Unlike above-
mentioned works with fixed interaction ranges, authors in [21]
considered  an  MAS  with  adjustable  interaction  ranges  and
proposed  a  model  predictive  strategy  to  realize  communica-
tion management.

In  addition,  in  many  practical  systems,  communication
delays often occur when agents exchange information through
networks,  and  such  delays  can  lead  to  performance  degrada-
tion  or  even  instability  of  the  concerned  system  [22]−[24].
The  problem  of  communication  delays  was  initially  investi-
gated for consensus problems of MASs [25], [26] via the Lya-
punov-Krasovskii functional. The same problem of communi-
cation delays was subsequently considered for other coopera-
tive  control  problems,  such  as  the  circular  formation  control
problem [27]−[29]. It is worth noting, however, that the circu-
lar formation problem for MASs with both limited communi-
cation  ranges  and  communication  delays  has  not  been
addressed in the available literature.

Motivated  by  the  above  observations,  this  article  investi-
gates the cyclic-pursuit-based circular formation control prob-
lem for  MASs  with  limited  communication  ranges  and  com-
munication  delays.  Solving  this  problem involves  three  main
challenges. The first challenge is to design potential functions
for MASs with both heterogeneous communication ranges and
communication delays. Existing works [18]−[20] only discuss
MASs  with  identical  communication  ranges.  The  potential
functions proposed in [18], [19] cannot be directly applied to
the  formation  problem  under  consideration  here.  The  second
challenge  is  to  conduct  the  convergence  analysis  of  the
closed-loop  system.  Unidirectional  communication  under
cyclic pursuit will lead to a Laplacian matrix that is not diago-
nalizable.  Thus,  the  convergence  analysis  provided  in  [10]−
[12],  [20]  with  a  diagonalizable  Laplacian  matrix  cannot  be
adopted  for  this  work.  The  final  challenge  is  preserving  spa-
tial  order  of  the  MAS while  simultaneously  maintaining  net-
work  connectivity.  Most  existing  studies,  such  as  [10]−[12],
[20],  preserve spatial  order  of  the agents  without  considering
network  connectivity.  Some  other  works  [14],  [15]  do  not
consider  order  preservation  problem  and  thus  collisions  may
happen  between  neighbouring  agents.  The  use  of  potential
functions will introduce nonlinearity into the closed-loop sys-
tem,  with  which  spatial  order  of  the  MAS  cannot  be  pre-
served in the same way as in [10]−[12], [20].

In  this  article,  a  novel  cyclic-pursuit-based  circular  forma-
tion  control  scheme  is  proposed  for  MASs  with  heteroge-
neous  communication  ranges  and  time-varying  communica-

tion  delays.  Our  method  contains  the  following  steps.  First,
the admissible  upper  bounds for  formation errors  are  derived
so  that  the  distances  of  neighbouring  agents  can  simultane-
ously satisfy network connectivity and order preservation con-
straints.  Based  on  these  upper  bounds  and  the  formation
errors, a set of bounded potential functions are designed. Sec-
ond, a gradient-descent-based controller is proposed using the
designed potential  functions,  where  a  sufficient  condition  for
the  control  gain  is  found  using  Lyapunov  functionals  and
matrix  analysis.  Third,  we  show  that  the  proposed  controller
guarantees network connectivity and order preservation simul-
taneously by using the induction method. Finally, the conver-
gence  of  the  formation  errors  to  zero  is  proved  by  the  Bar-
balat’s  lemma.  The  main  contributions  of  this  work  can  be
summarized as follows:

1)  A  novel  distributed  controller  based  on  a  cyclic  pursuit
strategy  is  designed  to  solve  the  circular  formation  problem
with  any  desired  formation  pattern.  Compared  with  [4]−[8],
[16],  where  only  evenly-spaced  formation  patterns  can  be
achieved under a cyclic pursuit strategy, the controller in this
work  can  achieve  any  desired  formation  pattern.  Unlike  [3],
[9]−[12], [14], [15], where each agent is able to communicate
with its immediate anticlockwise and clockwise neighbouring
agents, the design in this work only needs unidirectional com-
munication.

2)  Novel  potential  functions  are  proposed  by  simultane-
ously  taking  into  account  heterogeneous  communication
ranges and communication delays. Unlike [3]−[16], [27], [28],
where the communication ranges of MASs are assumed to be
infinite, our work considers an MAS with limited communica-
tion  ranges.  Unlike  [18]−[20]  that  only  consider  MASs  with
identical communication ranges, the potential functions in this
work can handle MASs with both heterogeneous communica-
tion  ranges  and  communication  delays.  More  specifically,  a
Lyapunov  functional  is  proposed  to  analyse  the  delayed  sys-
tem. A sufficient condition for the control gain is then derived
to guarantee that this functional is non-increasing.

3)  A new framework based on the admissible upper bound
of the formation error is developed to simultaneously guaran-
tee  connectivity  maintenance  and  order  preservation.  Under
this framework, the admissible upper bound for the formation
error  is  designed  such  that  the  Euclidean  distance  between
neighbouring agents is guaranteed to be both greater than zero
and less than their communication range. Then, network con-
nectivity  and  order  preservation  can  be  achieved  by  simply
keeping  the  absolute  value  of  the  formation  error  within  the
designed admissible  upper  bound.  Compared with  [27],  [28],
which  study  the  unevenly-spaced  circular  formation  problem
with  different  types  of  communication  delays,  the  controller
proposed  in  our  work  can  preserve  the  agent’s  spatial  order
and reduce the risk of inter-agent collisions.

Rn Rm×n

m×n
x ∈ Rn ||x||

0n 1n ∈ Rn

In ∈ Rn×n

M ∈ Rm×n MT colk(M)

Notations:  and  denote  the  space  of  all  real n-
dimensional  vectors  and  the  space  of  all  real  matrices,
respectively.  For  a  vector ,  denotes  its  Euclidean
norm.  and  represent vectors with all their elements
being  0  and  1,  respectively.  is  the  identity  matrix.
For a  matrix ,  denotes its  transpose,  is
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kth col(M) := {colk(M) : 1 ≤ k ≤ n}
M ∈ Rn×n N ∈ Rn×n M ≻ N M ≽ N

M−N
G∗ = {V,E∗}

V = {1, . . . ,n}
E∗ = {(i, i+1) : i ∈ V\ {n}}∪ {(n,1)}

its  column  and .  For  sym-
metric  matrices  and ,  and 
denote that  is  positive definite and positive semi-defi-
nite,  respectively.  Let  denote  a  directed  cyclic
graph where  represents  the  set  of  agents  in  the
system and  denotes the set
of edges.

The  remainder  of  this  article  is  organized  as  follows.  The
preliminaries and problem formulation are introduced in Sec-
tion  II.  The  distributed  controller  and  analysis  of  the  closed-
loop  system  are  presented  in  Section  III.  Some  simulation
examples  are  provided  in  Section  IV.  Finally,  some  conclu-
sions are given in Section V.  

II.  Preliminaries and Problem Statement

Consider  a  group  of n agents  moving  on  a  circle  of  radius
R0. Suppose that each agent is described by
 

θ̇i(t) = ui(t) (1)
θi uiwhere  is the angular position of agent i on the circle and 

is the control input. According to their initial positions in the
anticlockwise  direction  from  the  horizontal  real  axis,  the
agents are labelled from 1 to n as follows:
 

0 ≤ θ1(0) < · · · < θn(0) < 2π. (2)

c = [c1, . . . ,cn]T ci
(i+1)th ith

2π

The  desired  formation  pattern  is  described  by  a  constant
vector ,  where  each  element  denotes  the
desired  angular  distance  between  the  and  the 
agents.  It  is  noted  that  the  sum  of  all  elements  equals .
Define
 

di(t) :=
{
θi+1(t)− θi(t), i = 1, . . . ,n−1

θ1(t)+2π− θn(t), i = n
(3)

which  denotes  the  angular  distance  between  two  neighbour-
ing  agents.  Similarly  to  [10],  [30],  the  definition  of  order
preservation is given as follows.

ui
di(t) > 0,∀i ∈ V

Definition 1 (Order Preservation): For the MAS (1),  given
the  initial  condition  (2),  we  say  that  the  spatial  order  of  the
MAS  is  preserved  under  a  control  law  if  the  trajectory  of
the system (1) satisfies  over time.

(i+1)th
ri+1 ith

2Rsin di
2 < ri+1

In  our  setting,  the  communication  ranges  between  neigh-
bouring agents are supposed to be limited and heterogeneous.
In particular, it is assumed that the  agent with limited
communication range  will only communicate with the 
agent  if  their  Euclidean distance  is  within  its  communication
range, i.e., .

ri+1 (i+1)th

∆i+1 := 2arcsin ri+1
2R

∆i+1
ci i ∈ {1, . . . ,n}

The communication range  of  the  agent  can be
equivalently described in terms of angular distance defined as

.  It  is  assumed  that  the  communication
range  is  larger  than  the  desired  formation  angular  dis-
tance  for  all .  The above-mentioned coordinate
frame and notation can be found in Fig. 1.

ei(t) ei(t) = di(t)− ciDenote  the  formation  error  by ,  where .
Rewrite it in the following compact form:
 

e(t) = −ETθ(t)− c′ (4)
e(t) = [e1(t), . . . ,en(t)]T θ(t) = [θ1(t), . . . , θn(t)]T c′ =

[c1, . . . ,cn−2π]T
where , , 

, and 

E =



1 0 0 · · · 0 −1
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 1 0
0 0 0 · · · −1 1


. (5)

G∗ = {V,E∗} (n−1)
It is noted that matrix E is the incidence matrix of the directed
cyclic  graph  and  its  rank  is .  This  inci-
dence matrix can be decomposed into two parts as follows:
 

E = [Es Ec] (6)
Es ∈ Rn×(n−1)

Ec ∈ Rn

Ec
col(Es) Ec = EsT T =

−1n−1 R :=
[
In−1 T

]
∈ R(n−1)×n

where  denotes  the  full-column-rank  incidence
matrix  of  a  spanning tree,  and  denotes  the  incidence
matrix of the remaining one edge (the cyclic edge).  It  can be
observed from [31] that matrix  can be further expressed by
the  linear  combination  of ,  i.e.,  with 

. Define  and one can obtain an
alternative expression of the incidence matrix E as follows:
 

E = [Es Ec] = Es [In−1 T ] = EsR (7)

e(t) es(t) ∈ Rn−1 ec(t) ∈ R
(n−1)
e(t) cn−2π = −∑n−1

i=1 ci

which  is  then  used  for  reducing  the  order  of  the  formation
error vector . Let  and  denote the first

 entries and the last entry of the formation error vector
,  respectively.  Since ,  it  can be verified

that
 

e(t) =
(
es(t)
ec(t)

)
= RT es(t). (8)

Moreover, matrix R has the following properties:
P1: Every column sum of matrix R equals zero.
P2: R is a full-row-rank matrix.
To study the connectivity maintenance issue, an assumption

on initial network connectivity is made as follows.

G∗ = {V,E∗}
Assumption 1: The initial communication graph of the MAS

(1) is a strongly connected directed cyclic graph .

τd(t)
Note  that  communication  delays  between  agents  are  also

considered in this  work.  Assume that  the delay  is  time-
varying  and  identical  for  all  agents.  To  facilitate  the  conver-
gence  analysis  of  the  system  in  the  presence  of  communica-
tion  delays,  the  following  standard  assumption  is  introduced
[27], [32], [33].

τd(t)Assumption  2: The  time  delay  is  known  to  all  the

 

θi Δi + 1

θi + 1

ci

di

Horizontal
axis

R0

 
Fig. 1.     Coordinate frame and notation.
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τ̄d
τd(t) τ̇d(t) < dm < 1

θ̇i(ξ) = 0 ξ ∈
[−τ̄d,0],∀i ∈ V

agents and is upper bounded by a known positive constant .
The  derivative  of  satisfies .  Initially,  the
MAS stays at rest and has stayed at rest longer than the upper
bound  of  the  transmission  delay,  that  is,  for 

.
Now,  the  circular  formation  control  problem considered  in

this work can be formally stated as follows.

c = [c1, . . . ,cn]T

[∆1, . . . ,∆n]

Problem 1: Given a  circular  formation described by radius
R0 and  a  desired  formation  pattern ,  consider
an  MAS with  heterogeneous  communication  ranges  in  terms
of  angular  distances .  Design  a  cyclic-pursuit-
based controller such that the following control objectives can
be  achieved  in  the  presence  of  time-varying  communication
delays.

limt→∞ di(t) = ci,∀i ∈ V
i) The agents eventually reach their desired spacing pattern,

that is, .

di(t) < ∆i+1 i ∈ V t ≥ 0
ii)  The  angular  distance  between  each  pair  of  agents  satis-

fies ,  for  all  and  all ,  that  is,  network
connectivity is guaranteed.

di(t) > 0 i ∈ V t ≥ 0
iii)  The angular distance between each pair  of agents satis-

fies , for all  and all , that is, spatial order of
the MAS is preserved.  

III.  Main Results

We  begin  this  section  by  establishing  admissible  upper
bounds for the formation errors such that connectivity mainte-
nance and order preservation can be achieved simultaneously.
We then propose a distributed controller based on an approach
of  potential  functions.  Finally,  we  present  an  analysis  of  the
derived closed-loop system.  

A.  Admissible Upper Bounds for Formation Errors

|ei(t)|
Define an admissible upper bound for the absolute value of

formation error  as follows:
 

δi :=min{ci,∆i+1− ci}. (9)
0 < di(t) di(t) < ∆i+1

|ei(t)|
One  can  claim  that  and  are  achieved
simultaneously  by  just  keeping  within  the  correspond-
ing admissible upper bound, that is,
 

|ei(t)| = |di(t)− ci| < δi. (10)
δi ≤ ∆i+1− ci −δi ≥ −ciIn fact, since  and , it follows that:

 

0 ≤ ci−δi < di(t) < ci+δi ≤ ∆i+1 (11)

δM :=maxi∈V δi δm :=mini∈V δi

which  is  exactly  what  is  claimed.  Therefore,  connectivity
maintenance and order preservation of the MAS can be guar-
anteed  simultaneously  if  (10)  is  always  ensured.  For  subse-
quent analysis, define  and .

Remark 1: Unlike previous works [34], [35], where the col-
lision avoidance is guaranteed by proposing a repulsive func-
tion based on the distance of two neighbouring agents, in our
work,  the  same  problem  is  alternatively  considered  by  pre-
serving  the  initial  order  of  the  MAS  on  a  circle.  Moreover,
some potential functions based on the formation errors will be
constructed  in  the  next  subsection  such  that  the  connectivity
problem can also be solved.

δi G(t) = {V,E(t)}
V = {1, . . . ,n}

Based on , define a time-varying graph  for
the MAS, where  represents the set  of  agents in

E(t) = {(i, i+1) : |ei(t)| < δi, i ∈ V\ {n}}∪ {(n,1) :
|en(t)| < δn}
the system and 

 denotes the set of edges at time instant t.
Regarding the initial  conditions of  the MAS, the following

assumption is introduced.

|ei(0)| < δi− ϵ,∀i ∈ V 0 < ϵ < δm
Assumption 3: The MAS is initially positioned on the circle

such that , where .

t = 0 G(0) = G∗
|ei(t)| < δi i ∈ V t ≥ 0 G(t)

G∗
ϵ

Remark  2: It  can  be  observed  from  Assumption  3  that  the
inequality  in  (10)  holds  at  and  thus .  Now
keeping , for all  and all  implies that 
is maintained to be the same as the fixed topology . In addi-
tion,  similarly to [32],  the parameter  in Assumption 3 is  to
introduce the effect of hysteresis and will be used in the proof
of Lemma 1.  

B.  Controller Design
From  the  previous  subsection,  it  is  known  that  Problem  1

can be solved if the following objectives are achieved.
G(t)

G∗ ∀t ≥ 0
i) The time-varying graph  for the MAS is maintained to

be , .

limt→∞ ei(t) = 0,∀i ∈ V
ii) The formation errors eventually converge to zero, that is,

.

|ei(t)|
Inspired by the approach of potential functions in [32], [33],

we  propose  a  set  of  potential  functions  to  keep  staying
inside the admissible upper bound as follows:
 

ψi(e
2
i (t)) =

e2
i (t)

δ2i − e2
i (t)+

δ2i
q

, e2
i (t) < δ2i (12)

[
0, δ2i
)

e2
i (t)

ei(t) = 0

where q is  a  positive  constant  parameter  to  be  determined
later.  It  is  noted that  each potential  function is  defined on an
interval  and  satisfies  the  following  properties,  1)  it  is
monotonously  increasing  with  respect  to ;  and  2)  it
reaches its minimum at .

Define
 

pi(ei(t)) :=


2(δ2i +

δ2i
q )

(δ2i − e2
i (t)+

δ2i
q )2
, e2

i (t) < δ2i

0, otherwise

(13)

dψi(e
2
i (t))

dei(t)
= pi(ei(t))

ei(t) P(e(t)) :=
diag(p1(e1(t)), . . . , pn(en(t)))

which  is  non-negative.  It  can  be  seen  that 
.  For  subsequent  analysis,  define  matrix 

.

ith θi+1(t−τd(t))
(i+1)th

ui(t) ei(t−τd(t)) =
di(t−τd(t))− ci

In  the  presence of  time-varying communication delays,  the
 agent will  receive delayed information  from

the  agent at time instant t. In this case, the controller
 uses  the  delayed  formation  error,  that  is, 

. We thus propose the following controller:
 

ui(t) = kpi(ei(t−τd(t)))ei(t−τd(t))

= kρi(t−τd(t)), i ∈ V (14)
k > 0where  and

 

ρi(t) := pi(ei(t))ei(t). (15)
Rewrite (14) into the following compact form:
 

u(t) = kρ(t−τd(t)) (16)
u(t) = [u1(t), . . . ,un(t)]T ρ(t−τd(t)) = [ρ1(t−τd(t)),where  and 
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. . . ,ρn(t−τd(t))]T.
By taking the time derivative of (4) and noting (16), one has

 

ė(t) = −ET u(t) = −kETρ(t−τd(t)). (17)
It can be calculated from (13) that

 

ṗi(ei(t)) =
8(δ2i +

δ2i
q )ei(t)

(δ2i − e2
i (t)+

δ2i
q )3

ėi(t).

Define
 

δ̃i := δ2i +
δ2i
q
. (18)

ρi(t)By taking the time derivative of , one has
 

ρ̇i(t) = ṗi(ei(t))ei(t)+ pi(ei(t))ėi(t)

=

 8δ̃ie2
i (t)

(δ̃i− e2
i (t))3

+ pi(ei(t))

 ėi(t)

= p̄i(t)ėi(t) (19)
where
 

p̄i(t) =
8δ̃ie2

i (t)

(δ̃i− e2
i (t))3

+
2δ̃i

(δ̃i− e2
i (t))2

, e2
i (t) < δ2i . (20)

P̄(e(t)) := diag( p̄1(t), . . . , p̄n(t)) p̄i(t) >
0, ∀i ∈ V P̄(e(t))
Define  matrix .  Since 

,  it  can  be  seen  that  is  positive  definite.  By
substituting  (17)  into  the  compact  form  of  (19),  the  closed-
loop system can be obtained as follows:
 

ρ̇(t) = −kP̄(e(t))ETρ(t−τd(t)). (21)
  

C.  Analysis of the Closed-Loop System
Consider a candidate Lyapunov functional as follows:

 

V(t) := V1(t)+V2(t)

:= 2
n∑

i=1

ψi(e
2
i (t))+

w t

t−τd(t)
(s− t+ τ̄d)||ρ̇(s)||2ds (22)

V1(t)
V2(t)

where  is  defined  as  the  sum  of  the  proposed  potential
functions,  and  is  added  to  deal  with  communication
delays.

Before  presenting the  main results,  some technical  lemmas
are introduced.

Lemma 1: Define
 

Te :=
n∑

i=1

2(δi− ϵ)2

δ2i − (δi− ϵ)2+
δ2i
q

(23a)

 

li := δi

√√√
1+ 1

q

1+ 2
Te

, ∀i ∈ V. (23b)

Under Assumptions 1–3, if the constant q is chosen satisfy-
ing
 

q >
n(δM − ϵ)2

δ2M − (δM − ϵ)2
(24)

then one has 

δi− ϵ < li < δi. (25)
Proof: It is noted that

 

d
δ2i

(δi−ϵ)2

dδi
=

2δi(δi− ϵ)2−2δ2i (δi− ϵ)
(δi− ϵ)4

=
−2δiϵ(δi− ϵ)

(δi− ϵ)4 < 0.

δ2i
(δi−ϵ)2 δiThis  implies  that  decreases  as  increases.  It  then fol-

lows that:
 

Te =

n∑
i=1

2

(1+ 1
q )

δ2i
(δi−ϵ)2 −1

≤
n∑

i=1

2

(1+ 1
q )

δ2M
(δM−ϵ)2 −1

<
2n(δM − ϵ)2

δ2M − (δM − ϵ)2 < 2q. (26)

li = δi

√
1+ 1

q

1+ 2
Te
< δi Te li

The last inequality holds due to (24). Then, it can be obtained

that .  Moreover,  rewrite  in terms of  as
follows:
 

Te =
2l2i

δ2i − l2i +
δ2i
q

. (27)

It follows from (23a) and (27) that:
 

2l2i

δ2i − l2i +
δ2i
q

− 2(δi− ϵ)2

δ2i − (δi− ϵ)2+
δ2i
q

=
∑

j∈V\{i}

2(δ j− ϵ)2

δ2j − (δ j− ϵ)2+
δ2j
q

> 0

li > δi− ϵwhich implies that . ■
The  following  lemma  gives  the  condition  on  the  control

gain k under which the candidate Lyapunov functional is non-
increasing.

|ei(t)| < li,∀i ∈ V li
k0

V̇(t) ≤ 0
k < k0

Lemma  2: Consider  the  MAS  (1)  and  the  candidate  Lya-
punov functional (22). Assume that , where 
is  defined  in  (23b).  Then,  there  exists  a  positive  constant 
such  that  if  the  control  gain k is  chosen  satisfying

.

V(t)
Proof: First, we show that the time derivative of the candi-

date Lyapunov functional  satisfies
 

V̇(t) ≤ −ρT (t−τd(t))ES (t)ETρ(t−τd(t)) (28)
where
 

S (t) = kIn− τ̄dk2In− τ̄dk2P̄2(e(t)). (29)
V(t)Taking the time derivative of  in (22) gives

 

V̇(t) = V̇1(t)+ V̇2(t). (30)
It then follows from (15) and (17) that: 
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V̇1(t) =
dV1(t)
de(t)

ė(t) = −2kρT (t)ETρ(t−τd(t))

= −2k(ρT (t−τd(t))+
w t

t−τd(t)
ρ̇T (s)ds)ETρ(t−τd(t))

①︷︸︸︷
≤ −2kρT (t−τd(t))ETρ(t−τd(t))

+
w t

t−τd(t)
∥ρ̇(s)∥2ds+τd(t)k2||ETρ(t−τd(t))||2

= −kρT (t−τd(t))(ET +E)ρ(t−τd(t))

+
w t

t−τd(t)
∥ρ̇(s)∥2ds+τd(t)k2||ETρ(t−τd(t))||2

②︷︸︸︷
= −kρT (t−τd(t))EETρ(t−τd(t))

+
w t

t−τd(t)
∥ρ̇(s)∥2ds+τd(t)k2||ETρ(t−τd(t))||2

≤ −(k− τ̄dk2)||ETρ(t−τd(t))||2+
w t

t−τd(t)
∥ρ̇(s)∥2ds.

(31)
Note  that  the  inequalities  tagged  by  ① and  ② can  be  deriv -
ed from the Cauchy-Schwarz inequality and the special matrix
E (5), respectively.

dF1(s)
ds = (s+ τ̄d)∥ρ̇(s)∥2 dF2(s)

ds = t∥ρ̇(s)∥2

V2(t) =
r t

t−τd(t) dF1(s)−
r t

t−τd(t) dF2(s)
V2

Let  and . Then, it can
be obtained that .  Taking
the time derivative of  yields  (32)  (see the bottom of  page
6). The inequality tagged by ③ holds due to Assumption 2.

By combining (31) and (32), one can obtain that
 

V̇(t) ≤ −(k− τ̄dk2)ρT (t−τd(t))EETρ(t−τd(t))

+ τ̄dk2ρT (t−τd(t))EP̄2(e(t))ETρ(t−τd(t))

= −ρT (t−τd(t))E(kIn− τ̄dk2In

− τ̄dk2P̄2(e(t)))ETρ(t−τd(t))

= −ρT (t−τd(t))ES (t)ETρ(t−τd(t)). (33)
Thus the inequality (28) is proved.

S (t) ≻ 1
2 kIn

Next,  the  condition  on  the  control  gain k under  which
 will be derived. It follows from (18) and (23b) that

l2i =
Teδ̃i
2+Te

|ei(t)| < li,∀i ∈ V
p̄i(t),∀i ∈ V

.  Under  the  assumption  that ,  an
upper bound of  can be derived from (20) as fol-
lows:
 

p̄i(t) <
8δ̃il2i

(δ̃i− l2i )3
+

2δ̃i
(δ̃i− l2i )2

=
8δ̃2i Te

(2+Te)( 2δ̃i
2+Te

)3

+
2δ̃i

( 2δ̃i
2+Te

)2
=

Te(2+Te)2

δ̃i
+

(2+Te)2

2δ̃i
:= Bpi . (34)

Bpi

δ̃i λM := Te(2+Te)2/δ̃m+ (2+Te)2/2δ̃m
0 < p̄i(t) < Bpi ≤ λM ,∀i ∈ V

It can be observed from (34) that the value of  increases as
 decreases.  Define .  It

then  follows  from  (34)  that .
Define
 

k0 :=
1

2τ̄d(1+λ2
M)
. (35)

k < k0

It  follows  from (29)  and  (35)  that  if  the  control  gain k satis-
fies , then:
 

S (t) ≻ 1
2

kIn. (36)

V̇(t) ≤ 0Therefore, it follows from (28) that . ■

τ̄d

Remark 3: In Lemme 2, an upper bound for the control gain
k is  given  by  (35)  using  Lyapunov  functionals  and  matrix
analysis. It can be seen from (35) that as the upper bound  of
the  delays  increases,  a  smaller  control  gain k is  needed  to
guarantee the stability of the closed-loop system.

G(t)
G∗,∀t ≥ 0

Now,  it  is  time  to  present  our  main  results.  The  following
first  result  shows  that  the  time-varying  graph  is  main-
tained to be .

k < k0 k0

G(t) G∗,∀t ≥ 0

Theorem  1: Under  Assumptions  1−3,  choose q satisfying
(24)  and ,  where  is  defined  in  (35).  Then,  the  dis-
tributed controller (14) guarantees that the time-varying graph

 of the MAS (1) is maintained to be .
|ei(t)| < li i ∈ V

t ≥ 0
Proof: We  first  show  that ,  for  all  and  all

 by contradiction.
V(0) = V1(0) =∑n

i=1
2e2

i (0)

δ2i −e2
i (0)+

δ2i
q

|ei(0)| < δi− ϵ, ∀i ∈

V t = 0

It  follows  from  Assumption  2  that 

. From Assumption 3, that is, 

 and Lemma 1, one has the following inequalities at :
  

V̇2(t) = lim
h→0

[r t+h
t dF1(s)−

r t+h−τd(t+h)
t−τd(t) dF1(s)−

r t+h
t dF2(s)+

r t+h−τd(t+h)
t−τd(t) dF2(s)

]
h

− lim
h→0

w t+h

t+h−τd(t+h)

h||ρ̇(s)||2
h

ds

= lim
h→0

[
F1(s)|t+h

t −F1(s)|t+h−τd(t+h)
t−τd(t) −F2(s)|t+h

t +F2(s)|t+h−τd(t+h)
t−τd(t)

]
h

−
w t

t−τd(t)
||ρ̇(s)||2ds

= F′1(t)−F′1(t−τd(t))−F′2(t)+F′2(t−τd(t))−
w t

t−τd(t)
||ρ̇(s)||2ds

= (t+ τ̄d)||ρ̇(t)||2− (1− τ̇d(t))(t−τd(t)+ τ̄d)||ρ̇(t−τd(t))||2− t||ρ̇(t)||2+ t(1− τ̇d(t))||ρ̇(t−τd(t))||2−
w t

t−τd(t)
||ρ̇(s)||2ds

= τ̄d ||ρ̇(t)||2+ (1− τ̇d(t))(τd(t)− τ̄d)||ρ̇(t−τd(t))||2−
w t

t−τd(t)
||ρ̇(s)||2ds

③︷︸︸︷
≤ τ̄d ||ρ̇(t)||2−

w t

t−τd(t)
||ρ̇(s)||2ds = τ̄dk2ρT (t−τd(t))EP̄2(e(t))ETρ(t−τd(t))−

w t

t−τd(t)
||ρ̇(s)||2ds. (32)
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{V(0) < Te

|ei(0)| < li,∀i ∈ V.
(37)

t1 > 0
i ∈ V

li |ei(t)| < li
t ∈ [0, t1) |ei(t1)| = li

k < k0 t ∈ [0, t1)

Assume that there exists a time instant , such that, for
an  arbitrary  agent ,  the  absolute  value  of  its  formation
error  reaches  for  the  first  time,  that  is, ,  for

 and . By choosing the control gain k satis-
fying  and applying Lemma 2 for , one has
 

V(t) ≤ V(0) < Te, t ∈ [0, t1). (38)

ei(t) limt→t−1
|ei(t)| = li

At the same time, it can be obtained from the continuity of the
formation error  that . Then, one has
 

lim
t→t−1

2ψi(e
2
i (t)) = lim

t→t−1

2e2
i (t)

δ2i − e2
i (t)+

δ2i
q

=
2l2i

δ2i − l2i (t)+
δ2i
q

= Te.

Consequently, it can be obtained that
 

lim
t→t−1

V(t) = lim
t→t−1

2ψi(e
2
i (t))+2

∑
j∈V\{i}

ψ j(e
2
j (t))+V2(t)


= Te+ lim

t→t−1

2 ∑
j∈V\{i}

ψ j(e
2
j (t))+V2(t)

 > Te

t1 > 0 |ei(t)| li t = t1
which  contradicts  the  inequality  (38).  Thus  there  does  not
exist a time instant  such that  can reach  at .
Since i is arbitrarily chosen, it can be obtained that
 

|ei(t)| < li (39)
i ∈ V t ≥ 0for all  and all .

|ei(t)| < li < δi
i ∈ V t ≥ 0

G(t) G∗ t ≥ 0

It  further  follows from Lemma 1 that ,  for  all
 and all . Then, one can conclude that the time-vary-

ing graph  is maintained to be  for all . ■
Next,  we  present  our  second  main  result,  that  is,  the  MAS

ultimately  converges  to  the  desired  formation  pattern  with
connectivity maintenance and order preservation.

k < k0 k0

Theorem  2: Under  Assumptions  1−3,  choose q satisfying
(24)  and ,  where  is  defined  in  (35).  Then,  the  MAS
(1)  under  the  proposed  controller  (14)  will  converge  to  the
desired  formation  pattern  with  connectivity  maintenance  and
order preservation.

|ei(t)| < li i ∈ V
t ≥ 0 t ≥ 0

V̇(t) ≤ 0 k < k0 V(t) ≥ 0
V̇(t) ≤ 0 V(t)

V̈
V(t) ≥ 0 V̇(t) ≤ 0 ∀i ∈ V ei(t) p̄i(t)
ρ̇i(t) ėi(t) ëi(t)

p̄i(t)

Proof: It has been shown in (39) that , for all 
and all . Then, Lemma 2 can be applied for all  and
one  can  obtain  that  if .  Since  and

,  the  Lyapunov  functional  has  a  finite  limit  as
time goes to infinity.  Thus we will  use the Barbalat’s  lemma
[36] to conduct the convergence analysis of the MAS (1). To
this end, we need to show that  is bounded. First, given that

 and ,  we  obtain  that , , ,  and
 are all bounded, which implies that  and  are also

bounded.  Meanwhile,  taking  the  time  derivative  of  in
(20) gives
 

˙̄pi(t) =

 48δ̃ie2
i (t)

(δ̃i− e2
i (t))4

+
24δ̃i

(δ̃i− e2
i (t))3

ei(t)ėi(t).

˙̄pi(t) ρ̈i(t) = ˙̄pi(t)
ėi(t)+ p̄i(t)ëi(t) ρ̈i(t)

V̈(t)

It  can  be  seen  that  is  also  bounded.  Since 
, one can conclude that  is also bounded. It

then  can  be  verified  that  is  bounded.  Now,  recalling  the

limt→∞ V̇(t) = 0Barbalat’s lemma yields .
limt→∞ V̇(t) ≤ − limt→∞ρT (t−

τd(t))ES (t)ETρ(t − τd(t)) ≤ 0 limt→∞ρT (t−τd(t))×
ES (t)ETρ(t−τd(t)) = 0

limt→∞ρT (t−τd(t))EETρ(t−τd(t)) = 0

It  follows  from  (28)  that 
.  Thus, 

.  Meanwhile,  given  (36),  it  can  be
obtained  that ,  which
implies that
 

lim
t→∞

ETρ(t−τd(t)) = 0n. (40)

ET

limt→∞ρ(t) = limt→∞ρ(t−τd(t)) = m1n
m ∈ R

Since  every  column  sum  of  matrix  equals  zero,  it  fol-
lows  from  (40)  that ,
where  is  a  constant.  Based  on  (8)  and  (15),  it  can  be
derived that
 

lim
t→∞

P(e(t))RT es(t) = m1n. (41)

Pre-multiplying (41) by matrix R results in
 

lim
t→∞

RP(e(t))RT es(t) = mR1n = 0n−1. (42)

RP(e(t))RT

lim
t→∞

es(t) = 0n−1

lim
t→∞

e(t) = lim
t→∞

RT es(t) = 0n lim
t→∞

di(t) = ci

i ∈ V

The last equality in (42) holds because of property P1. Mean-
while, it follows from (13) and property P2 that  is
invertible.  Therefore,  one  can  conclude  that .
Note also that  . Then, 
holds for all .

G(t)
G∗,∀t ≥ 0

From  Theorem  1,  that  is,  the  time-varying  graph  is
maintained to be , one can conclude that
 

|ei(t)| < δi
i ∈ V t ≥ 0for all  and all . Then, connectivity maintenance and

order preservation are guaranteed simultaneously. ■
e(t)

es(t)

es(t)

e(t)

Remark 4: The original  formation error  vector  is  alter-
natively  expressed  by  a  reduced-order  error  vector  via
matrix R in the proof of Theorem 2 (see (41)). In particular, it
is shown that  converges to zero by leveraging properties
P1 and P2 of matrix R. Then, it follows from (8) that the origi-
nal formation error vector  converges to zero too.  

IV.  Simulation

In  this  section,  simulations  with  a  benchmark  example  are
conducted  to  illustrate  that  the  proposed  cyclic-pursuit-based
controller  can  solve  the  circular  formation  problem with  net-
work  connectivity  and  order  preservation  in  the  presence  of
communication  delays  for  a  group  of  agents  with  heteroge-
neous communication ranges.  

A.  Circular Formation Task with Connectivity Maintenance and
Order Preservation without Communication Delays

k1 > 0,k2 > 0 k3 > 0

In  this  subsection,  we  compare  our  controller  with  some
earlier results [5], [20] by a benchmark example to show that
it  can  solve  the  unevenly-spaced  formation  problem  with
guaranteed  connectivity  maintenance  and  order  preservation.
Table I illustrates  forms  of  these  three  controllers,  where

, and  are the control gains. In this bench-
mark  example,  we  will  show  that  the  cyclic-pursuit-based
controller  in  [5]  cannot  solve  the  unevenly-spaced  formation
problems  with  order  preservation.  In  the  meantime,  we  will
show  that  under  the  switching  controller  in  [20],  the  forma-
tion errors cannot converge to zero due to the heterogeneity of
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communication  ranges  among  agents.  By  using  the  frame-
work proposed in this work, the MAS can converge to the pre-
scribed  unevenly-spaced  formation  pattern  with  guaranteed
network connectivity and order preservation. The simulations
of  this  benchmark  example  are  conducted  under  the  same
parameters and initial conditions, which are given in Table II.

c = [120◦,100◦,80◦,10◦,
50◦]T

R0 = 10 m
r1 = 20sin( 11π

36 ) m r2 = 20sin( 13π
36 ) m

r3 = r4 = 20sin( 5π
12 ) m r5 = 20sin( π12 ) m

∆1 = 110◦ ∆2 = 130◦ ∆3 = ∆4 = 150◦ ∆5 = 30◦

θ = [10◦,132◦,204◦,325◦,330◦]T

k1 = 0.05, k2 = 0.0002
k2

k2 <
1

2max{c}

δ1 = 10◦, δ2 = 50◦, δ3 = 70◦, δ4 = 10◦ δ5 =

50◦

ϵ = 4

k = 0.05 q = 41

Consider the circular formation problem for five agents with
single  integrator  dynamics,  and the  desired  formation pattern
is  described  by  a  constant  vector 

. The agents are constrained to move on a circle of radi-
us . The heterogeneous communication ranges amo-
ng  agents  are  given  as , ,

, and . In terms of angu-
lar  distance,  the  heterogeneous  communication  ranges  are
given as , , ,  and .
The initial positions of the agents in this benchmark example
are  chosen  as .  The  control
gains  in  [5]  and  [20]  are  given  as ,
respectively.  It  is  noted that  the control  gain  in [20] needs
to satisfy that  to preserve the agents’ initial order.
Furthermore, the admissible upper bounds in our work can be
designed  as ,  and 

.  Moreover,  the  parameter  in  Assumption  3  is  selected  as
. It can be verified that the initial positions of the agents

satisfy  the  initial  conditions  stated  in  Assumption  3.  The
parameters  in  the  proposed  controller  (14)  are  chosen  as

 and .

θi

limt→∞ di(t)− ci = 0

The  time  responses  of  the  angular  positions  for  all  agents
under  controllers  proposed  in  [5],  [20],  and  our  work  are
shown  in Figs. 2(a)–2(c),  respectively.  In  these  figures,  the
value of  along the vertical axis represents the angular posi-
tion of agent i on the circular mission space, as defined in (1).
It  can be  seen from the  zoomed window in Fig. 2(a) that  the
agents represented in red and green arrive at the same angular
positions  on  the  circle.  Therefore,  the  cyclic-pursuit-based
controller  in  [5]  cannot  always  maintain  the  agents’ spatial
order for an unevenly-spaced formation task. On the contrary,
it  can  be  observed  from Figs. 2(b) and 2(c) that  the  agents’
initial  order  on the circle  is  always preserved while  perform-
ing the formation task. The evolutions of the formation errors
for  all  agents  under  controllers  proposed in  [5],  [20]  and our
work  are  shown  in Figs. 2(d)–2(f),  respectively.  It  can  be
observed  from Figs. 2(d) and 2(f) that  the  formation  errors
converge  to  zero  as  time  goes  to  infinity,  that  is,

.  However,  it  can  be  seen  from Fig. 2(e)
that  the  formation  errors  cannot  converge  to  the  desired  for-
mation  pattern  under  the  switching  control  law  proposed  in
[20] for agents with heterogeneous communication ranges.

Furthermore, from the analysis in Section III-A, it is known

G(t)
G∗ ∀t ≥ 0

|ei(t)|
δi

|e1(t)|, . . . , |e5(t)|
δ1, . . . , δ5

|ei(t)|
δi i ∈ V

t ≥ 0

that if the time-varying graph  for the MAS is maintained
to  be , ,  then network connectivity  and spatial  order
of  the  MAS  are  always  maintained.  To  this  end,  we  need  to
check  whether  the  absolute  values  of  each  formation  error

 are  smaller  than  its  corresponding  admissible  upper
bound  along the whole evolution. In Fig. 3, the solid curves
represent  the  absolute  values  of  formation  errors,  that  are,

.  The  dotted  lines  represent  the  admissible
upper  bounds  of  each  agent,  that  are, ,  obtained  by
(9). Since each solid curve is always lower than the dotted line
with the same colour, Fig. 3 illustrates  that  stays  inside
the corresponding admissible upper bound  for all  and
all ,  which implies  that  network connectivity  and spatial
order of the MAS are always maintained. Therefore, it can be
concluded  from  this  benchmark  example  that  the  controller
proposed in this work can achieve the circular formation task
with guaranteed network connectivity and order preservation.  

B.  Circular Formation Task with Connectivity Maintenance and
Order Preservation in the Presence of Communication Delays

In  this  subsection,  the  effectiveness  of  the  proposed  con-
troller in the presence of communication delays is verified and
the  effects  of  these  delays  on  the  circular  formation  task  are
also illustrated.

τd1 (t) = 0.1sin(t)+0.2
τd2 (t) = 0.5sin(t)+0.6 τd1 (t)
τd2 (t) τ̄d1 = 0.3 τ̄d2 = 1.1

k3
0.05 0.02 0.01

The simulation parameters are the same as in Section IV-A,
Table II. To demonstrate the influence of communication del-
ays,  we  consider  and  compare  the  following  three  different
cases: 1) Without communication delays; 2) With delays desc-
ribed by ; and 3) With delays described
by . The upper bounds for delays 
and  are  and ,  respectively.  It  can  be
verified that the derivatives of these time-varying communica-
tion  delays  satisfy  the  conditions  in  Assumption 2.  For  these
three cases, simulations are run with control gains  chosen to
be , , and , respectively.

τd1 (t) τd2 (t)

τd1 (t) τd2 (t)

k3

|ei(t)|
δi i ∈ V t ≥ 0

The  control  inputs  for  MASs  without  delays,  with  delays
 and  are  shown  in Figs. 4(a), 4(d),  and 4(g),

respectively. The zoomed window in Fig. 4(a) shows that the
control  inputs  evolve  smoothly  when  there  are  no  delays.
However,  for  the  cases  with  delays  shown  in Figs. 4(d) and
4(g),  the  control  inputs  oscillate  until  the  MASs  converge  to
the  desired  formation  pattern.  This  is  because  the  controllers
therein use outdated error information caused by the sinusoid
communication  delays.  The  time  responses  of  the  formation
errors for MASs without delays, with delays  and 
are shown in Figs. 4(b), 4(e), and 4(h), respectively. It can be
observed  from Figs. 4(e) and 4(h) that  the  formation  errors
converge  to  zero  despite  the  existence  of  communication
delays.  However,  it  is  noted  that  as  the  delay  upper  bound
becomes  larger,  the  time  responses  of  the  formation  errors
become slower. This is due to different choices of the control
gain  for these three cases. Recall the analysis in Remark 3,
a smaller control gain is needed to handle delays with a larger
upper bound so that the stability of the closed-loop system can
be guaranteed. Finally, it can be observed from Figs. 4(f) and
4(i) that  stays inside the corresponding admissible upper
bound  for  all  and  all ,  which  implies  that  net-

 

TABLE I 

Controllers in the Benchmark Example

Method uiController 

[5] k1ei(t)

[20] k2(ci−1 min{di(t),∆i}− ci min{di−1(t),∆i})
This paper k3 pi(ei(t))ei(t)
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work  connectivity  and  spatial  order  of  the  MAS  are  always
maintained in the presence of communication delays.
  

V.  Conclusion

In this article, the circular formation problem for a group of

agents  subject  to  limited  communication  ranges  and  time-
varying communication delays was investigated. To make the
distance between neighbouring agents always satisfy network
connectivity constraint and order preservation constraint, a set
of admissible upper bounds and new potential functions have
been  designed  so  that  the  formation  errors  stay  inside  these
upper  bounds  during  the  whole  evolution.  Based  on  these
potential  functions,  a  novel  gradient-descent-based  controller
has been proposed in which each agent  needs only the infor-
mation from its leading agent. It has been shown that the pro-
posed  controller  can  render  the  MAS  to  converge  to  the
desired formation pattern while maintaining network connec-
tivity  and  spatial  order.  In  this  work,  the  controller  is  pro-
posed under the assumption that the communication delays in
the  MAS  are  identical.  When  there  exist  nonuniform  delays,
the system matrix will  be more complicated. In this case, the
properties  of  the  incidence  matrix  in  our  design  do  not  hold
any longer.  It  would be interesting to consider a circular  for-
mation  problem  with  network  connectivity  and  order  preser-
vation in the presence of nonuniform communication delays in
the future.

 

TABLE II 

Simulation Parameters

Parameter Values

c [120◦,100◦,80◦,10◦,50◦]T

R0 10 m

ri r1 = 20sin( 11π
36 ) m r2 = 20sin( 13π

36 ) m r3 = r4 = 20sin( 5π
12 ) m r5 = 20sin( π12 ) m, , , and 

∆i ∆1 = 110◦ ∆2 = 130◦ ∆3 = ∆4 = 150◦ ∆5 = 30◦, , , and 

δi δ1 = 10◦, δ2 = 50◦, δ3 = 70◦, δ4 = 10◦ δ5 = 50◦, and 
θ(0) [10◦,132◦,204◦,325◦,330◦]T

Others ϵ = 4 q = 41, 
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Fig. 2.     A benchmark example.
 

 

0 200 400 600 800 1000
t

0

20

40

60

80

100

|e i
| a

nd
 δ

i

|e1| |e3|

|e4|

|e5|

|e2|
δ1

δ2

δ3

δ4

δ5

 
Fig. 3.     Connectivity maintenance and order preservation (CMOP).
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