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   Abstract—Deep  metric  learning  (DML)  has  achieved  great
results  on  visual  understanding  tasks  by  seamlessly  integrating
conventional metric learning with deep neural networks. Existing
deep metric  learning methods focus on designing pair-based dis-
tance  loss  to  decrease  intra-class  distance  while  increasing  inter-
class  distance.  However,  these  methods  fail  to  preserve  the  geo-
metric  structure  of  data  in  the  embedding  space,  which  leads  to
the spatial structure shift across mini-batches and may slow down
the convergence of embedding learning. To alleviate these issues,
by  assuming  that  the  input  data  is  embedded in  a  lower-dimen-
sional sub-manifold, we propose a novel deep Riemannian metric
learning  (DRML)  framework  that  exploits  the  non-Euclidean
geometric structural information. Considering that the curvature
information  of  data  measures  how  much  the  Riemannian  (non-
Euclidean)  metric  deviates  from the  Euclidean  metric,  we  lever-
age geometry flow, which is called a geometric evolution equation,
to  characterize  the  relation  between  the  Riemannian  metric  and
its  curvature.  Our  DRML  not  only  regularizes  the  local  neigh-
borhoods  connection  of  the  embeddings  at  the  hidden  layer  but
also adapts the embeddings to preserve the geometric structure of
the  data.  On  several  benchmark  datasets,  the  proposed  DRML
outperforms all existing methods and these results demonstrate its
effectiveness.
    Index Terms— Curvature  regularization,  deep  metric  learning
(DML), embedding learning, geometry flow, riemannian metric.
  

I.  Introduction

M EASURING  the  distance  (dis)similarity  between  im-
ages  is  a  fundamental  problem  in  computer  vision.  In

general, the geometric structure of image data set is complex,

especially  when  it  is  embedded  in  a  nonlinear  sub-manifold
[1],  [2].  It  is  insufficient  to  reflect  the  real  similarity  of  the
data  utterly  using  Euclidean  metric,  so  metric  learning  was
proposed [3]. The main purpose of metric learning is to learn
an  appropriate  metric  to  measure  the  similarity  among  non-
Euclidean data [4]. However, one significant weakness of the
traditional metric learning is that currently available methods,
including  the  online  learning  and  offline  learning  ones,  can-
not efficiently process the large scale data due to their limited
learning process [5].

With  the  rise  of  deep  learning,  researchers  proposed  deep
metric  learning  (DML)  [6],  [7]  which  combines  the  tradi-
tional  metric  learning  with  deep  neural  networks.  DML  has
achieved  the  state-of-the-art  results  on  multiple  benchmark
datasets. Unlike traditional metric learning that learns a Maha-
lanobis  metric  matrix,  DML proposes  to  learn  an  embedding
mapping from the original features to a low-dimensional vec-
tor  space  and  outputs  a  set  of  vector  representations.  In  this
framework, the distance between similar data (within the same
class)  is  relatively small  while the distance between different
classes  is  relatively  large.  However,  existing  deep  metric
learning  methods  [8]−[10]  all  focus  on  designing  different
pair-based distance losses without considering the global geo-
metric structure of the overall dataset. In addition, the geomet-
ric structure of features in hidden layers may be shifted due to
the  nonlinear  activation  function,  which  may  slow  down  the
convergence  of  DML  methods.  Despite  the  great  success  of
DML,  it  remains  challenging  to  fully  exploit  its  geometric
structure on non-Euclidean (manifold) data.

Geometric  structure  information  of  data  is  of  great  impor-
tance for learning tasks [11], [12]. On the one hand, the geo-
metric structure reflects the feature distribution of initial  data
and  contains  the  predictive  information  about  learning  tasks,
such as the development process of diseases [13]. On the other
hand, for the deep neural  network,  the geometric structure of
data can be regarded as a set of additional unsupervised infor-
mation  [14],  [15],  which  alleviates  overfitting  and  improves
the generalization performance. Specially,  the local structural
information of data characterizes how neighborhoods of a pair
of images relate to each other [16], which is very useful infor-
mation  for  the  learning  tasks  with  complex  structured  data.
However, although the existing deep metric learning methods
assume  that  the  original  data  distribute  in  a  non-Euclidean
space, they leverage Euclidean metric to measure the similar-
ity  among  data  in  practice.  Euclidean  metric  has  limitations
for nonlinear distributed data. There can be different classes of
images  with  tiny  Euclidean  distances  due  to  the  short-cuts
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problem  in  non-Euclidean  space.  A  formal  illustration  is
shown in Fig. 1. To effectively take advantage of the geomet-
ric  structure  of  data,  we  need  a  more  discriminative  metric,
which can distinguish these scenarios in Fig. 1.
 

x y

 
Fig. 1.     Illustration of short-cuts problem in non-Euclidean space. The black
curve indicates the geodesic between the two points, and the green solid line
indicates the short circuit between the two points.
 

In this paper,  we assume that input data processed by deep
metric  learning is  embedded in  a  nonlinear  sub-manifold.  To
quantify  such  geometric  structure,  we  draw  sensation  from
recent  study  of  geometry  flow  learning  [17].  Inspired  by  the
power of  geometry flow in continuous manifold (see Section
III-C), e.g., the Ricci flow in Riemannian manifold, geometry
flow  learning  proposes  constructing  an  evolution  function
between  the  metric  and  curvature  of  data  and  is  combined
with  metric  learning  to  learn  a  Mahalanobis  metric  which
approximates  the  real  Riemannian  metric;  see  Section  IV-A.
In  theory,  the  discrete  curvature  measures  how  much  the
geometry  of  a  pair  of  neighborhoods  deviates  from  a “flat”
space.  Intuitively,  the  curvature  quantifies  the  distribution
smoothness of  a  neighborhood.  Such information is  useful  to
distinguish the short-cuts between neighbors and can be lever-
aged by a deep metric learning method.

We  propose geometry  flow-based  deep  riemannian  metric
learning (DRML), the first deep metric learning method based
on non-Euclidean geometric structure. In order to combine the
geometry flow model with deep metric learning, we design a
geometry  flow  layer  in  the  hidden  layers  of  the  deep  neural
networks. Technically, we design a loss function in the geom-
etry flow layer by exploiting the curvature information of data
to  regularize  the  feature  distributions  inspired  by  geometry
flow.  Theoretically,  the  geometric  structure  regularization  in
the  hidden  layer  is  equivalent  to  performing  the  Laplacian
smoothing  [18]  to  data,  which  can  boost  the  convergence  of
the  embedding  learning  and  improve  the  performance  of  the
final embedding results. To the best of our knowledge, this is
the first work to leverage the intrinsic non-Euclidean geomet-
ric structure for deep metric learning.

The contributions of this paper are summarized as follows:
1) Propose a new deep Riemannian metric learning method

based  on  geometry  flow,  in  which  the  geometric  structure  is
added as a regularization term to the hidden layer so that  the
feature  distributions  of  hidden  layers  keep  their  initial  mani-
fold structure.

2) Use curvature information of feature distributions for the
regularization  of  deep  metric  learning,  which  is  first  intro-
duced in designing deep metric learning.

3) Extensive experimental results validate the superiority of
the proposed DRML over the state-of-the-art methods.

The rest of this paper is organized as follows. In Section II,
we introduce related works on deep metric learning and curva-
ture-aware  methods.  In  Section  III,  we  present  preliminaries
on the basic definitions and theories. The proposed deep met-
ric  learning  method  based  on  geometry  flow  is  described  in
Section  IV.  Section  V  gives  the  experiments  and  evaluation
results. Finally, we conclude our work in Section VI.  

II.  Related Work
  

A.  Deep Metric Learning
We briefly summarize previous works on deep metric learn-

ing.  In  2015,  Google  team  introduced  Facenet  model  [6],
which  was  the  first  to  propose  a  CNN-based  deep  metric
learning  model  to  learn  high-level  feature  representation  of
data.  To  rectify  the  compactness  problem  between  classes,
Wen et al. [8] proposed center loss, which did not consider the
difference between classes. He et al. [9] designed triplet-cen-
ter loss combined with triplet loss. All of these models above
converge  slowly  due  to  the  choice  of  pairwise  samples.  To
address the above limitation, N-pair loss [19] extended triplet
loss  and  constructed  more  negative  samples  which  are  far
away from the anchor. Other loss functions include hierarchi-
cal  triplet  loss  [20],  multi-similarity  loss  [21],  histogram loss
[22],  and angular  loss  [23].  For  all  the  methods,  they mainly
focus on optimizing angular distance between data. However,
none  of  them  explicitly  considers  the  feature  distribution
information. In 2020, Zhang et al. [24] proposed a new spheri-
cal  embedding  constraint  to  regularize  the  distribution  of  the
norms,  which  can  rectify  the  unstable  gradient  in  batch  opti-
mization. Zhao et al. [25] presented a deep interpretable met-
ric learning method for more transparent  embedding learning
based on structural  matching strategy.  Chen et  al. [26]  intro-
duced a graph consistency regularization term to optimize the
feature  distribution.  At  the  same  time,  Seidenschwarz et  al.
[27]  used  message  passing  networks  to  uncover  the  relations
in a mini-batch. However, there have no methods to model the
non-Euclidean geometric structure of the overall data.  

B.  Curvature-Aware Methods
Different  proposals  for  discrete  curvature  information have

been  introduced  in  recent  years,  including  discrete  curvature
(geodesic  curvature,  Ricci  curvature)  on  manifold  and
Ollivier-Ricci  curvature  [28]  on  graph.  Kim et  al. [29]  first
applied  curvature  information  in  semi-supervised  learning.
Similar  applications  have  been  shown in  the  characterization
of  image  distributions  [30],  [31].  There  are  also  applications
of Ricci flow in manifold learning to dynamically extract the
geometric  features  of  data  [32].  Recently,  various  methods
have been proposed to implement Ollivier-Ricci curvature on
graph  neural  network  to  reweigh  different  channels  of  the
messages  [33],  [34].  Furthermore,  Ollivier-Ricci  curvature
was  also  applied  in  network  alignment  [35]  and  community
detection [36]. To the best of our knowledge, curvature infor-
mation has not been used in training deep metric learning.  

III.  Preliminaries

In  this  section,  we first  present  the  basic  definition of  Rie-
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{x1, x2, . . . , xN}, xi ∈ RD

M RD

mannian  metric.  Then,  we  give  the  basic  theory  of  curvature
information  and  geometry  flow  in  geometry.  Formally,  sup-
pose the input data is represented as a set of N data samples,

, which are sampled from a low-dimen-
sional  manifold  embedded  in ,  where D is  the  feature
dimension.  

A.  Riemannian Metric

M
In the Riemannian geometry, Riemannian metric is used to

compute  the  intrinsic  geometric  structure  of .  The  corre-
sponding Taylor  expansion of  Riemannian metric  is  given as
[37]
 

gi j = gi j|p+∂kgi j|pxk +
1
2
∂l∂kgi j|pxk xl

+
1
6
∂m∂l∂kgi j|pxk xlxm+ · · · (1)

gi j|p = δi j ∂kgi j|pxk = 0 1
2∂l∂kgi j|pxk xl = − 1

3 Rik jl|pxk xl

M gi j
Rik jl {i, j,k, l}

where , , .
p is an arbitrary point on ,  is the Riemannian metric, and

 is its Riemannian curvature under th vector fields.
In  (1),  the  Riemannian  metric  is  not  locally  isometric  to

Euclidean  metric  due  to  the  nonzero  Riemannian  curvature.
Therefore, in order to learn the intrinsic geometric structure of
the  embedded  manifold,  the  curvature  information  of  this
manifold needs to be explored firstly.  

B.  Curvature Information
In  the  Riemannian  geometry,  Riemannian  curvature  of  a

manifold is represented by a fourth-order tensor. However, for
discrete  data,  the  differential  geometric  structure  does  not
exist.  It  is  difficult  to  calculate  the  continuous  curvature
directly.  In  this  paper,  we  evaluate  the  discrete  curvature
information  of  each  neighborhood  by  summing  up  the
geodesic  curvatures  between  all  neighbors.  Geodesic  repre-
sents the shortest path between two points on a manifold. And
geodesic  curvature  quantifies  the  curve  bending  of  geodesic.
We  follow  the  geodesic  curvature  estimation  method  [30],
which is computed as:
 

R
(
xi, x j
)
=
∥θ
(
Ji, J j
)
∥

dge
(
xi, x j
) (2)

θ(Ji, J j)
Ji ∈ RD×di (TxiM) J j ∈ RD×d j (Tx jM) dge(xi, x j)

xi x j

 measures  the  principal  angle  between  the  tangent
space  and .  is
the geodesic distance between  and . The detailed compu-
tation process is shown in Appendix.  

C.  Geometry Flow
In the mathematical field of differential geometry, a geome-

try flow, also called a geometric evolution equation, is a type
of partial differential equation for a geometric object such as a
Riemannian metric or an embedding. Here, we take the classi-
cal Ricci flow [38] as an example to introduce geometry flow.

M gi j
Ri j

Given a manifold ,  is a Riemannian metric defined on
it, and its Ricci curvature is . Hamilton’s Ricci flow [39] is
a parabolic partial differential evolution equation about time t,
 

∂

∂t
gi j = −2Ri j. (3)

Ricci  flow  can  be  viewed  as  a  heat  equation  for  Rieman-
nian  metric  [40].  One  of  the  key  properties  of  Ricci  flow  is
that  the  Riemannian  metric  and  curvature  mutually  evolve
according  to  this  partial  differential  equation  (3).  Thus  Ricci
flow tends to smooth out the irregularity of curvature [36]. By
Ricci  flow,  neighborhoods  with  positive  curvature  tend  to
shrink  and  neighborhoods  with  negative  curvature  tend  to
expend [41].

In this work, we tend to smooth out the feature distributions
of data by exploiting its curvature information. We follow the
discrete  geometry  flow  learning  model  [17]  to  construct  an
evolution function between metric and curvature of data,  and
learn  how  to  use  it  to  re-correct  the  relative  distance  among
neighbors. Eventually, the curved regions tend to be flattened
by iterating the discrete geometry flow.  

IV.  Proposed Method

The  key  idea  of  DRML  is  how  to  combine  the  geometry
flow  model  with  DML.  In  this  section,  we  outline  the  deep
Riemannian metric learning method and give the correspond-
ing theoretical analysis.  

A.  Geometry Flow Learning
In  2018,  [17]  was  the  first  to  introduce  geometric  flow

learning on discrete data. The proposed geometry flow model
combined  with  metric  learning  is  shown  to  provide  a  nearly
perfect  discrete  version  of  Riemannian  metric  by  optimizing
an  evolution  function  between  the  metric  and  curvature  of
data.  They leverage the geometry flow in a data-driven man-
ner, which is formally defined as
 

LR = Dϕ (MR,M0)+λ
N∑
i, j

(
dge
(
xi, x j
)
−dMR

(
xi, x j
))2
. (4)

Dϕ
MR M0

dge(xi, x j)
dMR (xi, x j)

∥θ(Ji, J j)∥

The first term  quantifies the similarity between the learnt
Mahalanobis  metric  and  Euclidean  metric .  The  sec-
ond term represents the difference between geodesic distance

 and  the  corresponding  Mahalanobis  distance
 under metric learning, which can be approximated

by  the  principal  angle  based  on  the  curvature  esti-
mation ((2)). According to (2), (4) is transformed as
 

LR = Dϕ (MR,M0)+λ
N∑
i, j

{
d2

MR

(
xi, x j
)
·R2
(
xi, x j
)}
. (5)

Geometry  flow  learning  combines  online  learning  to  opti-
mize  this  discrete  evolution  function  (5).  Geodesic  curvature
evolves  under  this  function  (5).  The  Mahalanobis  distances
between  neighbors  with  nonzero  geodesic  curvature  tend  to
relatively  expand  by  iterating  the  geometry  flow  process.
Here, geodesic curvature can be expressed as a regularization
term of the Mahalanobis distance.  

B.  Geometry Flow Layer
In  this  section,  we  propose  a  CNN-based  model  that

addresses  the  aforementioned  limitations  of  DML algorithms
by  designing  a  new  geometry  flow  layer.  We  introduce  our
algorithm  process  in  each  mini-batch.  Formally,  suppose  the
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Xi = {Xi
1,X

i
2, . . . ,X

i
n}

Xi
j ∈ Rc×h×w

W i,bi

input  data  in ith  convolutional  layer  is .
 is a 3D tensor and n is the number of samples in

one mini-batch.  The parameters of ith hidden layer are set  to
, and the activation function is expressed as σ.

After  convolution  and  activation  function,  the  output  of
CNN in the ith layer is expressed as follows:
 

σi
j = σ

(
W iXi

j+bi
)
, j = 1, . . . ,n. (6)

(i+1)
Traditional CNN models take the result of (6) as the input of

the th convolutional layer.

(i+1)

(i+1)

In  this  work,  we  construct  a  new  geometry  flow  layer
between the ith activation function layer and the th con-
volutional layer.  In the geometry flow layer, we use the rela-
tion  function  (5)  to  regularize  the  feature  distribution  of  the

th  layer’s  input  by  leveraging  the  geometric  structure
inherited  from  previous  layer.  To  achieve  back  propagation,
we convert (5) into the following formula:
 

LR =

n∑
j=1

∥Xi+1
j −σi

j∥2

+λ

n∑
j,l=1

(
∥Xi+1

j −Xi+1
l ∥

2 ·ϕ
(
R
(
Xi

j,X
i
l

)))
(7)

R(Xi
j,X

i
l) Xi

j
Xi

l ϕ(R(Xi
j,X

i
l))

where  represents the geodesic curvature between 
and  (see Appendix), and  is the curvature regu-
larization term; see Section IV-C.

In (7),  the first  term quantifies the metric distance between
two layers which corresponds to the first term in (5); and the
second term denotes the curvature regularization term to fea-
ture distribution, which is corresponding to the second term in
(5).

We optimize (7) by computing the gradient, and the deriva-
tive of the solved variable is obtained,
 

∂LR

∂Xi+1
j

= 2
(
Xi+1

j −σi
j

)
+2λ

n∑
l=1

((
Xi+1

j −Xi+1
l

)
·ϕ
(
R
(
Xi

j,X
i
l

)))
. (8)

∂LR
∂Xi+1

j
= 0Let , then we obtain the following formula:

 

Xi+1
j =

σi
j+λ
∑n

l, j,l=1

(
Xi+1

l ·ϕ
(
R
(
Xi

j,X
i
l

)))
1+λ

∑n
l, j,l=1ϕ

(
R
(
Xi

j, x
i
l

)) . (9)

Xi+1
l σi

lBy replacing  with  on the right hand of (9) approxi-
mately, (9) can be re-expressed as follows:
 

Xi+1
j =

σi
j+λ
∑n

l, j,l=1σ
i
l ·ϕ
(
R
(
Xi

j,X
i
l

))
1+λ

∑n
l, j,l=1ϕ

(
R
(
Xi

j,X
i
l

)) . (10)

λ = 0 Xi+1
j

σi
j

It  can  be  seen  from  (10)  that  adding  geometry  flow  con-
straint  between  hidden  layers  is  equivalent  to  re-representa-
tion  of  hidden  layer  features  using  curvature  information.  If
we do not consider the geometric structure, namely , 
is equal to the traditional activation function output .
  

C.  Curvature Regularization Term

ϕ(R(Xi
j,X

i
l))

ϕ(R(Xi
j,X

i
l))

wi+1
jl Xi+1

j ,X
i+1
l

Intuitively,  geodesic  curvature  measures  how  much  a
geodesic  deviates  from  being  straight,  and  could  be  used  to
alleviate  the  short-cuts  problem  in  the  hidden  layers.  If  the
geodesic curvature between two neighbors is not zero, the cor-
responding Mahalanobis  distance  would  increase  by iterating
the geometry flow process. By optimizing (7), if the geodesic
curvature  is  larger,  the  distance  between  two  points  can  be
guaranteed  to  relatively  extend  more  only  if  is
smaller.  Therefore,  in  this  method,  we  set  to  be
the similarity weight  between . Furthermore, we
use  the  geodesic  curvature  as  a  penalty  to  reweigh  the  dis-
tance  similarity  between  data,  which  is  updated  iteratively
under geometry flow. The corresponding iterative equation is
shown as
 

ϕ
(
R
(
Xi

j,X
i
l

))
= 1− ϵ ·R

(
Xi

j,X
i
l

)
(11)

 

wi+1
jl = ϕ

(
R
(
Xi

j,X
i
l

))
. (12)

wi+1
jl R

(
Xi

j,X
i
l

)
= 0

The larger the geodesic curvature is, the smaller the similar-
ity  is.  When  the  geodesic  curvature ,  the
similarity metric between data is equal to Euclidean metric.

Xi
j Xi

l
wi+1

jl = 0
wi+1

jl
wi+1

jl
Xi+1

Xi

In  addition,  in  order  to  reduce  the  complexity  of  our
method, we use the nearest neighbor method [42] to construct
an adjacency graph on each mini-batch. We set a parameter δ,
and  when  the  normalized  distance  between  and  is
greater  than δ,  set ;  otherwise,  we  compute  the
geodesic curvature and set  to (12). The similarity weight

 inherits  the  local  geometric  structure  of  the  previous
layer’s  input.  Thus  the  next  layer’s  input  optimally  pre-
serves the local structure of the previous layer . The overall
illustration  diagram  of  our  method  is  shown  in Fig. 2 and
Algorithm 1.

Algorithm 1 DRML

Xi
j

σi
j

ϵ

1: Input: the input of ith convolutional layer ,  output of the ith
convolutional layer , j represents jth sample in the mini-batch, dis-
tance threshold δ, adjustment factor λ, .

L2 di
jl Xi

j Xi
l j , l2: calculate normalized  distance  for , , 

di
jl > δ3: if  then

wi+1
jl ← 04:　　set 

di
jl ≤ δ5: else if  then

R
(
Xi

j,X
i
l

)
6:　　calculate  using (2)

wi+1
jl ← 1− ϵ ·R

(
Xi

j,X
i
l

)
7:　　update 
8: end if

Xi+1
j9: calculate  using (14)

Xi+1
j10: Output: the input of next convolutional layer 

Our proposed DRML is a kind of adaptable method, which
can  be  combined  with  all  the  existing  deep  metric  learning
methods.  It  provides a  geometry regularization term for  deep
neural  network,  and  improves  the  convergence  and  perfor-
mance  of  the  models.  In  Section  IV-D,  we  will  give  some
interpretation analysis for the proposed method in geometry.  

D.  Theoretical Analysis
In the following, we analyze the influence of geometry flow
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(i+1)

Fi

layer  to  the  internal  batch  optimization  of  deep  neural  net-
work.  Based  on  the  back  propagation  mechanism,  adding
geometry  flow  layers  can  affect  the  gradient  change  of  each
layer. For analysis of convenience, we regard the ith layer and

th layer  as  an example to  illustrate  the  influence of  the
geometry  flow  layer  on  the  updating  of  parameters  and  fea-
ture  distributions.  Suppose  the  regularization  mapping  in
geometry flow layer is  ((10)). Under these assumptions, the
feature  mapping  between  two  adjacent  convolutional  layers
can be formulated as
 

Xi+1 = Fi
(
σ
(
W iXi+bi

))
. (13)

(i+1)The input  of jth  sample in  the th  layer  is  represented
as below:
 

Xi+1
j =

σi
j+λ
∑n

l, j,l=1σ
i
lw

i+1
jl

1+λ
∑n

l, j,l=1 wi+1
jl

(14)

wi+1
jl

∂Fi

∂σ

 is  the  similarity  weight  between  two  input  samples
defined in (12). The matrix form of gradient  is
 

∂Fi

∂σ
=



1
1+λ

∑
l,1 wi+1

1l

· · ·
λwi+1

n1

1+λ
∑

l,N wi+1
nl

...
. . .

...

λwi+1
1n

1+λ
∑

l,1 wi+1
1l

· · · 1
1+λ

∑
l,n wi+1

nl


. (15)

∂Fi

∂σBy analyzing  the  gradient  matrix  of  the  geometry  flow
layer, we obtain the following conclusions.

∂Fi

∂σ |γ| ≤ 1
Proposition 1: All  the  eigenvalues γ of  the  gradient  matrix
 satisfy .

[ ∂F
i

∂σ ]T

[ ∂F
i

∂σ ]TΓ =

γΓ

Proof: Suppose γ is an arbitrary eigenvalue of , and Γ
is  the  corresponding  eigenvector,  then  we  can  get 

. That is, 

n∑
l=1

a jlΓl = γΓ j, j = 1,2, . . . ,n

[ ∂F
i

∂σ ]T =
(
a jl
)
n×n
Γ = [Γ1,Γ2, . . . ,Γn]Twhere , .

 

Γ j
(
γ−a j j

)
=

n∑
l=1,l, j

a jlΓl

|γ−a j j| = |
n∑

l=1,l, j

a jl
Γl

Γ j
| ≤
∑

l=1,l, j

|a jl| · |
Γl

Γ j
|.

|Γ j| =maxl |Γl| | Γl
Γ j
| ≤ 1If , ,  then  we  obtain  the  following

result:
 

|γ−a j j| ≤
∑

l=1,l, j

|a jl|.

[ ∂F
i

∂σ ]T Γ j

|Γ j| =maxl |Γl|
For  each  eigenvalue  of ,  there  must  exist ,  which

satisfies  that ,  so  that  the  above  equation  is
transformed as follows:
 

a j j−
n∑

l=1,l, j

|a jl| ≤ γ ≤
n∑

l=1

|a jl|.

a jl 0 < a jl < 1For  each  element ,  it  satisfies ,  so  we  get  the
following result:
 

−1 ≤ a j j−
n∑

l=1,l, j

|a jl| ≤ γ ≤ 1.

■
Notice that geometry flow layer only regularizes the feature

distributions  of  hidden  convolutional  layers,  but  does  not
explain  whether  these  geometric  structures  are  inherited  and
preserved  among  the  training  process.  Therefore,  we  seek  to
use Proposition 1 characterizing how the geometric structures
of data relate to each other layer by layer. We get the follow-
ing conclusions shown in Propositions 2 and 3.

In  order  to  analyze  the  variation  of  feature  distributions  in
the  hidden  layer,  we  leverage  Gram  matrix  to  describe  the
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Fig. 2.     The overall pipeline of DRML model between two convolution layers. Since the non-linear operation of activation function (such as ReLU) in each
convolutional layer, the features distribution of each mini-batch may be shifted. We add an extra geometry flow layer behind the activation function operation in
each convolutional layer to explicitly preserve and transmit the original non-Euclidean geometric structure of input data. The geometric structure of each mini-
batch is extracted from the former convolutional layer and transmitted to the next layer by the middle geometry flow layer.
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spatial  distribution  of  data.  Gram  matrix  is  an  inner  product
matrix, which can be seen as a distance metric and the corre-
sponding  eigenvalues  measure  the  distribution  variance
among data.

Proposition 2: Geometry flow layer regularization is a type
of  Laplacian  smoothing  operator.  The  neighborhood  regions
of data tend to be more densely after regularization by geome-
try flow layer. That is,
 

λ j
(
Ĝi
)
≤ µ j
(
Gi
)
, j = 1,2, . . . ,n

Gi

Ĝi

λ j,µ j

where  represents  the  Gram  matrix  among  the  output  fea-
tures  of  the ith  convolutional  layer,  represents  the  corre-
sponding Gram matrix of the output with geometry flow layer
regularization, and  are the corresponding eigenvalues.

Gi+1,Ĝi+1

Proof: According to the definition of Gram matrix, it repre-
sents the inner product matrix between all  the samples of the
ith mini-batch. Therefore,  can be represented as fol-
lows:
 

Gi+1 =
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According to (14) in this paper, we have
 [
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1 · · · Xi+1

n

]
=
[
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1 · · · σi
n

]
·N

N = ∂F
i

∂σ Ĝiwhere .  Therefore,  the Gram matrix  is  represented
as follows:
 

Ĝi = NT ·Gi ·N.

|γ| ≤ 1 λ j(Ĝi) ≤ µ j(Gi) j = 1,2, . . . ,n
According  to  Theorem  1,  the  eigenvalues  of N satisfy

, thus, , for all . ■
In  the  following  proposition  we  prove  the  convergence  of

geodesic curvature.
Proposition  3: The  geometry  flow  associated  with  the

geodesic curvature evolves the relative distance among neigh-
bors, namely, the higher geodesic curvature between any two
neighbors decreases faster  than the lower curvature by iterat-
ing the deep neural network.

Xi
j,X

i
k,X

i
l

Proof: We use similar  triangle property to prove the varia-
tion of geodesic curvature between adjacent data points. Con-
sider three adjacent data points expressed as  formed
as  a  geodesic  triangle.  Suppose  the  Euclidean  distance
between any two points is equal. That is,
 

d(Xi
j,X

i
k) = d(Xi

j,X
i
l) = d(Xi

k,X
i
l).

Also suppose the relationship of geodesic curvature between
these data points is shown as follows:
 

R(Xi
j,X

i
k) > R(Xi

j,X
i
l) > R(Xi

k,X
i
l).

Then the corresponding similarity weights in the ith geome-
try flow layer between them satisfies the following relation: 

wi+1
jk < wi+1

jl < wi+1
kl .

In addition,  the geodesic distance between them satisfy the
following relation:
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According  to  the  graph  Laplacian,  by  regularizing  geome-
try  flow  layer,  we  obtain  the  following  relationship  between

 in theory:
 

d(Xi+1
j ,X

i+1
k ) > d(Xi+1

j ,X
i+1
l ) > d(Xi+1

k ,X
i+1
l ).

Xi+1
j ,X
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k

According to the similar triangle property, the geodesic cur-
vature between  drops most.

When training the deep neural network model, since we do
not know the hidden propagation mechanism, it is difficult to
prove the geodesic curvature decreasing step by step. ■

By the above theoretical  analysis,  geometry flow layer  can
guarantee  the  initial  geometric  structure  of  neighborhoods  to
inherit and propagate in hidden layers. Curvature information
effectively  helps  to  make  the  distribution  of  hidden  layers
more  smoothing.  Furthermore,  our  method  is  generally  effi-
cient in both convergence and generalization due to the Lapla-
cian smoothing operation.  

V.  Experimental Setup and Results

In this section, we first do deep metric learning task on three
real  word image datasets.  Secondly,  we do ablation study on
several parameters.  

A.  Datasets

200 5864
5924

CUB200-2011  [43]: There  are  11788  bird  images  in  this
dataset,  including  bird subsets,  images in the train-
ing  set  and  in  the  test  set.  Each  image  provides  image
class marking information, including birds bounding box, key
part information, and bird attribute information.

8054
8131

98
98

Cars196  [44]: This  dataset  contains  a  total  of  16185  ima-
ges of different models of vehicles. When it is used for classi-
fication  tasks,  there  are  images  in  the  training  set  and

 images  in  the  test  set.  When  used  to  metric  learning
tasks, the first  classes are typically used as training sets and
the last  classes as test sets.

5.3

SOP  [45]: Stanford  online  products  (SOP)  dataset  has
22634 classes with 120053 product images. Each product has
approximately  images.  

B.  Deep Metric Learning Tasks

100 5864 100
5924

98 8054
98 8131

We  employ  these  three  fine-grained  image  clustering  and
retrieval benchmarks following the protocol in [24] to split the
training  and  testing  sets.  For  CUB200-2011  dataset,  we  split
the first  classes for training (  images) and the rest 
classes  for  testing  (  images).  For  Cars196  dataset,  we
split  the  first  classes  for  training  (  images)  and  the
other  classes  for  testing  (  images).  For  the  SOP
dataset,  the  first  11318  classes  (59551  images)  are  used  for
training and the other 11316 (60502 images) classes are used
for testing.

NMI, F1, and Recall@K are used as the evaluation metrics.
The  backbone  network  is  BN-Inception  [46]  pretrained  on
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λ = 0.5

ImageNet [47]. We freeze the BatchNorm layers during train-
ing and set the parameters following the protocol in [24]. The
training  and  testing  rule  is  that  we  train  each  iterations,
then test once. The compared loss functions we choose in this
paper are triplet loss ( ), semihard triplet loss ( )
[6], normalized N-pair loss ( ) [19], and multi-similarity
loss  ( )  [21].  For  our  DRML
model,  geometry  flow layer  applies  to  the  first  two  convolu-
tion  layers  combined  with  these  four  loss  functions.  The
hyper-parameter λ is set to .  

C.  Evaluation Results
We evaluate four baseline loss functions (triplet loss, semi-

triplet loss, normalized N-pair loss, and multi-similarity loss),
and two regularization constraints  (SEC [24]  and DRML) on
clustering  tasks.  Meanwhile,  we  compared  our  method  with
two  recently  proposed  methods,  CGML  [26]  and  IBCDML
[27],  which  also  considered  the  feature  distribution  of  each
mini-batch. The comparison results are shown in Tables I and
II.  As shown in these tables, the semihard triplet loss outper-
forms  triplet  loss  on  all  these  datasets,  which  shows  that
designing the new hard example mining strategies is  positive
to  the  clustering  tasks.  Normalized  N-pair  loss  performs bet-
ter  than  triplet  loss  as  well  as  semihard  triplet  loss  in  most
cases,  since a sample can compare with more than one nega-
tive  samples  in  the  optimization.  Moreover,  multi-similarity
loss outperforms all these three baseline losses as it constructs
more  than  one  similarities  among  samples.  Further,  for  the
spherical  embedding  constraint  (SEC),  it  boosts  the  perfor-
mance of these four baseline loss functions in all cases, which
means that constraining the embeddings on one hypersphere is
effective to the learning tasks. Our proposed DRML performs
best  compared  with  all  the  other  loss  functions  on  the  three
datasets.  For  example,  on  CUB200-2011  dataset,  DRML

20.11% 16.64% 21.05% 18.94% 14.43%
9.52%

shows a huge improvement on NMI, F1, and R@K compared
with  the  SEC by , , , , ,
and ,  respectively.  Among  all  these  comparison  meth-
ods,  the  results  of  IBCDML  are  closest  to  our  method.
IBCDML used Euclidean metric to construct a message pass-
ing  network  to  uncover  the  intra  relation  of  each mini-batch.
However,  it  did  not  consider  the  non-Euclidean  structure  of
datasets.

Specially, compared with these four baseline loss functions,
the performance of our proposed method is comparatively sta-

 

TABLE I 

Experimental Results of Deep Metric Learning on CUB200-2011 and Cars196
Datasets. NMI, F1, and Recall@K are Reported

Method
CUB200-2011 Cars196

NMI F1 R@1 R@2 R@4 R@8 NMI F1 R@1 R@2 R@4 R@8

CGML (Triplet) 60.20 27.00 53.30 64.90 75.70 84.50 63.50 32.9 75.8 84.70 90.90 95.20

CGML (N-pair) 60.40 28.50 52.10 64.20 75.40 84.50 62.60 31.00 75.80 84.40 90.50 94.40

IBCDML 74.00 − 70.30 80.30 87.60 92.70 74.80 − 88.10 93.30 96.20 98.20

Triplet 59.34 23.12 52.98 65.15 75.30 84.25 56.03 24.94 61.09 70.79 79.47 86.27

+SEC 64.24 30.83 60.82 71.61 81.40 88.86 59.17 25.51 67.89 78.56 85.59 90.99

+DRML 84.35 47.47 81.87 90.55 95.83 98.38 80.34 40.13 87.82 93.73 97.36 99.08

Semitriplet 70.36 41.02 65.89 76.64 85.07 90.76 68.58 37.47 81.08 88.21 92.89 95.59

+SEC 71.62 42.05 67.35 78.73 86.63 91.90 72.67 44.67 85.19 91.53 95.28 97.29

+DRML 84.33 48.12 82.33 90.75 95.86 98.48 78.95 37.60 87.66 93.64 97.16 98.87

NORM N-pair 70.48 40.67 62.06 74.79 84.05 89.68 68.43 38.14 79.09 87.69 93.12 95.58

+SEC 72.24 43.21 66.00 77.23 86.01 91.83 70.61 42.12 82.29 89.60 94.26 97.07

+DRML 84.54 49.50 80.27 89.52 95.27 98.18 81.28 44.17 85.97 93.16 97.22 98.95

Multi-Simi 70.63 41.17 66.58 77.74 85.75 91.67 70.87 42.2 84.43 90.64 94.54 96.91

+SEC 72.85 44.82 68.79 79.42 87.20 92.49 73.95 46.49 85.73 91.96 95.51 97.54

+DRML 84.23 47.86 81.06 89.67 94.97 98.06 80.77 42.96 86.42 93.47 97.36 98.98
 

 

TABLE II 

Experimental Results of Deep Metric Learning on SOP
Dataset. NMI, F1, and Recall@K are Reported

Method
SOP

NMI F1 R@1 R@10 R@100 R@1000

CGML (Triplet) 87.10 23.20 64.10 79.50 90.20 96.80

CGML (N-pair) 88.10 27.00 68.40 84.30 93.20 97.80

IBCDML 92.60 − 81.40 91.30 95.90 −

Triplet 88.72 30.26 63.19 80.78 92.02 97.63

+SEC 89.68 34.29 68.86 83.76 92.93 98.00

+DRML 93.12 49.36 77.06 95.31 98.83 98.92

Semitriplet 91.21 42.03 74.97 88.45 95.93 98.48

+SEC 91.72 44.90 77.59 90.12 96.04 98.80

+DRML 92.25 44.90 76.34 94.53 98.83 98.91

NORM N-pair 91.04 41.57 74.69 87.98 95.21 98.43

+SEC 91.49 43.75 76.89 89.64 95.77 98.68

+DRML 92.43 45.91 75.18 94.66 98.83 98.91

Multi-Simi 91.35 43.67 76.56 89.48 95.38 98.45

+SEC 91.89 46.04 78.67 90.77 96.15 98.76

+DRML 92.68 46.90 77.53 95.23 98.84 98.93
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ble on these four retrieval benchmarks. On the one hand, this
shows  the  superiority  of  DRML  as  it  constrains  the  hidden
layer  representations  to  preserve  the  intrinsic  manifold  struc-
ture of the original dataset. On the other hand, it also demon-
strates  that  the  geometric  structure  of  dataset  is  far  more
important for deep metric learning tasks than designing differ-
ent pair-based loss functions.  

D.  Ablation Study and Analysis
In  this  following,  we  evaluate  our  DRML  in  various  set-

tings  and  provide  detailed  discussion  through  comparison
experiments.

λ = {0.2,
0.3, . . . ,0.9}

λ = {0,0.2,0.3,0.4} λ = 0

λ > 0
λ = 0

Effects  of  Hyper-Parameter  λ: We  perform  an  ablation
study on the  hyper-parameter λ,  which controls  the  influence
of  geometric  structure  to  hidden  embeddings.  In Fig. 3,  we
compare  the  performance  (NMI,  F1,  R@1)  with 

.  We  find  that  our  DRML  model  is  robust  across
different λ. To verify the effectiveness of geometry flow layer,
we  employ  the  triplet  loss  and  normalized  N-pair  loss  under

. Note that  means no geometric struc-
ture  is  used,  which  is  identical  to  the  baseline.  In Fig. 4,  we
compare the performance R@1 of triplet loss and normalized
N-pair  loss  under  different λ values.  We observe  that  for  the
two  loss  functions  with ,  the  performance  outperforms
the case with  by a large margin.
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Fig. 3.     Effects of the λ on CUB200-2011 dataset. (a) The NMI, F1, and
R@1 performances of triplet loss with different λ values; (b) The NMI, F1,
and R@1 performances of normalized N-pair loss with different λ values.
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Fig. 4.     Testing R@1 on CUB200-2011 about the effects of λ. (a) The R@1
performance of triplet loss with ; (b) The R@1 performance
of normalized N-pair loss with .
 

λ = {0,0.2,0.3,0.4}

λ > 0
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Furthermore,  to  verify  the  effectiveness  of  geometry  flow
layer for NMI and F1, we employ the triplet loss and normal-
ized  N-pair  loss  under  on  CUB200-2011
dataset. In Fig. 5, we observe that for these two loss functions
with , the performances entirely outperform the case with

. In addition, the convergence rate of NMI with  is

faster than the baseline.

λ = 0.5

Effects of Geodesic Curvature: We compare our method on
triplet  loss  and  semitriplet  loss  with  the  geodesic  curvature
and  Euclidean  metric  (geodesic  curvature  is  set  to  zero  in
geometry flow layer), and set . The comparison results
are  shown  in Table III.  From Table III,  the  R@K  perfor-
mances without geodesic curvature are lower than those of our
proposed  method  in  all  cases.  In  addition,  the  Laplacian
smoothing regularization based on Euclidean metric (zero cur-
vature)  achieves  higher  performances  compared  with  the  tra-
ditional  methods  without  geometry  regularization.  These
results show that the geometric structure regularization is nec-
essary to deep metric learning and the geodesic curvature reg-
ularization can boost the geometric structure precision of data.
 

TABLE III 

Experimental Results of Deep Metric Learning on Cars196
Dataset (With and Without Geodesic Curvature)

Method
Cars196

R@1 R@10 R@100 R@1000

Triplet 61.09 70.79 79.47 86.27

+DRML (without curvature) 80.23 85.65 93.36 97.49

+DRML (with curvature) 87.82 93.73 97.36 99.08

Semitriplet 81.08 88.21 92.89 95.59

+DRML (without curvature) 84.43 91.75 95.84 97.16

+DRML (with curvature) 87.66 93.64 97.16 98.87

 
 

λ = 0 λ = 0.2

Effects of Mini-Batch Size: In this part, we analyze how the
mini-batch  size  affects  our  DRML.  We  test  our  method  on
triplet  loss  and  normalized  N-pair  loss  with  mini-batch  size
increasing from 20 to 90 under  and . In Fig. 6(a),
the NMI performance grows with the mini-batch size increas-
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Fig. 5.     Testing  NMI  and  F1  about  the  effects  of  the λ on  CUB200-2011
dataset.  (a)  The  NMI  performance  of  triplet  loss  with ;  (b)
The NMI performance of  normalized N-pair  loss  with ;  (c)
The F1 performance of triplet loss with ; (d) The F1 perfor-
mance of normalized N-pair loss with .
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ing  and  converges  until  the  mini-batch  size  reaches  60.  In
Fig. 6(b),  the  F1  saturates  before  mini-batch  size  reaches  60
and then it declines slightly. These results indicate that with a
fixed  mini-batch  size  60,  we  can  obtain  a  significant  perfor-
mance boost compared with the baseline.
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Fig. 6.     Testing NMI, F1 on CUB200-2011 dataset about the effects of the
mini-batch size.
 

Convergence  Rate: We  analyze  the  convergence  of  deep
metric learning based on two losses with and without geome-
try flow layer, and the comparison results are shown in Fig. 7.
First,  from Fig. 7(a),  we  can  see  that  when  combined  with
geometry flow layer,  our  DRML converges  much faster  than
that without geometry flow layer under two different learning
rates.  Moreover,  compared  with  the  original  loss  functions,
our DRML model can obtain a much better performance with
fewer  iterations.  Second,  from Fig. 7(b),  when  testing  R@1
convergence  rate  on  semihard  triplet  loss,  we  can  obtain  the
similar  results  to Fig. 7(a).  Our  DRML  consistently  outper-
forms the baseline loss on all the settings.
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Fig. 7.     Testing R@1 convergence rate on Cars196 dataset with  and
 with two baseline losses, triplet loss and semihard triplet loss.

 
In addition, because of the operation of the nonlinear activa-

tion  function,  it  leads  to  the  features  distribution  shift  of  the
data  in  the  hidden  layers,  which  can  affect  the  convergence
speed  of  the  model.  In  contrast,  we  add  the  geometric  flow
layers into the first two covolutional layers, which can correct
the geometric structure of the hidden features well at the first
iteration. Therefore, the performance of DRML is well even at
the initial iteration and convergence is also reached soon.

λ = 0.2

Training and Testing  Speed Comparison: We compare  our
method  and  the  method  without  geometric  flow  layer  about
the  time  cost  on  training  and  testing  phrase.  In  this  part,  we
employ  the  triplet  loss  as  the  baseline,  and  set .  We
evaluate  the  corresponding  time  cost  on  Cars196  and
CUB200-2011 datasets.  The comparison results are shown in
Fig. 8.  For training speed,  we calculate the average time cost

on  each  epoch  with  2000  iterations  in  total  and  the  corre-
sponding  result  is  shown  in Fig. 8(a).  For  testing  speed,  we
calculate the average time cost on testing set with 100 times in
total, shown in Fig. 8(b). From Figs. 8(a) and 8(b), we can see
that the training and testing speed of our method is lower than
triplet loss due to the addition of geometric flow layers. How-
ever, the baseline methods without geometric flow layer need
nearly 8000 iterations  to  reach  the  best  performance  in  all.
While,  our  proposed  method  only  needs  2000  iterations  to
achieve the best result. The total iterations time comparison is
shown  in Fig. 8(c).  The  overall  time  cost  of  the  baseline
method is far beyond our method.  

VI.  Conclusion

In this paper, we introduce a deep Riemannian metric learn-
ing method and design a geometry flow layer for deep neural
networks  that  overcomes  several  drawbacks  of  existing  deep
metric learning methods.  Our approach combines the geome-
try  structure  of  dataset  with  the  adaptive  capability  of  learn-
able  methods.  In  theory,  we  prove  that  the  proposed  method
can  make  a  positive  influence  on  the  convergence  of  deep
neural  networks.  Finally,  we  test  the  effectiveness  of  our
method  on  unsupervised  clustering  tasks  on  several  popular
computer  vision  datasets.  Results  show  that  the  proposed
DRML  significantly  outperforms  the  existing  deep  metric
learning methods.

We  construct  an  adjacency  graph  to  represent  the  discrete
manifold, which can not only reflect the topological similarity
among  image  pairs,  but  also  conceal  the  semantic  similarity
between non-adjacency images. However, for high-noise data,
such as ImageNet,  just  using normalized distance to measure
the  local  similarity  between  images  is  inaccurate,  so  that  the
corresponding  adjacency  graph  cannot  quantify  the  intrinsic
distribution  of  data.  The  geometry  flow  layer  based  on  the
adjacency  graph  cannot  generate  gains  for  this  kind  of  data.
Therefore,  in  the  next  work,  we  propose  to  construct  more
robust  pre-representations  of  features  and learn  a  more  accu-
rate  distance  metric  to  construct  adjacency  graphs  on  these
datasets.  Furthermore,  we  seek  to  capture  the  underlying
semantic similarity of data by leveraging geometry flow-based
analysis to improve the performance of self-supervised learn-
ing or deep unsupervised learning.  

Appendix
The Evaluation of Geodesic Curvature

{x1, x2, . . . , xn} xi ∈ RD1×D2

D1×D2
∥xi− x j∥2 ≤ δ xi x j

xi x j
xi x j Ni

N j Ni
N j Ci C j

di d j
Ni N j Ji = {Ji1 , Ji2 , . . . , Jidi

}
J j = {J j1 , J j2 , . . . , J jd j

}
θ(Ji, J j) Ci C j

Suppose  the  input  data  is  represented  as  a  set  of n image
data ,  where .  Each  image  feature  is
represented by a pixel matrix with size . Set a parame-
ter δ,  if ,  then  and  are  neighbors.  In  this
paper, we just evaluate the geodesic curvature between neigh-
bors.  First,  suppose  and  are  neighbors,  we  respectively
obtain  the  neighborhood  sets  of  and ,  represented  as 
and .  Second,  we  compute  the  covariance  matrices  of 
and  respectively  expressed  as , .  Then,  use  principal
component analysis to compute the  and  principal compo-
nent  vectors  of  and ,  shown  as ,

.  The  corresponding  principal  angle
 between  and  evaluates as follows:
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cos
(
θ
(
Ji, J j
))
=max{

< Jik , J jl >

∥Jik∥ · ∥J jl∥
: Jik ∈ Ji, J jl ∈ J j}

(A1)
 

θ
(
Ji, J j
)
= arccos

(
θ
(
Ji, J j
))
. (A2)

{X1,X2, . . . ,Xn} X j ∈ Rc×h×w

h×w

X j Xk

After  the  deep  neural  network,  the  features  in  the  hidden
layer are represented as a set of 3D tensors. Suppose the corre-
sponding  features  of  the  input  data  are  represented  as

 in  the i-th  hidden layer,  where , c
is the number of channel, and  is the matrix size of each
channel  image.  The  principal  angle  between  two  neighbor-
hood tensors  and  is evaluated as follows:
 

R
(
X j,Xk

)
=
∥θ jk∥

d
(
X j,Xk

) (A3)

θ jk X j Xk
d(X j,Xk) X j Xk

where  is  the  principal  angle  between  and ,  and
 is the Euclidean distance between  and .

θ jk
{Xm

1 ,X
m
2 , . . . ,

Xm
n },Xm

j ∈ Rh×w,m = 1,2, . . . ,c
Xm

j Xm
k

θ(Jm
j , J

m
k ) Jm

j , J
m
k Xm

j Xm
k

θ jk

In  the  following,  we  give  the  evaluation  of .  For  each
channel, suppose the feature set is represented as 

.  In  each  channel,  according  to
(A2), the principal angle between  and  is represented as

, where  are the tangent spaces of  and .
Then, the principal angle  is shown as follows:
 

θ jk =

c∑
m=1

θ
(
Jm

j , J
m
k

)
. (A4)
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Fig. 8.     The training and testing speed comparison about the effects of geometric flow layer on CUB200-2011 and Cars196 datasets. (a) The training speed
comparison of our method and triplet loss without geometric flow layer; (b) The testing speed comparison of our method and triplet loss without geometric flow
layer; (c) The overall time cost comparison of our method and triplet loss without geometric flow layer.
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