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a b s t r a c t

To enable temporal action localization, the computer needs to recognize the locations and classes of
action instances in a video. The main challenge to temporal action detection is that the videos are often
long and untrimmed, consisting of varying action content. Existing temporal action detection frameworks
exhibit a gap between the training and testing phases, which is detrimental to model performance.
Specifically, all positive samples are trained identically in the training phase. By contrast, in the testing
phase, the positive samples with the best classification and localization scores are selected, while all
others are suppressed. To mitigate this issue, we build an auxiliary branch to unify the training and test-
ing procedures. In the construction of the auxiliary branch, we design a dynamic weighting strategy
based on curriculum learning, where the weights of training samples are a combination of their classifi-
cation and localization scores. Motivated by the speculation of curriculum learning, we emphasize the
importance of classification and localization scores in different training stages. The classification score
accounts for a higher proportion of the combined score in the early stages of the training process. As
the epoch increases, the localization score gradually increases in proportion as well. The experimental
results demonstrate that our methodology of curriculum-based learning enhances the performance of
current action localization techniques. On THUMOS14, our technique outperforms the existing state-
of-the-art technique (57.6% vs 55.5%). And the performance on ActivityNet v1.3 (mAP@Avg) reaches
35.4%.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction tions. For a untrimmed video, temporal action localization
As an important direction of computer vision, the interpretation
of human behavior from raw video data has a wide range of appli-
cations in video recommendation, security surveillance, human
behavior analysis, and other fields [1]. Video-based action classifi-
cation [2,3] has recently flourished owing to the development of
deep learning and the accessibility of a variety of media resources.
However, although the action classification process trims short
videos by default (each video contains only one action clip), prac-
tical applications frequently feature long untrimmed videos that
may include numerous active periods of arbitrary lengths. There-
fore, in this study, we primarily concentrate on temporal action
detection [4]. Temporal action detection can be applied in many
areas such as the analysis of video content and video recommenda-
addresses two tasks: localization and recognition. Specifically, 1)
locate when the action occurs, i.e., the start time and end time of
the action. 2) Identify the category of the action (e.g., diving, play-
ing billiards). In summary, the goal of temporal action detection is
to locate the start and end times of each action instance in a long
untrimmed video and predict the corresponding label. Since an
untrimmed video may contain numerous active periods of arbi-
trary lengths, temporal action detection is a challenging task in
video analysis.

Over the past several years, numerous studies have been con-
ducted on temporal action localization. Conventionally, research-
ers first employ an action recognition network [2,3] to extract
features from short videos. To determine an action’s temporal
boundaries, some algorithms [5–7] predict the probability of each
frame is the start and end boundaries of the action. Consequently,
the highest probability points are concatenated as the start and
end times of the action. However, these methods apply a separate
classification network for actions and and overlook the benefits
from classification information. To integrate classification and
localization models into a single end-to-end framework, some
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approaches [8,9] develop one- or two-stage procedures with refer-
ence to object detection. One-stage techniques [10,8] split each
video into an equal number of segments, and then predict the
labels and boundary offsets of the anchors. In contrast, two-stage
methods [4,9] first develop a set of action proposals, and then
apply classification and boundary regression to each proposal indi-
vidually. Rather than constructing action proposals, [11] performs
classification and regression for each frame and achieves state-of-
the-art (SOTA) performance.

Despite their mutual differences, all existing temporal action
detection frameworks employ two phases: training and testing.
Similar to other deep-learning-based methods [10], localization
information is used to distinguish between positive and negative
proposals (IoU between the anchor and ground truth) in the train-
ing process. In contrast, the testing process locates reliability pro-
posals for final evaluation. That is, both classification information
and localization information need to be emphasized. Because a
solid prediction in evaluation corresponds to high classification
and localization scores, a proposal with a higher degree of agree-
ment between the classification and localization heads must be
assigned a higher weight in the training phase. During the training
phase, however, positive samples are selected solely using localiza-
tion information, and are taken into account equally without
regard to quality [6,7]. These issues create a gap between the train-
ing and testing processes. This gap reduces the quality of the
selected positive samples, i.e., it increases the number of false-
positive samples. Additionally, background frames in the video
could also be marked as positive samples whenever they exhibit
transitions. The phenomenon also raises the number of false posi-
tive samples.

As illustrated in Fig. 1, the prior methods select positive propos-
als based on the localization score (tIoU score higher than 0.5). All
positive proposals are weighted equally without considering their
quality. And in our approach, we give higher weights to the pro-
posal with higher classification and localization scores. In addition,
the background (camera turns to the audience) is also labeled as
diving, because it occurs in the action of diving. To address the
aforementioned issue, we develop an auxiliary branch. It combines
the classification and localization branch to differentiate between
the foreground and background (actionness score in Fig. 1). Specif-
ically, when constructing the auxiliary branch, we combine the
classification and localization scores with reference to the dynamic
weight assignment [12,13] in object detection. The combined
scores are then trained as the auxiliary branches’ targets. Using
Fig. 1. An illustration of diving with background (camera turns to the audien
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the auxiliary branch, as well as the dynamic weight assignment
technique, we aim to reduce the probability of false positives,
and close the gap between training and testing.

However, existing weight assignment methods do not account
for a reasonable combination of classification and detection scores.
Instead, they use hyperparameters to aggregate the two scores,
making the model sensitive to the hyperparameters’ values [12].
To get rid of the dependency of sensitive hyperparameters, we
apply a heuristic weight assignment strategy. Specifically, for the
task of temporal action detection, researchers believe that the
localization branch has a greater impact on model performance
than the classification branch [14]. However, localization scores
in the early training period are unreliable. According to this prior,
we build a weight assignment paradigm with curriculum learning
as the goal of the auxiliary branch. Our objective is to place more
importance on reliable classification branches in the early training
stages, and on localization scores that are crucial to the model in
the latter training stages. We establish a parameter a that grows
proportionately to the epoch. Early in the training process, catego-
rization scores make up a greater proportion of the combined
scores. As a increases in the latter rounds of training, the localiza-
tion scores gradually increase in proportion as well. Based on the
combined scores, we construct an auxiliary branch that seeks to
bridge the gap between training and testing. We apply our
approach to the anchor-free method AFSD [11], and test its efficacy
on the widely-used datasets THUMOS14 [15] and ActivityNet v1.3
[16].

1. We design a new auxiliary branch to synchronize the net-
work’s training and testing procedures.
2. When building the auxiliary branch, a dynamic weight
assignment paradigm based on curriculum learning is
employed to guide the network’s training.
3. We achieve state-of-the-art performance based on AFSD
[11]. Performance improved by 57.6% on THUMOS14, and
35.4% on ActivityNet v1.3.

The remainder of this paper is organized as follows. Section 2 pro-
vides background review on action recognition, object detection,
and temporal action detection. The proposed temporal action
detection framework is described in Section 3. In Section 4, we
experimentally validate the proposed methodology and compare
it with earlier studies. Finally, Section 5 summarizes the paper
and provides an overview of future directions.
ce). L and C represent localization and classification scores, respectively.
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2. Related Works

2.1. Action Recognition

As an important branch of video content analysis, action recog-
nition aims to classify trimmed videos into specific categories.
Early action recognition techniques first extract manual features
[17,18] (e.g., HOG, HOF, and MBH), and then use classifiers to cat-
egorize the activities. The most prominent early technique, iDT
[17,18], comprises three components: dense sampling, trajectory
tracking, and trajectory-based feature extraction. Based on the
extracted features, iDT performs feature encoding and
classification.

With the advent of deep learning, model performance has
become increasingly linked to dataset size. As numerous large-
scale action categorization datasets (e.g., UCF-101 [19], Sports-
1 M [20], and Kinetics [21]) have been published, deep learning
methods have achieved advanced performance. Specifically, [22]
uses RGB frames and stacked optical flow vectors to learn the
appearance features and motion information of objects, respec-
tively. The C3D network [23] extracts spatial and temporal infor-
mation from the original video using a series of 3D convolutional
kernels. Equipped with two-stream networks and 3D convolution,
I3D [24] constructs a two-stream model based on 3D convolution
(Two-Stream Inflated 3D ConvNets), which provides pre-training
strategies. To ensure effective and efficient learning over an entire
video, TSN [25] combines a sparse temporal sampling method with
video-level supervision for long-range temporal modeling. These
action recognition networks are commonly utilized as feature
extractors for event captioning, action segmentation, and temporal
action localization.
2.2. Object Detection

The goal of object detection is to categorize and individually
locate every target in an image. To accomplish this, the integration
of training and testing processes is critical. Several studies have
been conducted as attempts to reduce the gap between training
and inference. To overcome the rigid label assignment strategy
during training, MetaAnchor [26] assigns training anchors adap-
tively by anticipating the anchor distribution, GuidedAnchor [27]
predicts the shape of anchor points by semantic feature maps,
and FreeAnchor [28] selects the best anchor point based on the loss
function to improve the accuracy of the match between the anchor
point and the target. In addition, researchers [29,30] argue that
since predicted proposals have different qualities in inference,
samples should be treated differently in the training phase. Noisy
Anchor [29] generates soft labels to reweight the training samples,
whereas Generalized Focal Loss [30] assigns each anchor a soft
weight by combining the categorization and localization scores.

The aforementioned approaches combine classification and
localization scores using hyperparameters, which require manual
modification. However, it is challenging for hyperparameter-
based techniques to be effective in temporal action detection. In
this task, the length of the videos varies and there are significant
differences between action categories. To mitigate the effect of
hyperparameters, we design an auxiliary branch that merges clas-
sification and localization features automatically.
2.3. Curriculum Learning

Curriculum learning is a training strategy which allows the
model to learn the easy and the hard samples sequentially, and
thus mimic the order in which humans learn. The concept of cur-
riculum learning is introduced in the first place by [31]. In short,
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curriculum learning means learning from simpler data to more dif-
ficult. More specifically, this method trains the model first with a
simpler subset, and then slowly increases the complexity of data,
until the whole training data is trained. Curriculum learning strate-
gies show a great power to improve generalization and conver-
gence rates of different models in wide ranges of applications,
including computer vision, and natural languages. For example,
[32] reduces the training time by 70% and improves the perfor-
mance by 2.2% compared with the base. The key challenge in learn-
ing curriculum learning is to determine the difficulty level of each
case. In computer vision, [33] uses distance to classification bound-
ary to indicate a sample’s difficulty. [34] devises a new formula-
tion, called Self-Paced Learning (SPL), in which the less lossy
samples are regarded as easier and emphasized during the training
process. [35] proposes an adaptive function to determine the diffi-
culty level of the sampling. This method emphasizes easier sam-
ples during early training and hard samples during later training.
In this paper, different from the approach above to define difficulty
for each sample, we define difficulty for each branch. The localiza-
tion branch is more difficult than the classification branch and
have a larger impact on the performance of the model [14]. In
our curriculum-learning framework, the emphasis is more on the
simpler classification branch during the initial training phase,
andmore on the harder localization branch in later training phases.

2.4. Temporal action localization

The objective of temporal action detection is to identify the
classes of actions, and corresponding start and end times, in long
untrimmed videos. This process employs an action recognition net-
work for feature extraction, and draws inspiration from object
detection. Significant progress has been made in temporal action
detection in recent years. To predict an action’s temporal bound-
aries, SSN [5] divides the proposal into three sections: starting,
actionness, and ending. The model then integrates the three sec-
tions’ features into two classifiers, which attempt to categorize
the action and determine whether it is complete. BSN [6] predicts
the probability that each frame is the start or end frame of the
action, and subsequently concatenates the time points correspond-
ing to high probabilities to get the proposal. Based on BSN, BMN [7]
creates a boundary-matching infographic to acquire better propos-
als. However, the aforementioned techniques can only generate
temporal boundary predictions and must rely on separate models
for classification. Thus, the localization and classification models
are separate and unable to exchange information.

To combine classification and localization models into a single
training and testing framework, some methods are constructed
in an end-to-end object detection framework. Drawing inspiration
from SSD [36,10] generates a one-dimensional temporal convolu-
tion to produce multiple temporal action anchors. SSTAD [37]
employs a recurrent neural network (RNN) architecture to carry
out proposal generation and classification simultaneously.
Decouple-SSAD [8] uses two branches for regression and classifica-
tion, respectively, to produce reliable proposed boundary and clas-
sification results. Inspired by the end-to-end framework Faster R-
CNN [4], TAL-Net [9] integrates contextual information. Likewise,
with reference to the anchor-free approach, AFSD [11] provides
an effective spatio-temporal localization methodology that yields
state-of-the-art results.

However, the gaps remain between the training and testing
procedures of these techniques. Specifically, the testing procedure
selects proposals with high localization and classification scores. In
the training phase, however, positive samples are selected based
solely on the localization score, and are considered equally with
respect to each other. To minimize the gap between training and
testing, our framework prioritizes proposals with high localization
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and classification scores in both phases. Based on the significance
of location scores in temporal action detection, we construct a
weight assignment paradigm based on curriculum learning. This
makes our assignment criterion suitable for the temporal localiza-
tion problem.
3. Method

3.1. Overview

This section presents our curriculum-based structure, and its
improvements over the base framework in Fig. 2. First, we define
temporal action detection, extract base features, and generate pro-
posals in accordance with standard procedures. The training and
testing processes for the fundamental architecture are then dis-
cussed, along with the problems inherent to the basic framework.
To overcome these problems, we present our curriculum learning
structure. In particular, we discuss how our framework improves
upon the basic model by minimizing the incongruence between
training and testing. Specifically, our network is divided into two
sections: the base network, which is based on traditional architec-
ture, and our auxiliary branch. In the base network, we extract and
connect spatial and temporal feature vectors using the feature
extractor module. We input the connected vectors into the tempo-
ral convolution to create the localization and classification fea-
tures, respectively. The localization branch outputs the distance
between the current frame and the start as well as the end action
boundaries. The classification branch, on the other hand, chooses
which action category the present segment belongs to. Equipped
with the base framework, we combine the characteristics of the
classification and localization branches to create an auxiliary
branch. The section that follows provides further details.
3.2. Notation and Preliminaries

Problem Definition. For an untrimmed video X, the temporal

proposal annotation is Wg ¼ ui ¼ ts;i; te;i
� �� �Ng

i¼1, where Ng denotes
the number of ground truths. ts;i; te;i

� �
is the start and end time of

the action instance ui. Temporal action detection aims to predict

the set of candidate proposals Wp ¼ ui ¼ ts;i; te;i; si
� �� �Np

i¼1 to cover
Wg with high recall and high overlap, where si is the predicted con-
fidence score of ui that will be used for proposal ranking.

Base Feature Extraction. Because untrimmed videos typically
range up to several minutes in duration, it is difficult to input them
directly into the visual coder for feature extraction, as computa-
tional resources are typically limited. Instead, videos are often split
Fig. 2. Summary of
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into smaller equally-sized segments. Thus, an input video with
frame l can be divided into ls segments by time interval r. These
segments can be formulated as snf glsn¼1.

S ¼ snf glsn¼1; ls ¼ l
r

ð1Þ

Subsequently, each segment is fed into a pre-trained visual coding
system, such as two-stream [22] or I3D [24], which extracts spatial
and temporal feature vectors. Finally, these features are linked so
that they can be processed together.

Proposal Generation. By convention, we input the joint fea-
tures into the temporal convolution to acquire the localization
and classification features. The localization branch outputs the dis-
tance between the start and end boundaries for each frame of the

video (d̂s
i ; d̂

e
i ), while the classification branch produces a classifica-

tion score yi. Thus, each position i outputs a proposal (si; ei; yi),
where:

si ¼ i� d̂s
i

ei ¼ iþ d̂e
i

ð2Þ
3.3. Basic Training and Inference Processes

3.3.1. Training
We apply classification loss ‘cls and localization loss ‘loc to train

the classification branch and localization branch, respectively. ‘cls is
softmax focal loss between classification prediction pi and ground
truth label li:

Lcls ¼ 1
N

X
i

‘focal pi; lið Þ

¼ 1
N

XNpos

i¼1

af 1� pið Þc logpi þ
XNneg

i¼1

ð1� af Þpci log 1� pið Þ
" #

ð3Þ

where af and c are the hyper-parameters introduced in [38].
N 2 Npos;Nneg

� �
. N is number of training samples in each batch.

Npos;Nneg are the number of positive and negative samples for pre-
dictions, individually. For the localization loss:

‘loc ¼ 1
Npos

X
i

1�
/̂i \ /i

��� ���
/̂i [ /i

��� ���
0
B@

1
CA ð4Þ

‘loc is a tIoU loss between boundaries /̂i ¼ si; eið Þand the correspond-
ing ground trurh /i. We can therefore use objective function ‘ to
optimize the model, which is composed of ‘cls and ‘loc:
our framework.
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‘ ¼ ‘cls þ ‘loc ð5Þ
3.3.2. Inference
In inference, the classification score, formulated as s ¼ yi, is

used to determine the score of each prediction segment
w ¼ ðsi; ei; sÞ. All predictions are subsequently combined and
entered into Soft-NMS [39] to eliminate redundant proposals.

3.3.3. Problem
However, the aforementioned basic framework causes a mis-

match between training and inference. In particular, evaluation
metrics in temporal action detection suggest that a good prediction
should yield not only a high classification score, but also accurate
localization [29]. Accordingly, proposals with greater consistency
between classification and localization heads must be assigned
higher weights throughout the training phase. However, in the
basic training phase, all samples are treated equally, creating a
gap between training and inference. Furthermore, the existing
label assignment strategy marks the background as positive (tran-
sitions in Fig. 1), which may cause additional performance
degradation.

3.4. Our Proposals

3.4.1. Network
To minimize the impact of the transition problem, we devise an

auxiliary task to estimate the probability that each frame belongs
to the foreground or the background. As shown in Fig. 2, the aux-
iliary branch is created by integrating classification and localiza-
tion features. More specifically, we concatenate two features and
use 1� 1 convolution to reduce the channel dimension. Then, the
3� 3 convolution is applied to the reduced features to generate
the auxiliary branch. In the inference phase, the prediction scores
of the auxiliary task are employed for non-maximum suppression
(NMS) [39]. Unlike typical methods that employ classification
results as ranking criteria for NMS, we bridge the gap between
training and testing by relying on the auxiliary score. The
pseudo-code for our framework is in Algorithm 1.

Algorithm 1: Our Dynamic Weighting Framework Based on
Curriculum Learning.

Input: a0; s; p; t; T;Npos;Nneg

a0 is a hyperparameter for adjusting the classification and
localization weights,

s is the localization score predicted by the model,
p is the classification score predicted by the model,
t is the current number of epochs,
T is the total number of network training epochs,
Npos is the number of predicted positive samples,
Nneg is the number of predicted negative samples.
Output: Losses for classification, localization, and auxiliary

branches ‘cls,‘loc ,‘auxiliary
1. for bi 2 Npos do

2. a ¼ 1:0� a0ð Þ � e�t=
ffiffi
T

p
þ a0 / Eq. 9

3. wi ¼ ð1� aÞ � si þ a � pi / Eq. 8
4. Calculate localization loss Lloc / Eq. 7
5. end for
6. for bi 2 Npos or bi 2 Nneg do
7. Calculate classification loss Lcls / Eq. 6]
8. Calculate auxiliary loss Lauxiliary /Eq. 10
9. end for
10. return Lcls; Lloc; Lauxiliary
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3.4.2. Training
As discussed in [29], training samples should not be weighted

equally. In particular, learning from high-quality samples improves
the detector’s performance, whereas learning from low-score sam-
ples reduces detection efficiency as a result of noise. To simplify
the learning process, we reweight the positive samples based on
their prediction scores, where:

Lcls ¼ 1
N

XNpos

i¼1

wi‘focal pi; lið Þ þ
XNneg

j¼1

‘focal pj; lj
� 	" #

ð6Þ

‘loc ¼ 1
Npos

X
i

wi � 1�
/̂i \ /i

��� ���
/̂i [ /i

��� ���
0
B@

1
CA ð7Þ

wi ¼ ð1� aÞ � sþ a � p ð8Þ
Compared to Eq. 3 and Eq. 4, Eq. 6 and Eq. 7 add dynamic weightswi

(Eq. 8). The dynamic weight wi, used to narrow the gap between the
classification and localization branches, is the combination of the
localization score s and classification score p. Existing dynamic
weighting strategies [12,13] combine these scores through the
manual modification of hyperparameters. Instead, we use a prior
[14] to integrate the two scores. Although the localization score is
more significant than the classification score in optimal models, it
is difficult to converge in the early stages of training. According to
this prior, we design an optimization criterion based on curriculum
learning to determine the hyperparameter a:

a ¼ 1:0� a0ð Þ � e�t=
ffiffi
T

p
þ a0 ð9Þ

where t is the current training epoch, T is the total number of
epochs, and a0 is a hyperparameter. As illustrated in Eq. 9, the clas-
sification score accounts for a larger portion of the final score in the
early stages of training. In the latter stages, the proportion of local-
ization scores gradually increases with a.

Fig. 3 displays the weight changes for classification and localiza-
tion scores under our approach compared to the baseline.In the
training process, we contrast the weight changes of the localization
and classification branches in the base with our curriculum learn-
ing approach. In basic operation, classification and localization
branches are treated equally. The weight selection for the prior
approach is kept constant during training. In contrast, during the
early training phase of our technique (curriculum learning
approach), the categorization branch dominates. The weight of
the localization score gradually rises as the epoch increases.

Based on the cumulative final score, the auxiliary branch is
trained to discriminate between foregrounds and backgrounds.
Specifically, each sample predicts a score ci with a target wi, which
is a continuous value ranging from 0 to 1. We utilize the fused
score wi as the learning objective without any transformations.
Therefore, the auxiliary loss can be calculated as:

Lauxiliary ¼ 1
N

XNpos

i¼1

ci �wij jBCE ci;wið Þ þ
XNneg

i¼1

ciBCE ci;0ð Þ
" #

ð10Þ

where BCE represents the binary cross-entropy loss.
N 2 Npos;Nneg

� �
. N is number of training samples in each batch.

Npos;Nneg are the number of positive and negative prediction sam-
ples, respectively.

3.4.3. Inference
The test process is intended to select proposals with highest

scores, which will be produced into action clips. We use the predic-
tion of the auxiliary branch as the final score for the proposal,
which is different from traditional methods based on classification
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Fig. 4. Qualitative results on THUMOS14 dataset.

Y. Chen, H. Jiang, J. Xiao et al. Neurocomputing 524 (2023) 106–116
scores. The auxiliary score integrates classification and localization
features, automatically. Then, the proposals are sorted out by the
auxiliary scores and sent to the Soft-NMS [39] to remove the
redundant proposals from the list. The remaining proposals will
be output as a clip of action.
4. Experiments

4.1. Experimental Settings

Datasets. We run studies on the THUMOS14 [15] and Activ-
ityNet v1.3 [16] datasets, which are both frequently used datasets.
On THUMOS14, the average number of action clips in each video is
15, while the length of the videos ranges from a few seconds to
over an hour. For these reasons, it is challenging to perform tempo-
ral action detection on THUMOS14. According to tradition, our
model is tested on 213 test movies after being trained on a valida-
tion set of 200 temporal annotations with 20 categories. With
regard to large-scale datasets ActivityNet v1.3, it contains 200
action categories, 10024 training, 4926 validation, and 5044 test
videos. We conduct training on the training set and testing on
the validation set in accordance with standard procedure.

Evaluation Metrics. We use the mean Average Precision (mAP)
as a measurement of assessment. Specifically, a proposal is deemed
to be correct if the predicted category matches the ground truth
111
instance, and its tIoU in relation to the ground truth instance
exceeds a predetermined threshold. The tIoU thresholds on THU-
MOS14 are f0:3;0:4;0:5;0:6;0:7g, while the tIoU thresholds on
ActivitiyNet v1.3 are f0:50;0:75;0:95g.

Implementation Details. We utilize the suggested technique
with the anchor-free SOTA methodology AFSD [11]. In the study,
we maintain their default settings to provide a fair comparison.
Following AFSD [11], we fine-tune the I3D [24] model that has
been pre-trained on Kinetics to extract the features of the video.
During the training phase, our model is trained by Adam [40] with
a learning rate of 10�5 and a weight decay of 10�3. In testing, the
final localization and classification scores are calculated by averag-
ing the outcomes of the RGB and optical flow frames. In addition,
we employ random cropping and horizontal flipping to enhance
the data. The experiments are carried out on a server using two
GPUs (NVIDIA GeForce GTX 3080Ti, 12 GB memory) and Intel(R)
Core(TM) i7-6700 K CPU @ 4.00 GHz. It takes about 15 h and
26 h to complete training for THUMOS14 and ActivityNet v1.3,
respectively.

4.2. Ablation Study

4.2.1. Visualization Experiments
Qualitative Visualization. We visualize the qualitative results

of THUMOS14 in Fig. 4. In these examples, the baseline method



Fig. 5. A false positive (FP) analysis of the results on THUMOS14 using the tool from [14]. Left: calculate FP errors by considering predictions for top 10 ground truth instances
(G). Right: The impact of the error type on average mAPN , which is the improvement obtained by removing the prediction of each error type.
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(AFSD [11]) can correctly predict the class of action. But it is vul-
nerable to interference by background frames, and it is difficult
to accurately predict the position of the actions. By adopting the
curriculum-based method, we reduce the influence of background
and predict temporal boundary accurately.

Quantitative Visualization. To better understand errors and
their types, we use the tools described in [14] for the quantitative
analysis of false positive samples. As shown in Fig. 5, the most
important impact is the location and the background errors. Local-
ization error leads to degradation of 5.8% average-mAP, while the
background error causes a degradation of 6.2% average-mAP. By
adding our curriculum-learning approach, localization and back-
ground errors are significantly reduced. The effects of localization
and background errors are reduced to 5.0% and 4.9%, respectively.
Therefore, we can effectively reduce the impact of localization and
background errors through the construction of auxiliary branches
and the curriculum learning approach.
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4.2.2. Hyper-parameter Experiments
The Effectiveness of a0. We evaluate the model’s performance

under varying a0 values to assess the impact of the hyperparame-
ter. As shown in Fig. 6 and Table 1, models with a0 values of 0.2 and
0.4 outperform other models significantly. Although the early
stages of training are dominated by the classification score, empha-
sis shifted to the detection score in the latter epochs. This phe-
nomenon is consistent with the prior emphasis on classification
scores at the beginning of training and on detection scores in the
later training stages [14]. Additionally, it is inefficient to distribute
weights using easy-to-train classification scores during the overall
training process. For instance, performance is 56.2% at mAP@0.5 in
THUMOS14 and 33.4% at mAP@Avg in ActivityNet when only the
classification score is used to assign dynamic weights. In this
paper, we set 0.4 as the value of alpha, which yields a performance
of 57.6% at mAP@0.5 in THUMOS14 and 35.4% at mAP@Avg in
ActivityNet v1.3.
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Table 1
The performance of the model in THUMOS14 and ActivityNet v1.3 at various a0

settings. The mAP of tIoU is calculated by using a 0.5 threshold (mAP@0.5) in
THUMOS14. The average mAP (mAP@Avg) is calculated in [0.50:0.05:0.95] on
ActivityNet v1.3.

a0 THUMOS14(mAP@0.5) ActivityNet(Avg)

0.2 57.3 35.2
0.4 57.6 35.4
0.6 56.8 35.1
0.8 56.6 33.9
1.0 56.2 33.4

Table 2
The performance of the model in THUMOS14 and ActivityNet v1.3 at various c
settings.

af c THUMOS14(mAP@0.5) ActivityNet(Avg)

0.25 1.0 57.4 35.4
0.25 2.0 57.6 35.4
0.25 5.0 56.8 34.9

Table 3
The performance of the model in THUMOS14 and ActivityNet v1.3 at various af

settings.

af c THUMOS14(mAP@0.5) ActivityNet(Avg)

0.10 2.0 57.5 35.1
0.25 2.0 57.6 35.4
0.50 2.0 56.6 34.2
0.75 2.0 56.1 33.6
0.90 2.0 56.0 33.5
0.99 2.0 49.7 32.7

Table 4
Comparison of the speed of the inference, the size of the model and the complexity of
our method and our baseline AFSD [11]

Method Runtime #Params Flops mAP@0.5 (%)

AFSD [11] 55.7 ms 44.7 M 84.4G 55.5
Ours 57.3 ms 45.2 M 84.5G 57.6

Table 5
The effectiveness of each component of our approach using THUMOS14. The
performance of the fundamental framework is 55.5% for mAP@0.5. The performance
rises to 57.6% when the three suggested methods are used.

Method Performance

dynamic weighting � U U U U

auxiliary branch � � U � U

curriculum learning � � � U U

mAP@0.5(%) 55.5 56.1 56.7 57.1 57.6

Table 6
The analysis for the auxiliary branch. Auxiliary (classification) represents delete the
auxiliary branch, but add the auxiliary loss to the classification branch.

Setting mAP@0.5 (%)

w/o auxiliary branch 57.1
w/ auxiliary (classification) 57.4

w/ auxiliary branch 57.6

Table 7
Performance of the model on AFSD and PGCN in THUMOS14.

Type Model THUMOS14

mAP@0.5 (%) "
Anchor-free AFSD [11] 55.5 -

Ours 57.6 2.1
Two-stage PGCN [41] 49.1 -

Ours 50.9 1.8
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The Effectiveness of af and c.We also evaluate the hyperpa-
rameter af and c in focal loss [38]. We control variates to verify
the effects of af and c in Table 2 and Table 2, respectively. When
the af value is 0.25 and the c value is 2.0, the model achieve the
best results on both the THUMOS14 and the ActivityNet v1. 3
datasets.3.
113
4.2.3. Comparison of Model Parameters and Inference Speed
We compare the time of inference and complexity of the model

of our curriculum-Learning method and the baseline AFSD in
Table 4. Specifically, we inference the model for 25 times on a Nvi-
dia Geforce GTX 3080 Ti, and we report an average inference time.
In addition, we calculate FLOPs and the parameters using the
Python tool Opcounter. As can be observed in Table 4, compared
with the baseline AFSD, our method yields relatively small
amounts of additional time and complexity of the model, but it
can significantly improve the performance of the model.
4.2.4. The Effectiveness of Each Module
We apply our algorithm to the state-of-the-art method [11] to

validate the performance of each component: dynamic weighting,
auxiliary branch, and curriculum learning. The dynamic weights of
training samples are the sums of their classification and localiza-
tion scores, the auxiliary branch bridges the gap between training



Table 8
Performance comparison with state-of-the-art methods on THUMOS14 and ActivityNet1.3. The performance is measured by mAP at different IoU thresholds. The average mAP is
calculated in [0.3:0.1:0.7] on THUMOS14 and [0.50:0.05:0.95] on ActivityNet v1.3, respectively. Ours denotes the performance of our proposed method based on AFSD [11].

Method Publication THUMOS14(mAP@IoU) ActivityNet-1.3(mAP@IoU)

0.3 0.4 0.5 0.6 0.7 0.50 0.75 0.95 Average

SSN [5] ICCV2017 51.9 41.0 29.8 - - 43.3 28.7 5.6 28.3
TAL-Net [9] CVPR2018 53.2 48.5 42.8 33.8 20.8 38.2 18.3 1.3 20.2
BSN [6] ECCV2018 53.5 45.0 36.9 28.4 20.0 46.5 30.0 8.0 30.0
BMN [7] ICCV2019 56.0 47.4 38.8 29.7 20.5 50.1 34.8 8.3 33.9
MGG [42] CVPR2019 53.9 46.8 37.4 29.5 21.3 - - - -
GTAN [43] CVPR2019 57.8 47.2 38.8 - - 52.6 34.1 8.9 34.3
G-TAD [44] CVPR2020 54.5 47.6 40.2 30.8 23.4 50.4 34.6 9.0 34.1
BC-GNN [45] ECCV2020 57.1 49.1 40.4 31.2 23.1 50.6 34.8 9.4 34.3
BU-TAL [46] ECCV2020 53.9 50.7 45.4 38.0 28.5 43.5 33.9 9.2 30.1
A2Net [47] TIP2020 58.6 54.1 45.5 32.5 17.2 43.6 28.7 3.7 27.8
BSN++ [48] AAAI2021 59.9 49.5 41.3 31.9 22.8 51.3 35.7 8.3 34.9
TVNet [49] VISIGRAPP2022 64.7 58.0 49.3 38.2 26.4 51.4 35.0 10.1 34.6
DCAN [50] AAAI2022 68.2 62.7 54.1 43.9 32.6 51.8 36.0 9.5 35.4
AFSD [11] CVPR2021 67.3 62.4 55.5 43.7 31.1 52.4 35.3 6.5 34.4
Ours - 68.8 64.9 57.6 44.6 31.9 52.8 36.2 7.3 35.4
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and testing by combining classification and localization branches,
and curriculum learning ensures that weight assignment adheres
to Eq. 8 and Eq. 9. As shown in Table 5, when assigning dynamic
weights during the training phase, the performance of the model
improves from 55.5% to 56.1% for THUMOS14 (mAP@0.5). Subse-
quently, performance further reaches 56.7% and 57.1% by including
the auxiliary branch and curriculum learning paradigms, respec-
tively. Finally, by merging the three aforementioned modules,
our technique outperforms [11] by 2.1% on mAP@0.5. These exper-
iments illustrate the effectiveness of each component of our algo-
rithm. In particular, the curriculum learning approach improves
the model performance by one percent, from 56.1% to 57.1%. In
addition, we attempt to analyze the auxiliary branches. As shown
in Table 6, if we delete the auxiliary branch but add the auxiliary
loss to classification branch, the performance of the model
improves from 57.1% to 57.4% The combination of classification
and localization scores is the target for training the auxiliary/ac-
tionness scores (Eq. 10). The performance of this model is slightly
lower than adding the auxiliary branch (57.6%).

4.2.5. The Effectiveness under Different networks
To verify the effective application of our methodology to differ-

ent network, we use our methods on the anchor-free method AFSD
[11] and two-stage method PGCN [41], respectively. As shown in
Table 7, the performance of AFSD and PGCN is enhanced by the
application of our methods. The performance of AFSD improves
by 2.1% on THUMOS14. And the performance of PGCN improves
by 1.8% on THUMOS14.

4.3. Comparison with State-of-the-art Methods

Table 8 compares the proposed strategy’s performance with
that of the most recent SOTA approaches. We implement our pro-
posed technique on the anchor-free framework AFSD [11], which is
included in CVPR2021. Compared with AFSD, our method exhibits
improved performance on both the THUMOS14 and ActivityNet
v1.3 datasets, especially with the mAP@0.5 (THUMOS14) and
mAP@Avg (ActivityNet v1.3) metrics. On the THUMOS14 dataset,
our method yields a performance improvement from 55.5% to
57.6% for mAP@0.5. For ActivityNet v1.3, the average mAP
increases from 34.4% to 35.4% under our strategy. Table 8 lists
recently developed SOTA methods for temporal action detection,
along with the conferences where they were published. The SSN
[5] in ICCV 2017 and TAL-Net [9] in CVPR2018 to TVNet [49] in VIS-
IGRAPP 2022 and DCAN [50] in AAAI 2022 are all covered by the
approaches we have listed. Our method maintains a competitive
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performance with that of existing SOTA methods. Specifically, we
achieve top results in several metrics, including mAP [0.3:0.1:0.7]
on THUMOS14, as well as mAP@0.50, mAP@0.75, mAP@0.95, and
mAP@Avg on ActivityNet v1.3.

5. Conclusion

This paper proposes an auxiliary branch that combines the fea-
tures of classification and localization to unify the training and
testing procedures. The auxiliary branches are constructed by
dynamic weighting based on curriculum learning, in accordance
with the following criterion: Early training stages rely on classifica-
tion scores, whereas late training stages emphasize localization
scores. We successfully reach a performance of 57.6% on THU-
MOS14 (mAP@0.5), and 35.4% on ActivityNet v1.3 (mAP@Avg),
using our curriculum-based learning approach. Future research
directions include: (1) Verifying our method’s accuracy with addi-
tional approaches, particularly the most recent transformer
method. (2) Attempting to merge classification and localization
branches in a more logical manner, such as through attention
mechanisms.
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