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   Abstract—Generally, the classic iterative learning control (ILC)
methods focus on finding design conditions for repetitive systems
to  achieve  the  perfect  tracking  of  any  specified  trajectory,
whereas they ignore a fundamental problem of ILC: whether the
specified  trajectory  is  trackable,  or  equivalently,  whether  there
exist some inputs for the repetitive systems under consideration to
generate  the  specified  trajectory?  The  current  paper  contributes
to dealing with this problem. Not only is a concept of trackability
introduced formally for any specified trajectory in ILC, but also
some  related  trackability  criteria  are  established.  Further,  the
relation  between  the  trackability  and  the  perfect  tracking  tasks
for  ILC  is  bridged,  based  on  which  a  new  convergence  analysis
approach is developed for ILC by leveraging properties of a func-
tional Cauchy sequence (FCS). Simulation examples are given to
verify  the  effectiveness  of  the  presented  trackability  criteria  and
FCS-induced convergence analysis method for ILC.
    Index Terms— Convergence,  functional  Cauchy  sequence  (FCS),
iterative learning control (ILC), trackability.
  

I.  Introduction

I TERATIVE learning control (ILC) is proposed for the class
of  robots  executing  repetitive  tasks,  which  aims  at  better-

ing the execution performances of robots for the current oper-
ation (trial or iteration) by taking advantage of the saved infor-
mation from the past  operations [1].  Because of  its  ability  of
achieving high-precision  tracking  tasks,  ILC  has  been  well
developed for the past three decades and successfully applied
in  many fields,  such as  flexible  structures  [2],  railway traffic
systems  [3],  batch  processes  [4],  spacecraft  [5],  and  multi-
agent systems [6]. In addition, ILC combined with other con-
trol  methods,  e.g.,  fuzzy  control  methods  [7],  [8],  may  yield
great  improvements  of  the  system  control  performances.  For
the exhaustive explanations of ILC, the readers are referred to
the surveys of, e.g., [9]–[11]. It is worth highlighting that due
to  the  salient  two-dimensional  (2-D)  operating  rules  with
respect to the independent time and iteration axes, classic ILC
methods require limited information of the controlled system,

employ  simple  (mostly,  the  PID-type)  controller  structures,
and  are  easy-to-implement  by  resorting  to  distinct  conver-
gence analysis strategies from typical  feedback-based control
methods  (generally,  via  the  contraction  mapping  and  fixed
point theorems instead of the Lyapunov theories).

In  the  classic  ILC  framework,  ILC  is  generally  imple-
mented  for  the  controlled  system  to  track  any  specified  (or
desired)  trajectory  perfectly  on  a  finite  time  interval  through
the following typical steps (see also [9]–[11]):

S1) Making necessary assumptions on the controlled system,
especially those on its dynamics repetitiveness, identical initial
alignment condition, and system relative degree;

S2)  Choosing  which  type  of  ILC  updating  laws  is
employed,  or  mostly,  deciding  what  kind  of  PID-type  ILC
updating laws needs to be adopted;

S3) Finding ILC design conditions to ensure the convergence
of  the  resulting  iterative  process,  especially  by  constructing
contraction mapping conditions for the ILC process.

Although  many  remarkable  results  have  been  established
in the ILC framework developed by the steps S1)–S3), a fun-
damental trackability problem  of  ILC  remains  beyond  this
framework:

P1) Whether the specified trajectory is trackable in ILC, or
in  other  words,  are  there  any  ILC  updating  laws  driving  the
controlled system to generate the specified trajectory?

Regarding the fundamental problem P1), seldom ILC results
have been reported to answer it. Instead it is common in clas-
sic ILC to directly assume that the specified trajectory is real-
izable (namely,  there  exists  a unique input  for  the  controlled
system to generate the specified trajectory) [1], [12], [13]. By
contrast,  trackability  is  obviously  a  more  available  property
for ILC than realizability by avoiding imposing the uniqueness
requirement. Of particular note is that not only can the realiz-
ability-induced ILC results be not utilized to address the fun-
damental  problem  P1),  but  also  the  need  of  the  realizability
assumption  may  limit  the  application  range  of  ILC  signifi-
cantly. It has been disclosed recently in [14] that there exists a
large  class  of  ILC  problems,  where  the  specified  trajectories
are  trackable  but  not  realizable.  In  such ILC problems,  those
ILC analysis  methods  and results  established with  the  realiz-
ability  assumption  naturally  may  not  work  any  longer.  Con-
versely, the realizability can be addressed as a special case of
the trackability for ILC [14]. Consequently, the solving of the
fundamental problem P1) not only is crucial for ILC but also
may bring novel  insights  into  its  development.  This  observa-
tion has been verified for the case of discrete-time ILC in [14],
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where  trackability  provides  exactly  the  necessary  and  suffi-
cient  guarantee  for  the  ILC perfect  tracking tasks  and,  more-
over, makes it possible to connect ILC with controllability of
discrete  systems.  Unfortunately,  the  results  presented  in  [14]
are thanks to the lifting technique induced by the discrete-time
characteristic  of  the  ILC  system,  which  thus  can  not  be
applied to continuous-time ILC. In fact, the fundamental prob-
lem  P1)  has  not  been  considered  for  ILC  in  the  presence  of
continuous-time systems to the best of our knowledge.

Another benefit of the realizability assumption is to induce a
class  of  convergence  analysis  methods  for  ILC,  which  is
called  the indirect  method,  since  it  does  not  directly  con-
tribute to the accomplishment of the tracking task. Thanks to
the  assumption  on  the  existence  and  uniqueness  of  the  input
for the controlled system to output the specified trajectory, the
indirect  method is  possible  and convenient  to  first  obtain  the
convergence analysis of the resulting input sequence along the
iteration  axis,  through  which  the  primary  tracking  task  can
then be indirectly achieved for ILC by taking full advantage of
the  time-domain  dynamics  of  the  controlled  system (see  also
[1],  [12],  [13]).  By  contrast  with  the  indirect  method,  there
exists  a  class  of direct  methods for  the  convergence  analysis
of ILC, which is directly devoted to realizing the tracking task
without  imposing  the  realizability  assumption  (see,  e.g.,
[15]–[17]). However, the direct method of ILC generally does
not devote much attention to the iterative evolution process of
the  input,  where  it  is  unclear  how  the  ILC  updating  law  of
input  works  in  ensuring  the  controlled  system  to  accomplish
the  tracking  task.  Moreover,  even  contradictory  assumptions
upon the controlled system and conditions for the ILC design
are produced when applying the direct and indirect methods to
the  same  ILC  problem  for  multi-input  multi-output  (MIMO)
systems. It is actually because of the limitation of the existing
analysis  methods in ILC, where the direct  and indirect  meth-
ods are implemented from the dual perspectives of output and
input  of  the  controlled  systems,  respectively.  To  the  best  of
our  knowledge,  the  following  fundamental  problem  con-
cerned with the convergence analysis methods of ILC is unad-
dressed:

P2) Whether and how can new convergence analysis methods
for  continuous-time  ILC  be  established  to  avoid  resulting  in
contradictory  assumptions  or  conditions  when  dealing  with
ILC  convergence  even  from  the  perspectives  of  both  output
and input of the MIMO controlled systems?

In this paper, we are devoted to coping with the fundamental
ILC problems P1) and P2) with a focus on MIMO, continuous-
time linear systems. Because they are distinct problems of ILC
owing  to  the  2-D  dynamics  process  of  ILC,  the  well-devel-
oped  analysis  and  design  results  for  feedback-based  control
methods do not work directly, which is particularly true when
it comes to ILC for continuous-time systems due to the result-
ing  hybrid  2-D  discrete  and  continuous  dynamics  [18].
Despite  this  issue,  we  leverage  the  properties  of  polynomial
matrix  and  functional  Cauchy  sequence  (FCS)  to  establish  a
new framework for ILC, in which we can successfully handle
the  fundamental  problems  P1)  and  P2).  In  comparison  with
the  existing  ILC  literature,  the  main  contributions  for  our

paper are summarized as follows.
1) We formally introduce a definition of trackability for any

specified  trajectory  in  ILC  by  resorting  to  the  frequency-
domain  algebraic  equations.  Furthermore,  we  explore  the
trackability  criteria  for  ILC  systems  by  taking  advantage  of
the  polynomial  matrix  properties.  It  is  also  shown  that  both
the system relative degree and the initial  alignment condition
have  great  influences  on  whether  the  specified  trajectory
is trackable in ILC. In addition, this provides a strong explana-
tion about why the system relative degree and the initial align-
ment condition are the fundamentally required assumptions in
classic  ILC  from  the  trackability  viewpoint  of  the  specified
trajectory.

2) We propose a general feedback-based design method for
ILC  updating  laws  in  the  presence  of  any  tracking  tasks.
Under the trackability premise of the specified trajectory, our
proposed method closely connects the design of ILC updating
laws  with  a  class  of  state  feedbacks  constructed  in  the  itera-
tion domain. This is thanks to generalizing the design idea of
[14] with the frequency-domain methods, which also narrows
the  gap  between  the  design  of  classic  continuous-time  ILC
and that of feedback-based control methods. In particular, our
design  method  collapses  into  providing  PID-type  ILC updat-
ing  laws  with  appropriate  selections  of  the  gain  function
matrix.

3) We develop an FCS-induced method for the convergence
analysis  of  ILC,  through  which  we  can  leverage  a  unified
design  condition  to  achieve  the  ILC  convergence  for  the
MIMO controlled systems from the perspectives of both out-
put  and  input.  Particularly,  it  is  shown  that  the  steady-state
input  obtained  after  an  ILC  process  depends  heavily  on  the
initial input. Moreover, we bridge the relationship between the
trackability  of  a  trajectory  specified  for  ILC  and  the  accom-
plishment  of  the  resulting  perfect  tracking  objective.  More
specifically,  it  is  revealed  that  no  matter  whether  the  MIMO
controlled  systems  are  over-actuated  or  under-actuated,  the
perfect tracking objectives for ILC can be accomplished under
certain ILC updating laws if and only if the specified trajecto-
ries are trackable in ILC.

In  addition,  our  developed  results  can  contribute  to  better-
ing  the  typical  steps  S1)–S3)  of  classic  ILC.  We  verify  the
validity of them through two simulation examples considered
for over-actuated and under-actuated systems, respectively.

The  rest  of  this  paper  is  organized  as  follows.  In  Section
II,  the  trackability  problem for  continuous-time  ILC is  intro-
duced. The trackability criteria and the FCS-induced tracking
analysis of ILC are established in Sections III and IV, respec-
tively.  Two  simulation  examples  are  provided  in  Section  V,
and finally, the conclusions are made in Section VI.

R Rn Rm×n

m×n
T > 0 Cn[0,T ]

C1
n[0,T ]

[0,T ] ≜ {t ∈ R|0 ≤ t ≤ T }
f (t) ∈ Rn ∀t ∈ [0,T ] ∥ f (t)∥

l∞ lp p ≥ 1
λ > 0 ∥ f (t)∥λ = supt∈[0,T ]

Notations: Let , , and  represent the sets of the real
numbers, n-dimensional real  vectors,  and  real  matrices,
respectively.  For  any ,  let  (respectively,

)  be  the  space  of n-dimensional  real-valued  vector
functions  that  are  continuous  (respectively,  continuously  dif-
ferentiable)  on  an  interval .  Given

, ,  let  be any vector  norm of it  (see,
e.g.,  [19,  p.  265]  for  norm  and ,  norm),  based  on
which  its λ-norm  ( )  is  defined  as 
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(
∥ f (t)∥e−λt

)
f (t)

F(s) =L [
f (t)

]
f (t) =L−1 [F(s)] RPq×p(s)

q× p q× p

q = 1 p = 1 RP(s)
RFq×p(s) q× p

.  The  Laplace  transform  of  is  denoted  as
,  for  which  the  inverse  Laplace  transformation

writes as . In addition, let  be the set
of  polynomial matrices (i.e., those  matrices whose
elements are polynomials in s with the real coefficients) [20],
and particularly for  and , let it be denoted as .
With this fact, let  be the set of  rational fraction
matrices, i.e.,
 

RFq×p(s) ≜
{

G(s) =
[
gi j(s)

] ∣∣∣gi j(s) =
ni j(s)
di j(s)

,

with ni j(s),di j(s) ∈ RP(s),di j(s) . 0,

∀i = 1,2, . . . ,q, j = 1,2, . . . , p
}
.

G(s) ∈ RFq×p(s) lims→∞G(s) = D
D ∈ Rq×p G(s)

lims→∞G(s) = 0 G(s)
G(s)

δ(t)

L [δ(t)] = 1

For  any ,  if  holds  for  some
constant matrix , then  is said to be proper [20].
In  particular,  if ,  then  is  said  to  be
strictly proper. For convenience,  is alternatively called a
proper  (respectively,  strictly  proper)  transfer  function  matrix
when it is proper (respectively, strictly proper). Let  denote
the  unit  impulse  function  [20],  [21],  namely,  we  have

.
Z ≜ {1,2,3, . . .} Z+ ≜ {0,1,2, . . .}

j ∈ Z+
f ( j)(t) f (t)
f ( j)(t) ≜ d j f (t)/dt j f ( j)(t) j ∈ Z+ f (t){

ξ j : j ∈ Z+
}∑−1

j=0 ξ j ≜ 0
∆ : ξ j→ ∆ξ j = ξ j+1− ξ j ∀ j ∈ Z+

Denote  and  as the sets of the
positive and nonnegative integers, respectively. For , let

 be  the jth-order  derivative  of  any  function ,  i.e.,
. If  exists for any , then  is

called  a  smooth  function.  For  any  sequence ,  we
denote  and  define  a  forward  difference  operator
such that , .  

II.  Problem Statement

t ∈ [0,T ]
k ∈ Z+

yk(t) ∈ Rq

uk(t) ∈ Rp

uk(t)
k ∈ Z+

yk(t)
yd(t) ∈ Rq [0,T ]

Consider a continuous-time MIMO ILC system running on
a finite-time interval, denoted by , and along an itera-
tion axis, denoted by . If the output and control input for
this  system  are,  respectively,  denoted  by  and

,  then  the  objective  of  ILC  is  generally  realized  in
the sense that the input  with some updating laws can be
designed  along  the  iteration  axis  to  make  the  output

 able  to  arrive at  the perfect  tracking of  a  desired output
trajectory  specified  over  from  the  beginning
to the end, namely,
 

lim
k→∞

yk(t) = yd(t), ∀t ∈ [0,T ]. (1)

yd(t)

ud(t) ∈ Rp yd(t)

For  this  perfect  tracking  task  of  ILC,  the  fundamental  prob-
lem P1) naturally arises: whether is  trackable, or equiva-
lently,  does  there  exist  any  desired  input,  denoted  as

,  to  correspondingly  generate ?  However,  it  is
subjected  to  the  lack  of  consideration  for  the  fundamental
trackability problem P1) in ILC [14], where there even do not
exist any trackability-related concepts, properties, methods, or
results  that  have  been  introduced  formally  and  clearly  in  the
presence of continuous-time ILC systems to our knowledge.

Yk(s) =L [
yk(t)

]
Uk(s) =L [uk(t)]

To  clearly  explore  the  fundamental  trackability  problem
P1),  let  and ,  and  then  we
focus specifically on the linear system given in the frequency-
domain form of

 

Yk(s) =G1(s)Uk(s)+G2(s)D(s) (2)
D(s) ≜L [d(t)] d(t) ∈ Rm

G1(s) ∈ RFq×p(s)
G2(s) ∈ RFq×m(s)

yd(t)

Yd(s) =L [
yd(t)

]

where  for  representing  the  possible
additional  inputs,  such as the disturbance (noise)  and the ini-
tial  (output  or  state)  condition,  and  and

 are  two transfer  function  matrices.  For  any
specified  trajectory  of  the  system  (2),  we  consider  the
general  case  that  its  Laplace  transform  exists,  and  then  let

.
We  now  present  a  formal  concept  of  trackability  in  ILC

from the perspective of solving algebraic equations by incor-
porating the advantage of the Laplace transformation.

yd(t) ∈ Rq

ud(t) ∈ Rp Ud(s) =L [ud(t)]

Definition  1: For  the  system  (2),  a  specified  output  trajec-
tory  is  called trackable in ILC if  there exists some
input  such  that  satisfies  the  fre-
quency-domain algebraic equation
 

G1(s)Ud(s) = Yd(s)−G2(s)D(s). (3)

yd(t)
Particularly,  if  the  algebraic  equation  (3)  has  a unique solu-
tion, then  is called realizable in ILC.

For Definition 1, the solving of the algebraic equation (3) is
crucial,  where the theory of  polynomial  matrices  [20]  is  use-
ful.  In  classic  ILC,  the  realizability  is  a  usually  adopted
assumption in  the  accomplishment  of  the  tracking tasks  (see,
e.g.,  [1],  [12],  [13]).  However,  Definition  1  suggests  that  the
realizability  may  not  be  required  by  ILC  tracking  tasks,
whereas  the  trackability  is  necessarily  needed.  This  is  owing
to avoiding the uniqueness requirement in the trackability, for
which  the  realizability  can  actually  be  included  as  a  trivial
case of the trackability for ILC. We thus aim at  dealing with
the  more  fundamental  trackability-related  ILC  problems,  as
presented below.

yd(t)

yd(t)
yd(t)

Problem  Statement: For  the  system  (2),  the  ILC  problem
that we address is to first determine whether the specified tra-
jectory  is  trackable  and  then  design  updating  laws  to
accomplish the tracking task (1) in the presence of any track-
able . To proceed, we further address how to get all inputs
that  generate  the  trackable  for  the  system  (2).  Of  our
additional  interest  is  the robustness problem of our trackabil-
ity-based  ILC results  with  respect  to  iteration-varying  uncer-
tainties.

We also introduce a new FCS-induced analysis approach to
address the aforementioned trackability-related ILC problems.
By directly focusing on the sequence of inputs generated from
the  proposed  ILC updating  law,  we  aim at  exploring  proper-
ties  of  the  FCS  to  implement  the  ILC  convergence  analysis.
Thanks to the implementation of FCS-based ILC analyses, we
not  only aim to avoid imposing some restrictive assumptions
commonly needed in ILC, such as realizability and repetitive-
ness, but also arrive at unified design conditions to realize the
convergence of ILC from the perspectives of both output and
input,  regardless  of  over-actuated  or  under-actuated  MIMO
controlled systems. This contributes to dealing with the funda-
mental problem P2) of the ILC convergence analysis.

Before  proceeding  further  with  exploring  the  given  prob-
lem, we introduce a definition for an FCS, together with pre-
liminary  lemmas  for  (strictly)  proper  transfer  function  matri-
ces.

fk(t) ∈ Rn ∀t ∈ [0,T ]Definition  2: For  any  function , ,
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∀k ∈ Z+ { fk(t) : k ∈ Z+}
ε > 0 N(ε) ∈ Z

N(ε) ε
∥∥∥ fi(t)− f j(t)

∥∥∥
λ
≤ ε ∀i, j ≥

N(ε)

,  the  resulting  functional  sequence  is
called  an  FCS  if,  for  any ,  there  exists  some 
(i.e.,  depends  on )  such  that , 

.
By Definition 2, an FCS refers to a functional sequence that

satisfies  the  Cauchy  criterion  for  the  uniform  convergence
(see also [20, Chapter 1, Theorem 5.3]). In view of this obser-
vation, we propose a lemma to provide a guarantee for how to
make a  functional  sequence generated by any proper  transfer
function matrix be an FCS.

fk(t) ∈ Rn ∀t ∈ [0,T ] ∀k ∈ Z+
Fk(s) ≜L [

fk(t)
]

GF(s) ∈ RFn×n(s)
Lemma  1: For  any  function , , ,

let  be such that, for some ,
 

Fk+2(s)−Fk+1(s) =GF(s) [Fk+1(s)−Fk(s)] , ∀k ∈ Z+.
Then the following three statements are equivalent:

{ fk(t) : k ∈ Z+}1) The sequence  is an FCS;
{ fk(t) : k ∈ Z+}

f∞(t) ∈ Rn [0,T ]
2)  The  functional  sequence  converges  uni-

formly to some function  on ;
GF(s)3)  is proper such that

 

ρ
(

lim
s→∞

GF(s)
)
< 1.

fk(t) ∈Cn[0,T ] ∀k ∈ Z+ f∞(t) ∈Cn[0,T ]Further, if , , then .
In  addition  to  Lemma  1,  the  following  one  develops  a

closed  property  for  the  space  of  continuous  functions  under
the action of proper transfer function matrices.

G(s) ∈ RFm×n(s) f (t) ∈
Cn[0,T ] f (t) ∈Cm[0,T ] f (t) ≜L−1

[
G(s)F(s)

]
F(s) ≜L [

f (t)
]

G(s)
v ∈ Rn L−1

[
G(s)v

]
∈Cm[0,T ]

Lemma 2: If  is  proper,  then for any 
,  holds,  where 

with . Moreover, if  is strictly proper, then
for any ,  holds.

For the proofs of Lemmas 1 and 2, see the Appendix.  

III.  Trackability Criteria

To  develop  the  basic  trackability  criteria  in  ILC,  we  con-
sider  two  practical  and  challenging  problems  for  the  system
(2) such that it is subject to:

1) Nonzero system relative degree;
2) Nonzero initial output condition.

Toward this  end,  we note  the  physical  realization of  the  sys-
tem (2) and present the following conditions:

G1(s) G2(s)C1)  and  are strictly proper;
D(s) = d0+ D̂(s) d0 ∈ Rm

D̂(s) ∈ RFm×1(s)
C2)  holds for some nonzero vector 

and some strictly proper vector .
G1(s) G2(s)

d0 D̂(s)

D̂(s)

In C1), the strictly proper properties of  and  are
to represent  the nonzero relative degree of  the system (2).  In
C2),  we may employ  and  to denote the initial  condi-
tion and the disturbance of the system (2), respectively. Partic-
ularly,  the  strictly  proper  property  of  is  to  ensure  the
boundedness of the disturbance.

Φ1(t) =L−1 [G1(s)] Φ2(t) =L−1 [G2(s)]
Φ1(t) Φ2(t)

Φ
( j)
1 (t) Φ

( j)
2 (t) j ∈ Z+

d0
d(t) = d0δ(t)+ d̂(t)

d̂(t) ≜L−1
[
D̂(s)

]

If  we  denote  and ,
then we can arrive at that  and  are smooth, namely,

 and  exist  for all  from the condition C1).
In the condition C2),  is closely related with the initial out-
put  condition,  and  we  can  actually  gain ,
where .  Then  we  can  present  the  following
lemma  by  resorting  to  the  properties  of  Laplace  transform,
especially the initial-value theorem [21].

yk(t) ∈ Rq uk(t) ∈ RpLemma 3: For the system (2) with  and ,
two properties hold under the conditions C1) and C2) below.

G1(s) G2(s)1) In the series form,  and  can be written as
 

G1(s) =
∞∑
j=0

Φ
( j)
1 (0)s−( j+1),G2(s) =

∞∑
j=0

Φ
( j)
2 (0)s−( j+1). (4)

2) In the time domain, the system (2) can be described as
 

yk(t) =
w t

0
Φ1(t−τ)uk(τ)dτ

+
w t

0
Φ2(t−τ)d̂(τ)dτ+Φ2(t)d0, ∀k ∈ Z+. (5)

yk(0) = Φ2(0)d0 ∀k ∈ Z+

From Lemma 3, it is clear that the system relative degree of
(2)  is  not  less  than  one,  and  the  initial  output  satisfies

, .  Similarly to Lemma 3,  we can also
develop a time-domain trackability result for ILC with Defini-
tion 1.

yd(t)

ud(t) ∈ Rp

Lemma 4: Consider the system (2) under the conditions C1)
and  C2).  Then  any  specified  output  trajectory  is  track-
able (respectively, realizable) in ILC if and only if there exists
some (respectively, a unique) input  such that
 w t

0
Φ1(t−τ)ud(τ)dτ = yd(t)−Φ2(t)d0

−
w t

0
Φ2(t−τ)d̂(τ)dτ, ∀t ∈ [0,T ]. (6)

[0,T ]
yd(t) yd(0) = Φ2(0)d0

yd(t)

From Lemma 4,  we  note  that  the  trackability  of  the  speci-
fied output trajectory in ILC requires the integral equation (6)
to be satisfied not only at some instant but also over the whole
time interval . Of particular note is that the trackable tra-
jectory  should satisfy  for the system (2).
Thus,  we  can  conclude  from  Lemmas  3  and  4  that  for  any
trackable trajectory , the following initial condition needs
to hold:
 

yd(0) = yk(0), ∀k ∈ Z+. (7)

yd(t)

{uk(t) : k ∈ Z+}

This represents exactly the class of identical initial conditions,
and Lemma 4 also provides explanations on why it is required
in realizing the perfect tracking tasks of ILC. Otherwise, if (7)
does not hold, then  is not trackable by Lemma 4. Hence,
it is obvious from (5) and (6) that the perfect tracking task (1)
does  not  hold  for  any  input  sequence ,  except
for  the  case  that  the  initial  shifts  can  be  fully  overcome
through certain additional control mechanisms (see, e.g., [22]
for ILC with impulsive actions).  

A.  Specific Criteria
As  is  well  known,  the  system  relative  degree  condition

plays  a  basically  important  role  in  accomplishing  tracking
tasks  of  ILC  [10].  In  fact,  it  indicates  that  the  fundamental
trackability  of  ILC  has  an  essential  relation  with  the  system
relative  degree  condition.  To  disclose  this  fact,  we  focus  on
the case of  relative  degree one for  controlled systems,  which
is  the  relative  degree  condition  most  considered  for  ILC.
Specifically, for the system (2), it has a relative degree of one
if and only if (see also [23])

G1(s)C3)  has a relative degree of one.

 1936 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 10, OCTOBER 2023



By following the discussions of, e.g., [12], [23], we can see
that the relative degree condition C3) is characterized by some
full  rank  matrix.  This,  together  with  (4),  leads  to  the  follow-
ing property  by the definition of  system relative degree [12],
[23].

Φ1(0) Φ1(0)
q ≤ p

Φ1(0)
q ≥ p

Lemma 5: Under the condition C1), the condition C3) holds
if and only if  has full rank. Namely,  has full-row
rank when (2) is over-actuated (that is, ); and otherwise,

 has full-column rank when (2) is under-actuated (that is,
).

q ≥ p
G1(s)

For  the  case ,  we explore  Lemma 5 to  develop a  fur-
ther property of  with the properties of polynomial matri-
ces.

q ≥ p
GT

1 (s)G1(s) ∈ RFp×p(s)
Lemma 6: Let  and  the  conditions  C1)  and  C3)  hold.

Then  is nonsingular.

q ≥ p
Based on Lemma 6, we establish a trackability result of ILC

for the system (2) in the under-actuated case with .
q ≥ p

yd(t) ∈
C1

q[0,T ]

Theorem  1: For  the  system  (2)  with ,  let  the  condi-
tions  C1)–C3)  hold.  Then  any  specified  trajectory 

 is trackable in ILC if and only if it can satisfy the ini-
tial  condition  (7)  and  the  following  frequency-domain  alge-
braic equation:
 {

I−G1(s)
[
GT

1 (s)G1(s)
]−1

GT
1 (s)

}
[Yd(s)−G2(s)D(s)] = 0. (8)

yd(t)Further, for any trackable output trajectory , the algebraic
equation (3) has a unique solution in the form of
 

Ud(s) =
[
GT

1 (s)G1(s)
]−1

GT
1 (s) [Yd(s)−G2(s)D(s)] (9)

ud(t) =L−1 [Ud(s)] ∈Cp[0,T ]which can fulfill .

yd(t)

yd(t) ∈C1
q[0,T ]

ud(t) ud(t) ∈
Cp[0,T ]

Remark 1: Because the number of the output variables to be
controlled is not less than that of the input variables, Theorem
1 indicates that the trackable output trajectories for the system
(2)  are  given exactly  by the  solutions  for  the  algebraic  equa-
tion (8), where they need to particularly satisfy the initial con-
dition (7). Nevertheless, not any output trajectory  satisfy-
ing the initial condition (7) corresponds to the solution of the
algebraic equation (8). Besides, the trackability results of The-
orem 1 can be validated through the frequency-domain meth-
ods  especially  thanks  to  leveraging  properties  of  polynomial
matrices,  which  however  has  not  been  introduced  for  ILC to
our  knowledge.  A  fact  worth  highlighting  for  Theorem  1  is
that  for  any  trackable  trajectory ,  the  corre-
sponding input  needs  to  be  continuous such that 

.
q ≤ pFor the case , we note Lemma 5 and denote

 

Φ1(t) =
[
Φ1,1(t) Φ1,2(t)

]
with

Φ1,1(t) ∈ Rq×q

Φ1,2(t) ∈ Rq×(p−q)
(10)

and then, without loss of generality,  we give a further condi-
tion of the condition C3) as follows:

q ≤ p Φ1(t)
Φ1,1(0) ∈ Rq×q

C4)  When ,  let  be  given  in  the  block  form  of
(10) such that  is nonsingular.

Φ1(0)
Otherwise, this can be realized with elementary transforma-

tion in column of ,  which has no influences on our fol-

G1(s) ∈ RFq×p(s)
lowing  analyses  and  results  except  for  the  notations.  Corre-
spondingly, by (10), we can write  as
 

G1(s) = [G11(s) G12(s)] with

G11(s) ∈ RFq×q(s)

G12(s) ∈ RFq×(p−q)(s).
(11)

G11(s)For (11), we present a nonsingularity property of  based
on the properties of polynomial matrices.

q ≤ p
G11(s)

Lemma 7: Let  and  the  conditions  C1),  C3),  and  C4)
hold. Then  is nonsingular.

q ≤ p
With Lemma 7, we propose a trackability result of ILC for

the system (2) in the over-actuated case with .
q ≤ p

yd(t) ∈
C1

q[0,T ]

yd(t)

Theorem  2: For  the  system  (2)  with ,  let  the  condi-
tions  C1)–C4)  hold.  Then  any  specified  trajectory 

 is trackable in ILC if and only if it can satisfy the ini-
tial  condition  (7).  Moreover,  the  set  of  the  solutions  to  the
algebraic  equation  (3),  i.e.,  that  of  the  desired  inputs  for  the
system (2)  to  generate  the  trackable  trajectory ,  is  given
by
 

Ud =
{
Ud(s)

∣∣∣G1Ud(s) = Yd(s)−G2(s)D(s)
}

=

{
Ud(s) =

[
G−1

11 (s) [Yd(s)−G2(s)D(s)]
0

]
+

[
−G−1

11 (s)G12(s)
I

]
Ud,2(s)

∣∣∣∣ud,2(t) ∈ Rp−q
}
. (12)

ud(t) ∈Cp[0,T ] ud,2(t) ∈Cp−q
[0,T ]
In  particular,  if  and  only  if 

.

t = 0
t ∈ [0,T ]

q ≤ p

p−q

Remark 2: In comparison to Theorem 1, Theorem 2 presents
a quite different trackability result for ILC though they employ
the same system relative degree condition. Because the number
of the output variables to be controlled is not more than that of
the input variables, Theorem 2 states that any specified output
trajectory fulfilling the initial condition (7) is trackable for the
system (2). Namely, any specified output trajectory is trackable
in  ILC  for  the  initial  time  if  and  only  if  it  is  trackable
in ILC within any time interval .  In  accordance with
this  property,  there  generally  exist  multiple  inputs  that  can
generate  the  trackable  output  trajectory  for  the  system  (2).
Furthermore, it  indicates by (12) that since ,  there are q
input  variables  essentially  required  to  achieve  the  tracking
task  for  any  output  with q variables,  whereas  the  other 
input  variables  can  be  freely  chosen.  This  actually  provides
inspiration for the design and analysis of ILC in the presence
of  over-actuated  systems,  where  how  to  find  input  variables
that essentially work for the output tracking tasks is crucial.

Based on Theorems 1 and 2, we can also explore the relation
between trackability and realizability in ILC as a direct result.

yd(t) ∈
C1

q[0,T ]

Corollary 1: Consider the system (2), and let the conditions
C1)–C3) hold. Then for any specified output trajectory 

 that fulfills the initial condition (7),
q ≥ p yd(t)1) When ,  is realizable in ILC if and only if it is

trackable in ILC;
q < p yd(t)2) When ,  is  trackable in ILC, but not realizable

in ILC.
Remark 3: From Corollary 1, it follows that trackability and

realizability  are  equivalent  in  ILC of  the  under-actuated  sys-
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tem  (2)  under  the  conditions  C1)–C3).  However,  when  the
system  (2)  is  over-actuated,  realizability  no  longer  makes
sense owing to the existence of multiple inputs that can yield
any  trackable  output  trajectory.  These  observations  indicate
that trackability plays a more fundamental role than realizabil-
ity in performing the ILC analysis.  

B.  State-Space Case Studies
For the system (2) under the conditions C1)–C3), we assume

a time-domain realization in the form of
 {

ẋk(t) = Axk(t)+Buk(t)+w(t)

yk(t) =Cxk(t)
, ∀t ∈ [0,T ],∀k ∈ Z+ (13)

xk(t) ∈ Rn xk(0) ≜ x0 ∀k ∈ Z+
w(t) ∈ Rn A ∈ Rn×n B ∈ Rn×p

C ∈ Rq×n

m = 2n

where  is  the  system state  with , ,
 is  the external  disturbance,  and , ,

and  are the system matrices. By the relation between
(2) and (13), we know that if let , then
 

D(s) =
[
xT

0 WT (s)
]T ∈ RF2n×1(s)

G1(s) =C (sI −A)−1 B ∈ RFq×p(s)

G2(s) =
[
C (sI −A)−1 C (sI−A)−1

]
∈ RFq×2n(s) (14)

W(s) ≜L [w(t)]where . We can also obtain from (14) that
 

Φ1(t) =CeAtB, Φ2(t) =
[
CeAt CeAt

]
.

Of  note  is  that  (13)  is  one  of  the  commonly  considered  sys-
tems in continuous-time ILC (for more details, see the survey
[10]).

Thanks to (14), we have for the system (13) that
i) C1) naturally holds;

d0 =
[
xT

0 0
]T

D̂(s) =[
0 WT (s)

]T
ii) C2) holds if and only if we set  and 

;
CB

q ≥ p q ≤ p
iii) C3) holds if and only if  has full rank (namely, full-

column rank when  or full-row rank when ).
q ≤ p B = [B1 B2] B1 ∈ Rn×q

B2 ∈ Rn×(p−q)
In addition, for , if we denote  with 

and , then
CB1iv) C4) holds if and only if  is nonsingular.

yd(t) ∈C1
q[0,T ]

ud(t) t ∈ [0,T ]

With the properties i) and ii), we know from Lemma 4 that
for  the  system  (13),  any  specified  output  trajectory

 is  trackable  in  ILC if  and  only  if  there  exists
some  such that, for all ,
 w t

0
CeA(t−τ)Bud(τ)dτ = yd(t)−CeAt x0

−
w t

0
CeA(t−τ)w(τ)dτ. (15)

yd(0) = yk(0) =Cx0
∀k ∈ Z+
Clearly, the initial condition (7) becomes ,

, which also coincides with the facts of (13) and (15).
In addition, we can directly establish the following trackability
result of ILC as a consequence of Theorems 1 and 2.

yd(t) ∈C1
q[0,T ]

Corollary 2: For the system (13), the following results hold
for any specified output trajectory .

q ≥ p CB yd(t)
yd(0) =Cx0

1) When , let  be of full-column rank. Then  is
trackable  in  ILC  if  and  only  if  holds  and  its

Yd(s) =L[yd(t)]
D(s) G1(s) G2(s)

Laplace transform  fulfills the algebraic equa-
tion (8), where ,  and  are defined by (14). Fur-
ther,  there  exists  a  unique  input  correspondingly  generating
any trackable output trajectory.

q ≤ p CB
yd(t)

yd(0) =Cx0

2) When , let  be of full-row rank. Then there exist
multiple inputs such that  is trackable in ILC if and only if
it satisfies .

CB
In Corollary 2, we reveal that the trackability is tied closely

with the full rank of  for continuous-time linear ILC in the
presence  of  the  relative  degree  one.  It  actually  provides  a
basic  guarantee  for  the  existing  ILC design  results  (for  more
details,  see  technical  overview  of  ILC  in  [10]),  and  a  clear
explanation  on  why  they  work  effectively  in  realizing  the
tracking tasks.  

C.  Technical Proofs
Next, we give detailed proofs of Lemmas 3–7 and Theorems

1 and 2, especially by resorting to a frequency-domain analy-
sis method with properties of polynomial matrices.

G1(s) G2(s)
Proof  of  Lemma  3: By  the  condition  C1),  we  can  denote

 and  in the series form of
 

G1(s) =
∞∑
j=0

g1, js−( j+1), G2(s) =
∞∑
j=0

g2, js−( j+1)

g1, j ∈ Rq×p g2, j ∈ Rq×m ∀ j ∈ Z+for some matrices  and , .  Thus,
taking the Laplace transformation leads to
 

Φ1(t) =
∞∑
j=0

g1, j
t j

j!
, Φ2(t) =

∞∑
j=0

g2, j
t j

j!

from which we can easily validate
 

g1, j = Φ
( j)
1 (0), g2, j = Φ

( j)
2 (0), ∀ j ∈ Z+

and  consequently  it  is  immediate  to  gain  (4).  By  the  condi-
tions C1) and C2), (5) can be equivalently developed from (2)
thanks to taking the inverse Laplace transformation. ■
    Proof of Lemma 4: A direct result of Definition 1. ■

Proof of Lemma 5: Due to (4) in Lemma 3, this lemma is a
consequence  of  the  condition  C3)  according to  the  definition
of the system relative degree (see also [12], [23]). ■

G1(s)(
A ∈ Rn×n,B ∈ Rn×p,C ∈ Rq×n)

G1(s) =C (sI −A)−1 B Φ
( j)
1 (0) =

CA jB ∀ j ∈ Z+

Proof of Lemma 6: Under the condition C1), we consider a
realization  of ,  which  without  any  loss  of  generality  is
denoted  by .  Namely,  we  have

,  with  which  we  can  validate 
, . Thus, a consequence of (4) is such that

 

siG1(s) =
i−1∑
j=0

CA jBsi−1− j

+C(sI −A)−1AiB, ∀i = 0,1, . . . ,n. (16)

α(s) = det (sI−A) ≜∑n
i=0αisi αi ∈ R ∀i = 0 1 , . . . , n−1 αn = 1∑n

i=0αiAi =

0

Let the characteristic polynomial of A be 
 for some , ,    and ,  and

then with the Cayley-Hamilton theorem, we have 
 which, together with (16), leads to 
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n∑
i=0

αisiG1(s) =
n∑

i=0

αi

i−1∑
j=0

CA jBsi−1− j+

n∑
i=0

αiC(sI−A)−1AiB

=

n∑
i=0

αi

i−1∑
j=0

Φ
( j)
1 (0)si−1− j

≜ Q(s) (17)
Q(s) ∈ RPq×p(s)where  (see [20, p. 524]) satisfies

 

Q(s) =
n∑

i=0

αi

i−1∑
j=0

Φ
( j)
1 (0)si−1− j

= αnΦ1(0)sn−1+αn

n−1∑
j=1

Φ
( j)
1 (0)sn−1− j

+

n−1∑
i=0

αi

i−1∑
j=0

Φ
( j)
1 (0)si−1− j

= αnΦ1(0)sn−1+

n−2∑
i=0

 n∑
j=i+1

α jΦ
( j−i−1)
1 (0)

 si

= Φ1(0)sn−1+

n−2∑
i=0

 n∑
j=i+1

α jΦ
( j−i−1)
1 (0)

 si. (18)

Φ1(0)
Q(s) q ≥ p

Φ1(0)
Q(s)

QT (s)Q(s)

Clearly,  is the highest column degree coefficient matrix
of  (see [20, p. 526]). Owing to , we can obtain from
Lemma 5 that  has full-column rank under the condition
C3), and hence  is column reduced or column proper (see
[20, p. 527]). Then by (18),  is nonsingular because
we can use the result (2.4) of [20, p. 527] to arrive at
 

det
(
QT (s)Q(s)

)
= det

(
ΦT

1 (0)Φ1(0)
)

s(2n−2)p

+ lower degree terms
. 0.

GT
1 (s)G1(s)This immediately leads to that  is nonsingular since

the use of (17) results in
 

GT
1 (s)G1(s) =

 n∑
i=0

αisi

−2

QT (s)Q(s).

That is, the proof of Lemma 6 is completed. ■
Q(s) ≜ [Q1(s) Q2(s)] Q1(s) ∈

RPq×q(s) Q2(s) ∈ RPq×(p−q)(s)
Proof  of  Lemma  7: Let  for 

 and .  Then  from (11)  and  (17),
we have
 

Qh(s) =
n∑

i=0

αisiG1h(s)

=

n∑
i=0

αi

i−1∑
j=0

Φ
( j)
1,h(0)si−1− j, ∀h ∈ {1,2} (19)

with which we follow the same lines as (18) to further get:
 

Qh(s) = Φ1,h(0)sn−1

+

n−2∑
i=0

 n∑
j=i+1

α jΦ
( j−i−1)
1,h (0)

 si, ∀h ∈ {1,2}. (20)

Q1(s)
Thanks  to  considering  the  result  (2.4)  of  [20,  p.  527]  for

,  we  can  leverage  (20)  and  adopt  the  condition  C4)  to
arrive at
 

det (Q1(s)) = det
(
Φ1,1(0)

)
s(n−1)q+ lower degree terms

. 0
Q1(s)which ensures that  is nonsingular. Note also that the use

of (19) leads to
 

G1h(s) =

 n∑
i=0

αisi

−1

Qh(s), ∀h ∈ {1,2}. (21)

G11(s)As a direct consequence of (21),  is nonsingular. ■

yd(t) ∈C1
q[0,T ]

Yd(s) =
L [

yd(t)
]

Proof of  Theorem 1: We first  prove the equivalent  relation
between  the  trackability  of  a  specified  output  trajectory

 and the satisfactions of the initial condition (7)
and  the  frequency-domain  algebraic  equation  (8)  by 

.

yd(t)
ud(t) ∈ Rp

Ud(s) =L [ud(t)]
I−G1(s)

[
GT

1 (s)G1(s)
]−1

GT
1 (s)

Necessity: With  Definition  1,  the  trackability  of  the  speci-
fied  trajectory  implies  that  there  exists  some  input

 for  the  system  (2)  to  guarantee  the  satisfaction  of
the algebraic equation (3) by . Then thanks to
Lemma 6,  we can multiply  on
both sides of (3) such that
 {

I−G1(s)
[
GT

1 (s)G1(s)
]−1

GT
1 (s)

}
[Yd(s)−G2(s)D(s)]

=

{
I−G1(s)

[
GT

1 (s)G1(s)
]−1

GT
1 (s)

}
G1(s)Ud(s)

= 0
Yd(s) =L [

yd(t)
]

yd(0) = Φ2(0)d0
yk(0) = Φ2(0)d0 ∀k ∈ Z+

yd(t)

i.e., the algebraic equation (8) is satisfied by .
In addition, by (6) in Lemma 4,  is immediate,
and due to (5) in Lemma 3, we have , .
This ensures that  fulfills the initial condition (7).

Yd(s) =L [
yd(t)

]
yd(t)

Sufficiency: From  Lemma  6,  it  is  feasible  that  for  the  sys-
tem  (2)  under  the  conditions  C1)–C3),  ful-
fills  the  algebraic  equation  (8)  for  the  specified  trajectory

. Hence, we use (8) to equivalently arrive at
 

G1(s)
[
GT

1 (s)G1(s)
]−1

GT
1 (s) [Yd(s)−G2(s)D(s)]

= Yd(s)−G2(s)D(s)
Ud(s)from which taking  in (9) immediately leads to

 

G1(s)Ud(s) =G1(s)(GT
1 (s)G1(s))−1GT

1 (s) [Yd(s)−G2(s)D(s)]

= Yd(s)−G2(s)D(s).
Ud(s)

yk(0) = Φ2(0)d0 ∀k ∈ Z+
yd(0) =

Φ2(0)d0

That  is,  is  a  solution  for  the  algebraic  equation  (3).
From (5) in Lemma 3, we can gain , ,
which  together  with  the  initial  condition  (7)  leads  to 

. We can consequently obtain
 

sYd(s) =L [
ẏd(t)

]
+ yd(0) =L [

ẏd(t)
]
+Φ2(0)d0. (22)

Ud(s)Since we can rewrite  in (9) as
 

Ud(s) = s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s) [sYd(s)]

−
[
GT

1 (s)G1(s)
]−1

GT
1 (s)G2(s)D(s)

then under the condition C2) and with (22), we can deduce 
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Ud(s) = s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s)L [

ẏd(t)
]

−
[
GT

1 (s)G1(s)
]−1

GT
1 (s)G2(s)D̂(s)

+ s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s) [Φ2(0)− sG2(s)]d0. (23)

q ≥ p ΦT
1 (0)Φ1(0)When , we can obtain from Lemma 5 that  is

nonsingular  under  the  conditions  C1)  and  C3).  Then  by  not-
ing (17) and (18), we can verify
 

lim
s→∞

s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s)

= lim
s→∞

{
[sG1(s)]T [sG1(s)]

}−1 [
sGT

1 (s)
]

=
[
ΦT

1 (0)Φ1(0)
]−1
ΦT

1 (0). (24)

This, together with the conditions C1) and C2), leads to
 

lim
s→∞

[
GT

1 (s)G1(s)
]−1

GT
1 (s)G2(s)D̂(s)

= lim
s→∞

{
s−1

[
GT

1 (s)G1(s)
]−1

GT
1 (s)

}
lim
s→∞

[sG2(s)] lim
s→∞

D̂(s)

= 0 (25)
lims→∞ [sG2(s)] = Φ2(0) lims→∞ D̂(s) = 0where  due to (4) and 

are incorporated. In a similar way as (25), we can derive
 

lim
s→∞

s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s) [Φ2(0)− sG2(s)] = 0. (26)

ud(t) =L−1 [Ud(s)] ∈Cp[0,T ] Ud(s)
ud(t) =L−1 [Ud(s)] ∈

Rp yd(t)

By incorporating (24)–(26) into (23), we can employ the result
of Lemma 2 to get . Thus, 
in (9) not only fulfills (3) but also yields 

. Then in view of Definition 1, the specified trajectory 
is trackable in ILC for the system (2).

yd(t)

ud(t)
ûd(t) ∈ Rp ud(t) ûd(t) , ud(t)
Ûd(s) =L [̂

ud(t)
]

Next, we adopt a proof by contradiction to show that if 
is trackable, then the solution for the algebraic equation (3) is
unique. Hence, in addition to  obtained by (9), we assume
an input  different  from  (that  is, )
such that  also satisfies (3), namely,
 

Yd(s)−G2(s)D(s) =G1(s)Ûd(s). (27)
Then the use of (3) and (27) yields
 

GT
1 (s)G1(s)Ud(s) =GT

1 (s)[Yd(s)−G2(s)D(s)]

=GT
1 (s)G1(s)Ûd(s).

GT
1 (s)G1(s) Ud(s) = Ûd(s)

ûd(t) , ud(t)
Since  is nonsingular, we can deduce 
which contradicts the made hypothesis . Thus, we
can conversely conclude that the algebraic equation (3) has a
unique solution given by (9). ■

yd(t)
yd(0) = Φ2(0)d0

yk(0) = Φ2(0)d0 ∀k ∈ Z+

Proof  of  Theorem  2:  Necessity: With  the  conditions  C1)–
C4), if  is a trackable trajectory in ILC, then from Lemma
4,  holds as a consequence of (6). Because (5)
yields ,  by Lemma 3, we immediately
know that the initial condition (7) holds.

yd(0) = yk(0) = Φ2(0)d0
∀k ∈ Z+

q ≤ p
ud(t) ud(t) =

[
uT

d,1(t) uT
d,2(t)

]T

Sufficiency: If  the  initial  condition  (7)  holds,  then  we
employ  (5),  and  can  actually  obtain ,

. In view of this result, we will show that the algebraic
equation (3) is solvable. Due to  and with (11), we corre-
spondingly  denote  as  for

ud,1(t) ∈ Rq ud,2(t) ∈ Rp−q Ud(s) =[
UT

d,1(s) UT
d,2(s)

]T
Ud,1(s) ≜ L [

ud,1(t)
]

Ud,2(s) =
L [

ud,2(t)
]

 and .  Let  us  also  denote 
,  where   and 

.  Hence, by incorporating (11),  we can equivalently
derive from (3) that
 

G11(s)Ud,1(s) = Yd(s)−G2(s)D(s)−G12(s)Ud,2(s). (28)
G11(s)Because  is nonsingular from Lemma 7, we can leverage

(28) to arrive at
 

Ud,1(s) =G−1
11 (s)

[
Yd(s)−G2(s)D(s)−G12(s)Ud,2(s)

]
(29)

which straightforwardly results in
 

Ud(s) =
[
G−1

11 (s)[Yd(s)−G2(s)D(s)−G12(s)Ud,2(s)]
Ud,2(s)

]
.

yd(t)

ud,2(t) ∈ Rp−q

Consequently,  is trackable in ILC, and we can determine
the  solutions  for  the  algebraic  equation  (3)  with  (12)  by  tak-
ing any .

ud(t) ∈Cp[0,T ] ud,2(t) ∈Cp−q[0,T ]Next,  we  prove  that  if .
By inserting (22), we can rewrite (29) as
 

Ud,1(s) = [sG11(s)]−1 [sYd(s)]−G−1
11 (s)G2(s)D(s)

−G−1
11 (s)G12(s)Ud,2(s)

= [sG11(s)]−1L [
ẏd(t)

]−G−1
11 (s)G2(s)D̂(s)

+ [sG11(s)]−1 [Φ2(0)− sG2(s)]d0

−G−1
11 (s)G12(s)Ud,2(s). (30)

lims→∞ [sG11(s)] = Φ1,1(0)
lims→∞ [sG12(s)] = Φ1,2(0) lims→∞ [sG2(s)] = Φ2(0)
From (4) and (11), it is clear to see ,

 and . Then
under the condition C4), we have
 

lim
s→∞

[sG11(s)]−1 = Φ−1
1,1(0) (31)

which further leads to
 

lim
s→∞

[sG11(s)]−1 [Φ2(0)− sG2(s)] = 0

lim
s→∞

G−1
11 (s)G12(s) = Φ−1

1,1(0)Φ1,2(0). (32)

For the same reason as (32), we can employ the condition C2)
to arrive at
 

lim
s→∞

G−1
11 (s)G2(s)D̂(s) = lim

s→∞
[sG11(s)]−1 lim

s→∞
[sG2(s)] lim

s→∞
D̂(s)

= 0. (33)

ud,1(t) =L−1 [
Ud,1(s)

] ∈Cq[0,T ] ud,2(t) =
L−1 [

Ud,2(s)
] ∈Cp−q[0,T ]

ud(t) ∈Cp[0,T ] ud,2(t) ∈Cp−q[0,T ]

By incorporating (31)–(33) into (30), we benefit from Lemma
2  to  obtain  that  if 

.  As  a  consequence,  it  follows  that
 if and only if . ■  

IV.  Trackability-Based ILC Synthesis

In this section, we first introduce an ILC updating law with
a  feedback-based  design  method  and  then  explore  the  devel-
oped trackability results  to implement the corresponding ILC
design and analysis.  In  particular,  we utilize  an FCS-induced
approach  to  establish  the  ILC convergence  analysis  from the
viewpoints  of  both output  and input  through a unified condi-
tion,  regardless  of  under-actuated  or  over-actuated  MIMO
controlled systems.  
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A.  Trackability-Based ILC Results

ek(t) = yd(t)− yk(t)
limk→∞ ek(t) = 0 ∀t ∈ [0,T ]

Ek(s) =L [ek(t)] Ek(s) = Yd(s)−
Yk(s)

For  the  tracking  task  (1),  let  the  tracking  error  be  repre-
sented  as .  Then  it  clearly  becomes

, ,  which  can  actually  be  seen  as  a
class of “k-state stability” problems arising from the tracking
tasks  for  ILC  (see  also  [14]  for  similar  discussions).  Let

,  which  obviously  satisfies 
,  and  consequently,  the  iteration-domain  dynamics  of  it

can be described by
 

Ek+1(s) = Ek(s)−∆Yk(s), ∀k ∈ Z+.
If we consider the system (2), then we further have
 

Ek+1(s) = Ek(s)−G1(s)∆Uk(s), ∀k ∈ Z+
∆Uk(s)

Ek(s)
where  plays the role as an input to stabilize the k-state

 from the viewpoint of iteration-domain dynamics. Thus,
we employ the feedback-based design theory and can propose
 

∆Uk(s) = Γ(s)Ek(s), ∀k ∈ Z+
which equivalently yields an ILC updating law in the form of
 

Uk+1(s) = Uk(s)+Γ(s)Ek(s), ∀k ∈ Z+ (34)
Γ(s) ∈ RFp×q(s)for some gain matrix operator  to be designed.

Γ(s) ∈ RFp×q(s)
Γ ∈ Rp×q

Γ(s) = sΥ
Υ ∈ Rp×q

Remark  4: In  continuous-time  linear  ILC,  we  accomplish
the design of updating laws by incorporating the general feed-
back-based  design  method.  In  the  comparison  with  [14],  we
leverage  the  frequency-domain  methods  to  generalize  the
feedback  form  from  the  static  form  to  the  dynamical  form,
where  a  transfer  function  instead of  a  matrix

 is used as the feedback gain. This bridges an explicit
relation between the design methods of ILC and classic feed-
back-based  control.  In  particular,  (34)  involves  classic  PID-
type ILC updating laws as special cases. For example, taking

 leads  to  the  D-type  ILC  updating  law  from  (34),
where  is constant.

Γ(s)

To  proceed,  we  consider  applying  the  ILC  updating  law
(34)  to  the  system (2)  and,  consequently,  can  arrive  at  some
design conditions of the gain matrix operator .

U0(s) =L [u0(t)] u0(t) ∈Cp[0,T ]
yd(t) ∈C1

q[0,T ]

Lemma 8: For the system (2) under the conditions C1)–C3),
let  the  ILC  updating  law  (34)  be  applied  under  any  initial
input  for  and  any  specified
output  trajectory .  Then  the  following  three
conditions are equivalent:
Γ(s) Γ(s)G1(s)1)  is such that  is proper;
Γ(s) G1(s)Γ(s)2)  is such that  is proper;
s−1Γ(s) s−1Γ(s) = Γ0+ Γ̂(s)

Γ0 ∈ Rp×q

Γ̂(s) ∈ RFp×q(s)

3)  is  proper,  that  is,  holds  for
some  nonzero  matrix  and  some  strictly  proper
matrix , where
 

lim
s→∞

s−1Γ(s) = Γ0. (35)

Further, if any of the abovementioned conditions 1)–3) holds,
then in the time domain, (34) reads as
 

uk+1(t) = uk(t)+Γ0ėk(t)+
w t

0
Φ
Γ̂
(t−τ)ėk(τ)dτ

+Φ
Γ̂
(t)ek(0)+Γ0ek(0)δ(t), ∀k ∈ Z+, t ∈ [0,T ] (36)

Φ
Γ̂
(t) ≜L−1

[̂
Γ(s)

]
where  and, in particular, it follows that:
 

uk(t) ∈Cp[0,T ], ∀k ∈ Z+ ⇔ Γ0ek(0) = 0, ∀k ∈ Z+. (37)

uk(0) < Rp

ud(t) ∈ Rp yd(t) ∈ Rq

yd(t)

Remark  5: In  Lemma  8,  it  discloses  that  under  certain
design  condition,  the  time-domain  realization  of  the  ILC
updating  law  (34)  may  involve  an  impulsive  mechanism,  as
revealed  by  (36).  Even  though  it  may  help  to  overcome  the
initial  shift  problems  for  ILC (see,  e.g.,  [22]),  the  use  of  the
impulsive mechanism is not admissible in practice, as noted in
[24], where it may yield  that is not consistent with
the condition  needed by the trackable  in
Definition  1.  Fortunately,  the  impulsive  mechanism  resulted
in  (36)  is  related  only  to  the  initial  tracking  error  that  disap-
pears under the initial condition (7). By Theorems 1 and 2, it
follows  that  any  trackable  output  trajectory  for  the  sys-
tem  (2)  satisfies  the  initial  condition  (7).  This,  together  with
Lemma 8,  indicates  that  a  sequence  of  continuous  inputs  for
ILC  can  thus  be  generated  to  accomplish  the  tracking  tasks
under  the  ILC updating  law  (34),  as  revealed  by  the  equiva-
lent relation (37).

Next,  we  benefit  from  Lemma  8  to  further  gain  conver-
gence analysis results of ILC with the established trackability
criteria.  From  the  perspective  of  input,  applying  the  ILC
updating law (34) to the system (2) leads to
 

Uk+1(s) = [I−Γ(s)G1(s)]Uk(s)

+Γ(s) [Yd(s)−G2(s)D(s)] , ∀k ∈ Z+ (38)
but, by contrast, from the perspective of output (or equivalently
the tracking error), it results in
 

Ek+1(s) = [I−G1(s)Γ(s)] Ek(s), ∀k ∈ Z+. (39)

q , p

Γ(s)

By  the  comparison  between  (38)  and  (39),  different  condi-
tions are actually required for the convergence analysis of ILC
if it is established from the different perspectives of input and
output.  In  particular,  when ,  convergence  conditions
required  for  the  input  of  (38)  and  the  tracking  error  of  (39)
even contradict  with  each other.  Despite  this  issue,  we try  to
leverage an FCS-induced approach of  ILC to  arrive  at  a  uni-
fied design condition for  such that we can accomplish the
convergence  for  both  input  and  tracking  error,  regardless  of
under-actuated or over-actuated MIMO systems.

Let us revisit (38), and then we can arrive at
 

Uk+2(s)−Uk+1(s) = [I−Γ(s)G1(s)]

× [Uk+1(s)−Uk(s)] , ∀k ∈ Z+ (40)
×

{uk(t) :
k ∈ Z+}

q ≥ p

where (and afterwards) the multiplication operator “ ” repre-
sents the matrix multiplication of any two polynomial/rational
fraction matrices in s (namely, the multiplication rule of (40)
is in fact  the same as that  of the typical  algebraic multiplica-
tion).  By  this  development  of  the  input  sequence 

 and  based  on  Lemma  1,  we  can  leverage  an  FCS-
induced approach to present an ILC convergence result in the
under-actuated case of  the system (2)  with  by employ-
ing  the  ILC  trackability  result  of  Theorem  1,  as  well  as  the
design result of Lemma 8.

q ≥ p

U0(s) =L [u0(t)] u0(t) ∈
Cp[0,T ] yd(t) ∈C1

q[0,T ]
uk(t) ∈Cp[0,T ]

∀k ∈ Z+ limk→∞ uk(t) = u∞(t)

Theorem  3: For  the  system  (2)  with ,  let  the  condi-
tions C1)–C3) be satisfied, and the ILC updating law (34) be
applied  with  any  initial  input  for 

 and  any  specified  output  trajectory 
that  satisfies  the  initial  condition  (7).  Then ,

 is  such  that  holds  for  some
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u∞(t) ∈Cp[0,T ] limk→∞ yk(t) = y∞(t)
y∞(t) ∈C1

q[0,T ]
, together with giving  for

some  as
 

y∞(t) =
w t

0
Φ1(t−τ)u∞(τ)dτ+

w t

0
Φ2(t−τ)d̂(τ)dτ+Φ2(t)d0

Γ(s)G1(s)if and only if  is proper such that
 

ρ
(
I− lim

s→∞
Γ(s)G1(s)

)
< 1 (41)

Γ(s)G1(s) U∞(s) =
L[u∞(t)]
where particularly,  is nonsingular such that 

 fulfills
 

U∞(s) = [Γ(s)G1(s)]−1Γ(s) [Yd(s)−G2(s)D(s)] . (42)

yd(t) ∈C1
q[0,T ] U∞(s) = Ud(s)

Ud(s) limk→∞ ek(t) =
e∞(t) , 0 E∞(s) =L[e∞(t)]

Furthermore,  the  tracking  objective  (1)  can  be  achieved  if
and only if  is trackable, where 
holds  for  given  by  (9);  and  otherwise, 

 holds, where  satisfies
 

E∞(s) =
{
I−G1(s) [Γ(s)G1(s)]−1Γ(s)

}
[Yd(s)−G2(s)D(s)] .

(43)
Remark 6: From Theorem 3, we can find that the trackability

of  a  specified  trajectory  is  a  necessary  and  sufficient  condi-
tion for achieving the associated tracking objective in ILC of
under-actuated systems. It particularly reveals that a continuous
input  sequence  is  generated  by  the  ILC updating  law (34)  in
the  case  of  any  trackable  trajectory.  This  coincides  with  the
trackability criterion established in Theorem 1.

q ≤ p

q ≤ p
Γ(s)G1(s)

For the system (2) in the over-actuated case (i.e., ), the
results established in Theorem 3 may no longer be applicable.
Because of , the convergence condition (41) for ILC may
not  hold  although  is  proper,  where  a  straightfor-
ward consequence of the matrix theory [19] leads to
 

ρ
(
I− lim

s→∞
Γ(s)G1(s)

)
≥ 1, ∀q < p.

Γ(s)
It clearly contradicts with (41). Despite this issue, it is possible
for us to design  such that
 

ρ
(
I− lim

s→∞
G1(s)Γ(s)

)
< 1. (44)

q ≤ p

By noting this condition for (39) and (40) and with Theorem
2,  we  employ  an  FCS-induced  approach  to  develop  the  fol-
lowing  theorem  for  the  system  (2)  in  the  case ,  which
establishes a quite different ILC convergence result from The-
orem 3.

q ≤ p

U0(s) =L [u0(t)] u0(t) ∈
Cp[0,T ] yd(t) ∈C1

q[0,T ]
uk(t) ∈Cp[0,T ]

∀k ∈ Z+ limk→∞ uk(t) = u∞(t)
u∞(t) ∈Cp[0,T ]

G1(s)Γ(s)
G1(s)Γ(s) U∞(s) =

L[u∞(t)] U0(s)

Theorem  4: For  the  system  (2)  with ,  let  the  condi-
tions C1)–C4) be satisfied, and the ILC updating law (34) be
applied  with  any  initial  input  for 

 and  any  specified  output  trajectory 
that  satisfies  the  initial  condition  (7).  Then ,

 is  such  that  holds  for  some
, together with the tracking objective (1) being

accomplished,  if  and  only  if  is  proper  and  fulfills
(44). Furthermore,  is nonsingular such that 

 is  dependent  on  the  initial  input  and  forms  a
set given by
 

UILC =
{
U∞(s) = Γ(s) [G1(s)Γ(s)]−1 [Yd(s)−G2(s)D(s)]

+ Γ̃(s)U0(s)
∣∣∣u0(t) ∈ Rp

}
(45)

Γ(s) =
[
ΓT

1 (s) ΓT
2 (s)

]T
Γ1(s) ∈ RFq×q(s)where  is  denoted  for 

Γ2(s) ∈ RF(p−q)×q(s) Γ̃(s)and  such that  is given by
 

Γ̃(s) =
[̃
Γ11(s) Γ̃12(s)
Γ̃21(s) Γ̃22(s)

]
with



Γ̃11(s) =G−1
11 (s)G12(s)Γ2(s) [G1(s)Γ(s)]−1 G11(s)

Γ̃12(s) = −G−1
11 (s)G12(s)

{
I−Γ2(s) [G1(s)Γ(s)]−1 G12(s)

}
Γ̃21(s) = −Γ2(s) [G1(s)Γ(s)]−1 G11(s)

Γ̃22(s) = I−Γ2(s) [G1(s)Γ(s)]−1 G12(s).
UILC =UdIn particular,  holds.

Remark  7: With  Theorem  4,  we  reveal  that  for  any  speci-
fied trajectory, the ILC updating law (34) can be designed to
realize the perfect  tracking objective in the presence of over-
actuated systems. It particularly indicates that by the selection
of initial inputs, all inputs capable of generating the specified
trajectory can be determined. This ILC tracking result is con-
sistent  with  the  trackability  criterion  developed  in  Theorem
2.  In  addition,  the  input  induced  from  the  ILC  updating  law
(34) is continuous for every iteration if and only if the initial
input  is  continuous  since  the  specified  output  trajectory  is
trackable in ILC under the initial condition (7).

U∞(s)

Remark 8: In Theorems 3 and 4, a unified condition is given
to  realize  the  convergence  of  ILC  from  the  perspectives  of
both  input  and  output,  regardless  of  under-actuated  or  over-
actuated systems. It ensures that for the ILC updating law (34)
obtained  with  a  feedback-based  design  method,  the  learned
input  always exists and, particularly, is the same as the
desired input for generating the trackable output trajectory in
ILC.  However,  it  is  worth  emphasizing  that  we  make  no
assumption about the desired input in executing the ILC con-
vergence analysis  thanks  to  our  introduced  FCS-induced
approach of  ILC.  This  is  quite  different  from classic  conver-
gence  analysis  approaches  of  ILC  (see,  e.g.,  [1],  [12],  [13],
[24]). Furthermore, our FCS-induced approach actually estab-
lishes  the  class  of  uniform  convergence  results  for  ILC  by
benefiting from Lemma 1.

yd(t)

q ≥ p q ≤ p
uk(t) ∈ Rp

q ≤
p q ≥ p

Remark 9: If the initial condition (7) does not hold, and thus
 is not trackable in ILC based on Theorems 1 and 2, then

by following the same way as the development of Theorems 3
and 4, we can still establish the ILC convergence of both input
and output, in spite of  or . It is worth emphasizing,
however, that by (36),  may not be ensured. Further,
the tracking objective (1) can still  be realized in the case 

,  whereas  it  can  not  be  accomplished  in  the  case .
Namely,  the  use  of  the  impulsive  mechanism  may  be  no
longer  effective  in  helping  to  achieve  the  perfect  tracking
objective for ILC in the presence of the initial shifts, which is
different from [22].  

B.  Further Discussions
By  [9],  [10],  one  of  the  practically  important  problems  of

the  ILC  systems  is  the  robustness  with  respect  to  iteration-
varying uncertainties. We thus proceed to develop the robust-
ness of our trackability-based ILC results by reconsidering the
system (2) in an uncertain form of
 

Yk(s) =G1(s)Uk(s)+G2(s)Dk(s) (46)
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Dk(s) = D(s)+Θk(s)
Θk(s)
where in comparison with (2),  holds and

 represents the iteration-varying uncertainty satisfying:
Θk(s) = θk +Θ̂k(s) θk ∈ Rm Θ̂k(s) ∈

RFm×1(s) ∥θk∥ ≤ βθ ∀k ∈ Z+
∥∥∥∥̂θk(t)

∥∥∥∥ ≤ βθ̂ ∀t ∈
[0,T ] ∀k ∈ Z+ θ̂k(t) ≜L−1

[
Θ̂k(s)

]
βθ βθ̂

C5)  holds  for  some  and 
 such  that ,  and , 

, ,  where  and  and  are
some finite bounds.

θk Θ̂k(s)In  C5),  and  represent  the  iteration-varying  initial
condition and disturbance, respectively. Though they are itera-
tion-varying,  they  are  often  bounded  as  shown  in  the  condi-
tion C5). Then for Theorems 3 and 4, we can show that they
have certain robustness against iteration-varying uncertainties,
as below.

U0(s) =L [u0(t)] u0(t) ∈Cp[0,T ]
yd(t) ∈C1

q[0,T ]

Corollary 3: Consider the system (46) under the conditions
C1), C2), C3) and C5). If the ILC updating law (34) is applied
with any initial input  for  and
any specified output trajectory  that is trackable
in ILC for the system (2), then the robust ILC tracking results
can be established as follows.

q ≥ p Γ(s)G1(s)
u∞(t)

1)  For ,  let  be  proper  such  that  (41)  holds.
Then for  determined by (42),
 

limsup
k→∞

sup
0≤t≤T

∥ek(t)∥ ≤ βe

limsup
k→∞

sup
0<t≤T

∥uk(t)−u∞(t)∥ ≤ βu (47)

βe ≥ 0 βu ≥ 0
βθ βθ̂

βθ→ 0
βθ̂→ 0

can  be  accomplished,  where  and  are  small
bounds  depending  continuously  on  and .  In  particular,
when  iteration-varying  uncertainties  disappear,  i.e., 
and ,  the same ILC convergence results as Theorem 3
hold.

q ≤ p G1(s)Γ(s)

u∞(t)

βθ→ 0 βθ̂→ 0

2)  For ,  let  the  condition  C4)  hold,  and  be
proper  such  that  (44)  holds.  Then  the  robust  ILC  tracking
objective (47) can be achieved for some  defined by (45),
and  when  iteration-varying  uncertainties  disappear,  that  is,

 and , the same ILC convergence results as The-
orem 4 can be developed.

By Corollary 3, it indicates that like classic continuous-time
ILC in, e.g., [16], [24], the trackability-based ILC convergence
results  can  be  further  extended  to  work  robustly  and  effec-
tively  in  the  presence  of  iteration-varying  uncertainties.  This
class of robust ILC convergence results may also be general-
ized  to  deal  with  iteration-varying  uncertainties  arising  from
plant models. Of special note is that the trackability-based ILC
analysis gives a basic guarantee for the implementation of the
ILC design and the robust convergence analysis.

Since most ILC results employ the time-domain descriptions
[10], we revisit the time-domain system (13) (that is, the state-
space realization of the system (2)), for which we particularly
consider a commonly employed D-type ILC updating law as
 

uk+1(t) = uk(t)+Υėk(t), ∀t ∈ [0,T ],∀k ∈ Z+ (48)
Υ ∈ Rp×qwhere  is a constant gain matrix. Then with Theorems

3 and 4, we can induce the following ILC convergence results.

u0(t) ∈Cp[0,T ]
yd(t) ∈C1

q[0,T ] q ≥ p
q ≤ p ρ(I−ΥCB) < 1 ρ(I−CBΥ) < 1
limk→∞ uk(t) = u∞(t) limk→∞ yk(t) = y∞(t)

Corollary 4: For the system (13),  let  the ILC updating law
(48) be applied under any initial input  and any
specified trajectory . When  (respectively,

),  if  (respectively, ),  then
 and  can be achieved

u∞(t) ∈ Rp y∞(t) ∈ Rq

uk(t) ∈Cp[0,T ] ∀k ∈ Z+ yd(t) ∈C1
q[0,T ]

for some  and . Furthermore, the tracking
objective  (1)  can  be  accomplished,  together  with  giving

, ,  if  and  only  if  is
trackable.

With Corollary 4, we can see that the trackability-based ILC
convergence  results  are  particularly  applicable  for  the  classi-
cal  D-type  ILC.  But,  differently,  Corollary  4  reveals  that  a
unified  condition  can  be  obtained  to  ensure  the  ILC  conver-
gence from the perspectives of both input and output, regard-
less of under-actuated or over-actuated systems. This can not
be  gained  with  typical  ILC  analysis  methods  (see,  e.g.,  [1],
[16], [22]–[25]).

yd(t)

[0,T ]
yd(t)

[0,T ]

G1(s)

Remark 10: Although in the trackability-related ILC results
of Theorems 1–4 and Corollaries 1–4, the specified trajectory

 is required to be continuously differentiable, these results
can be generalized to the piecewise continuously differentiable
trajectories. Namely, if the time interval  can be separated
into a series of subintervals such that over each of them, 
is continuously differentiable, then we separately perform the
trackability-based ILC analysis on each subinterval, which can
further  be  synthesized  to  establish  the  trackability-based  ILC
results on the whole time interval .  It  is  also worth not-
ing  that  in  Theorems  1–4  and  Corollaries  1–4,  no  require-
ments or limitations about the pole-zero location of the trans-
fer function  are imposed, and hence our proposed track-
ability-related ILC results may be applied, no matter whether
the  ILC  system  is  a  minimum  phase  system  or  a  non-mini-
mum phase system.  

C.  FCS-Induced Convergence Analysis
Next, we give the proofs of Lemma 8 and Theorems 3 and 4

by applying Lemmas 1 and 2 and using the frequency-domain
analysis method.

Γ(s) ∈ RFp×q(s) γ(s)

γ(s) γ(s) =∑µ
i=0 γisi µ ∈ Z+ γi ∈ R ∀i = 0 1 , . . . , µ−1
γµ = 1 Γ(s)

Proof  of  Lemma  8: For ,  let  be  the
monic  least  common  denominator  of  all  its  nonzero  entries.
We  without  any  loss  of  generality  represent  as 

 for  some ,  some , ,   ,
and . Then we can write  in the form of
 

Γ(s) = γ−1(s)Ξ(s) (49)
Ξ(s) ∈ RPp×q(s) Ξ(s)where  is  a  polynomial  matrix.  Then  let 

be of the form (see, e.g., [20, (2.6), p. 528])
 

Ξ(s) = Γ0sl+Γ1sl−1+ · · ·+Γl−1s+Γl

≜ Γ0sl+ lower degree terms. (50)
l ∈ Z+ Γi ∈ Rp×q ∀i = 0 1 , . . . , Γ0 , 0

l = µ+1

where  and , ,   l with .  The
preliminary results of (49) and (50) help us to deduce that any
of the conditions 1)–3) holds if  and only if .  Inspired
by this fact, we next consider the conditions 1)–3) separately.

Γ(s)G1(s)With (17), (18), (49), and (50), we can write  as
 

Γ(s)G1(s) =
[
γ(s)α(s)

]−1
Ξ(s)Q(s)

=
(
sn+µ+ lower degree terms

)−1

×
[
Γ0Φ1(0)sn+l−1+ lower degree terms

]
. (51)

Γ(s)G1(s)
l = µ+1 lims→∞Γ(s)G1(s) =

Γ0Φ1(0)

With (51), it follows straightforwardly that  is proper
if and only if ,  and consequently, 

. For the same reason as (51), we can also arrive at
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G1(s)Γ(s) =
[
α(s)γ(s)

]−1 Q(s)Ξ(s)

=
(
sn+µ+ lower degree terms

)−1

×
[
Φ1(0)Γ0sn+l−1+ lower degree terms

]
(52)

G1(s)Γ(s) l = µ+1
lims→∞G1(s)Γ(s) = Φ1(0)Γ0

from which  is proper if and only if . Hence,
the use of (52) gives . In addition,
we can leverage (49) and (50) to obtain
 

s−1Γ(s) =
[
sγ(s)

]−1
Ξ(s)

=
(
sµ+1+ lower degree terms

)−1

×
(
Γ0sl+ lower degree terms

)
(53)

s−1Γ(s)
l = µ+1

which obviously guarantees that  is proper if and only
if . Then as a consequence of (53), (35) is immediate.

yd(t) ∈C1
q[0,T ] sEk(s) =

L [ėk(t)]+ ek(0)
To proceed, we note , and thus have 

. Then we incorporate the condition 3) to get
 

Uk+1(s) = Uk(s)+
[
s−1Γ(s)

]
[sEk(s)]

= Uk(s)+Γ0L [ėk(t)]+ Γ̂(s)L [ėk(t)]

+ Γ̂(s)ek(0)+Γ0ek(0). (54)

uk(t) ∈Cp[0,T ] ∀k ∈ Z+
Γ0ek(0)δ(t) = 0 ∀k ∈ Z+ Γ0ek(0) = 0 ∀k ∈ Z+

By taking the inverse Laplace transform on both sides of (54),
we  can  directly  derive  (36).  Then  in  view  of  (5),  we  can
clearly conclude from (36) that ,  if and
only  if , ,  i.e., , .
Hence, (37) is obtained. ■

uk(t) ∈Cp[0,T ] ∀k ∈ Z+
q ≥ p

Proof of Theorem 3: Since the initial condition (7) holds, we
have ,  from Lemma 8. Then owing to

, we consider Lemma 1 for (40) and can arrive at that the
following three results are equivalent:

limk→∞ uk(t) = u∞(t) ∈Cp[0,T ]
[0,T ]

limk→∞ yk(t) = y∞(t) ∈C1
q[0,T ]

1)  holds with its limit being
approached uniformly on ,  which together with (5) thus
results in ;
{uk(t) : k ∈ Z+}2)  is an FCS;
Γ(s)G1(s)3)  is proper such that (41) holds.

lims→∞Γ(s)G1(s) = Γ0Φ1(0)
Γ0Φ1(0)

Γ(s)G1(s)

To proceed, we can easily leverage Lemmas 3 and 8 to vali-
date  that  holds.  Then  as  an
immediate consequence of (41),  is nonsingular. In the
same way as the proof of Lemma 6, we can further obtain that

 is  nonsingular.  This,  together  with  (38),  leads  to
(42) directly.

yd(t)
Next, we prove the equivalence between the tracking objec-

tive (1) and the trackability of .

limk→∞Yk(s) = Yd(s) limk→∞Uk(s) = U∞(s)
Necessity: If the tracking objective (1) is achieved, namely,

, then by , it follows
immediately from (2) that:
 

G1(s)U∞(s) = Y∞(s)−G2(s)D(s) = Yd(s)−G2(s)D(s)

Y∞(s) ≜ limk→∞Yk(s) U∞(s)
yd(t)

where .  Namely,  is  a  solution  of
the algebraic equation (3). Then by Definition 1,  is track-
able.

yd(t)
Ud(s)

Sufficiency: If  is trackable, then according to Theorem
1,  the  algebraic  equation  (3)  has  a  unique  solution 
shown by (9). This, together with (38), yields
 

Uk+1(s) = [I−Γ(s)G1(s)]Uk(s)+Γ(s)G1(s)Ud(s) (55)

limk→∞Uk(s) = U∞(s)by which the use of  leads to
 

Γ(s)G1(s)U∞(s) = Γ(s)G1(s)Ud(s). (56)

Γ(s)G1(s)
U∞(s) = Ud(s)

Because  is nonsingular, we can apply (56) to arrive
at . As a consequence, we also have
 

Y∞(s) =G1(s)U∞(s)+G2(s)D(s)

=G1(s)Ud(s)+G2(s)D(s)

= Yd(s)

namely, the tracking objective (1) can be achieved.

yd(t)
limk→∞ ek(t) = e∞(t) , 0

Besides, the abovementioned necessary and sufficient results
guarantee that when  is not trackable, or equivalently, the
tracking  objective  (1)  does  not  hold, 
is thus obvious, where the use of (42) results in
 

E∞(s) = lim
k→∞

Ek(s)

= Yd(s)−G1(s)U∞(s)−G2(s)D(s)

=
{
I−G1(s)[Γ(s)G1(s)]−1Γ(s)

}
[Yd(s)−G2(s)D(s)]

, 0

i.e., (43) holds. ■

uk(t) ∈Cp[0,T ] ∀k ∈ Z+
yd(t) ∈C1

q[0,T ]

Proof  of  Theorem  4: Thanks  to  the  initial  condition  (7),  it
follows  that ,  holds  based  on  Lemma
8, and that  is trackable in ILC by Theorem 2.
Next, we show the necessity and sufficiency separately.

limk→∞ ek(t) = 0 ∀t ∈ [0,T ]
uk(t) ∈

Cp[0,T ] ∀k ∈ Z+ limk→∞ uk(t) =u∞(t)

G1(s)Γ(s)

Necessity: Because  the  tracking  objective  (1)  is  realized,  it
is  direct  that , .  By  considering
Lemma 1 for (39) and (40) and applying Lemma 3 for 

, , we can develop that if ,
together  with  the  tracking  objective  (1)  being  achieved,  then

 is proper such that (44) holds.
G1(s)Γ(s)

G1(s)Γ(s)
lims→∞G1(s)Γ(s) = Φ1(0)Γ0 Φ1(0)Γ0

Ω(s) ∈ RFp×p(s)

Sufficiency: If  is proper such that (44) holds, then
by following the same lines as adopted in the proof of Theo-
rem 3, we can deduce that  is nonsingular, where we
have  and  is also nonsin-
gular. With this fact and by Lemma 7, we denote a structured
matrix  in the form of
 

Ω(s) =
[
Ω11(s) Ω12(s)
Ω21(s) Ω22(s)

]
Ω(s)where four block matrices involved in  are given by

 

Ω11(s) = s [G1(s)Γ(s)]−1 G11(s)

Ω12(s) = s [G1(s)Γ(s)]−1 G12(s)

Ω21(s) = −Γ2(s) [G1(s)Γ(s)]−1 G11(s)

Ω22(s) = I−Γ2(s) [G1(s)Γ(s)]−1 G12(s).
Ω(s)We can validate that  is nonsingular, and proper due to

 

lim
s→∞
Ω(s)

=

[
[Φ1(0)Γ0]−1Φ1,1(0) [Φ1(0)Γ0]−1Φ1,2(0)

−Γ0,2 [Φ1(0)Γ0]−1Φ1,1(0) I−Γ0,2 [Φ1(0)Γ0]−1Φ1,2(0)

]
Γ0,2 ∈ R(p−q)×q Γ0,1 ∈ Rq×q

Γ0 =
[
ΓT

0,1 Γ
T
0,2

]T
Ψ(s) ≜

Ω−1(s) ∈ RFp×p(s)

where ,  together  with ,  is  such  that
.  Simultaneously,  the  inverse  matrix 

 satisfies 
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Ψ(s) =
[
Ψ11(s) Ψ12(s)
Ψ21(s) Ψ22(s)

]
where four block matrices taking the form of
 

Ψ11(s) = s−1Γ1(s), Ψ12(s) = −G−1
11 (s)G12(s)

Ψ21(s) = s−1Γ2(s), Ψ22(s) = I
Ψ(s)are such that  is also proper thanks to

 

lim
s→∞
Ψ(s) =

[
Γ0,1 −Φ−1

1,1(0)Φ1,2(0)
Γ0,2 I

]
.

Ω(s)To proceed,  we  employ  to  propose  a  nonsingular  lin-
ear transformation as
 

Ω(s)Uk(s) = U⋆k (s) ≜
[
U⋆k,1(s)
U⋆k,2(s)

]
u⋆k (t) =L−1

[
U⋆k (s)

]
∈ Rp

u⋆k,1(t) =L−1
[
U⋆k,1(s)

]
∈ Rq u⋆k,2(t) =L−1

[
U⋆k,2(s)

]
∈ Rp−q

uk(t) ∈Cp[0,T ] ∀k ∈ Z+ Ω(s)
k ∈ Z+ u⋆k (t) ∈Cp[0,T ] u⋆k,1(t) ∈

Cq[0,T ] u⋆k,2(t) ∈Cp−q[0,T ]

where  we  correspondingly  denote ,
,  and .

Due to that ,  and  is proper, it fol-
lows  that  for  all ,  we  have , 

, and . Since we can easily verify
 

Ω(s)Γ(s) =
[
sI
0

]
, G1(s)Ψ(s) =

[
s−1G1(s)Γ(s) 0

]
(57)

we again consider (38) and can arrive at
 

U⋆k+1(s) = Ω(s)Uk+1(s)

= {I− [Ω(s)Γ(s)] [G1(s)Ψ(s)]}Ω(s)Uk(s)

+ [Ω(s)Γ(s)] [Yd(s)−G2(s)D(s)]

=

{
I−

[
G1(s)Γ(s) 0

0 0

]}
U⋆k (s)

+

[
sI
0

]
[Yd(s)−G2(s)D(s)]

U⋆k,1(s) U⋆k,2(s)and  consequently,  and  are  decoupled  from
each other such that
 [

U⋆k+1,1(s)
U⋆k+1,2(s)

]
=

[
I−G1(s)Γ(s) 0

0 I

] [U⋆k,1(s)
U⋆k,2(s)

]
+

[
s [Yd(s)−G2(s)D(s)]

0

]
, ∀k ∈ Z+. (58)

U⋆k+1,2(s) = U⋆k,2(s) ∀k ∈
Z+ U⋆k,2(s)
A direct  consequence of  (58)  is  that , 

, namely,  is iteration-independent such that
 

U⋆k,2(s) = U⋆0,2(s) = [Ω21(s) Ω22(s)]U0(s), ∀k ∈ Z+. (59)

In addition, the use of (58) leads to
 

U⋆k+1,1(s) = [I−G1(s)Γ(s)]U⋆k,1(s)

+ s [Yd(s)−G2(s)D(s)] , ∀k ∈ Z+ (60)

which immediately yields
 

U⋆k+2,1(s)−U⋆k+1,1(s) = [I−G1(s)Γ(s)]

×
[
U⋆k+1,1(s)−U⋆k,1(s)

]
, ∀k ∈ Z+.

(61)

G1(s)Γ(s)
{
u⋆k,1(t) : k ∈ Z+

}
Since  is  proper  and  (44)  holds,  is
an FCS by applying Lemma 1 to (61). Thus, there exists some

u⋆∞,1(t) ∈Cq[0,T ] limk→∞ u⋆k,1(t) = u⋆∞,1(t)
u⋆k,1(t) ∈Cq[0,T ] ∀k ∈ Z+

G1(s)Γ(s)

function  such that  in
view  of , .  This,  together  with  (60)
and the nonsingularity of , implies
 

U⋆∞,1(s) ≜ lim
k→∞

U⋆k,1(s)

= [G1(s)Γ(s)]−1 s [Yd(s)−G2(s)D(s)] . (62)

From (59) and (62), it is immediate to derive
 

U⋆∞(s) ≜ lim
k→∞

U⋆k (s)

=

[
[G1(s)Γ(s)]−1 s [Yd(s)−G2(s)D(s)]

[Ω21(s) Ω22(s)]U0(s)

]
. (63)

For (45), we can easily verify
 

Γ̃(s) =
[
Ψ12(s)
Ψ22(s)

]
[Ω21(s) Ω22(s)]

U⋆k (s) = Ω(s)Uk(s)
Ω−1(s) = Ψ(s)
and then the use of (63), together with  and

, leads to
 

U∞(s) ≜ lim
k→∞

Uk(s)

= Ψ(s)
[
[G1(s)Γ(s)]−1 s [Yd(s)−G2(s)D(s)]

[Ω21(s) Ω22(s)]U0(s)

]
=

[
Ψ11(s)
Ψ21(s)

]
[G1(s)Γ(s)]−1 s [Yd(s)−G2(s)D(s)]

+

[
Ψ12(s)
Ψ22(s)

]
[Ω21(s) Ω22(s)]U0(s)

= Γ(s) [G1(s)Γ(s)]−1 [Yd(s)−G2(s)D(s)]+ Γ̃(s)U0(s)
(64)

namely,  (45)  holds.  Furthermore,  we  incorporate  (57)  into
(64), and can validate
 

G1(s)U∞(s) =G1(s)Ψ(s)
[
[G1(s)Γ(s)]−1 s [Yd(s)−G2(s)D(s)]

[Ω21(s) Ω22(s)]U0(s)

]
= Yd(s)−G2(s)D(s)

which ensures
 

lim
k→∞

Ek(s) = Yd(s)− lim
k→∞

Yk(s)

= Yd(s)− [G1(s)U∞(s)+G2(s)D(s)]
= 0

and consequently, the tracking objective (1) can be realized.

UILC =Ud

With  the  above  necessary  and  sufficient  result,  we  next
show  by adopting two steps.

U∞(s) ∈ UILCi) For any , we take
 

Ud,2(s) = [Ω21(s) Ω22(s)]U0(s)

+Γ2(s) [G1(s)Γ(s)]−1 [Yd(s)−G2(s)D(s)]

which together with (64), results in
 

U∞(s) = Ψ(s)

×
[

[G1(s)Γ(s)]−1 s [Yd(s)−G2(s)D(s)]
Ud,2(s)−Γ2(s) [G1(s)Γ(s)]−1 [Yd(s)−G2(s)D(s)]

]
=

[
G−1

11 (s)
[
Yd(s)−G2(s)D(s)−G12(s)Ud,2(s)

]
Ud,2(s)

]
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U∞(s) ∈ Ud UILC ⊆Udnamely, . As a consequence, we have .
Ud(s) ∈ Udii) For any , let us take

 

U0(s) =
[
−G−1

11 (s)G12(s)
I

] {
Ud,2(s)

−Γ2(s) [G1(s)Γ(s)]−1 [Yd(s)−G2(s)D(s)]
}

Ω21(s)Ψ12(s)+Ω22(s)Ψ22(s) = Iand consequently, we can use 
to derive
 

Γ̃(s)U0(s) =
[
Ψ12(s)
Ψ22(s)

]
[Ω21(s) Ω22(s)]

×
[
−G−1

11 (s)G12(s)
I

] {
Ud,2(s)

−Γ2(s) [G1(s)Γ(s)]−1 [Yd(s)−G2(s)D(s)]
}

=

[
−G−1

11 (s)G12(s)
I

] {
Ud,2(s)

−Γ2(s) [G1(s)Γ(s)]−1 [Yd(s)−G2(s)D(s)]
}

which yields
 [
−G−1

11 (s)G12(s)
I

]
Ud,2(s)

=

[
−G−1

11 (s)G12(s)
I

]
Γ2(s) [G1(s)Γ(s)]−1 [Yd(s)−G2(s)D(s)]

+ Γ̃(s)U0(s).

This, together with (12), leads to
 

Ud(s) =
[
G−1

11 (s) [Yd(s)−G2(s)D(s)]
0

]
+

[
−G−1

11 (s)G12(s)
I

]
Γ2(s) [G1(s)Γ(s)]−1

× [Yd(s)−G2(s)D(s)]+ Γ̃(s)U0(s)

= Γ(s) [G1(s)Γ(s)]−1 [Yd(s)−G2(s)D(s)]+ Γ̃(s)U0(s)

Ud(s) ∈ UILC UILC ⊇Udwhich implies . Thus,  is immediate.
UILC =UdWith the steps i) and ii), we can arrive at . ■  

V.  Simulation Examples

Example 1: Consider the system (2) with
 

G1(s) =



12s−17
10(s2+3s+2)

12s−17
10(s2+3s+2)

111s+82
100(s2+3s+2)

111s+82
100(s2+3s+2)

25s2−133s−216
50(s3+6s2+11s+6)

61s2−25s−144
50(s3+6s2+11s+6)



G2(s) =



1
s+1

1
s+1

s−39
10(s2+3s+2)

1
10(s+1)

1
10(s+1)

5s+3
5(s2+3s+2)

1
5(s+1)

5s+7
5(s2+4s+3)

s2−20s−29
5(s3+6s2+11s+6)


D(s) = [1,−1,0]T .

q = 3 p = 2We clearly have  and , and can verify the condi-
tions  C1)–C3).  In  addition,  we  consider  three  different  cases
for the specified output trajectory and the initial  input as fol-
lows:
 

a) yd(t) =


57420
3809

[
cos(t)− exp

(
− 82

111
t
)]
− 1240

3809
sin(t)

10sin(t)

10sin(πt/5)−0.8


u0(t) = 0

b) yd(t) =


57420
3809

[
cos(t)− exp

(
− 82

111
t
)]
− 1240

3809
sin(t)

10sin(t)

10sin(πt/5)−0.8


u0(t) = [10 −10]T

c) yd(t) =


57420
3809

[
cos(t)− exp

(
− 82

111
t
)]
− 2

5
sin(t)

10sin(t)

10sin(πt/5)−0.8


u0(t) = 0

yd(t) ∈C1
3[0,T ] u0(t) ∈C2[0,T ]

q > p
yd(t)

Yd(s) =L [
yd(t)

]
Γ(s)

where for all  cases,  we have , ,
and the initial condition (7). Because of , we know from
Theorem 1 that  is trackable in ILC for the cases a) and b)
since  satisfies  the  algebraic  equation  (8)  for
both  cases,  but  it  is  not  for  the  case  c).  To carry  out  simula-
tions with the ILC updating law (34), we choose  as
 

Γ(s) = s
[

0.6849 0.6335 −1.25
−0.2807 −0.2596 1.25

]
Γ(s)G1(s)with which  is proper and satisfies (41).

T = 10

100

100

q ≥ p

Let , and we plot the simulation results for the cases
a)–c) in Fig. 1. It is obvious from this figure that for the cases
a) and b), the tracking errors decrease to zero with increasing
iterations, where the outputs learned after  iterations track
the  specified  trajectory  perfectly.  With  the  comparison
between the learned input trajectories for the cases a) and b) in
Fig. 1,  they are the same even though we adopt different  ini-
tial  inputs  for  both  cases.  This  is  consistent  with  the  unique-
ness result of Theorems 1 and 3 for the input that can gener-
ate the trackable trajectory in ILC. By contrast to the cases a)
and b),  the case c)  considers a specified trajectory that  is  not
trackable  in  ILC.  Correspondingly,  as  depicted  in Fig. 1,  the
tracking error does not decrease to zero with the increasing of
iterations  although  the  input  still  converges  in  the  case  c),
where, in particular, the output learned after  iterations can
no  longer  perfectly  track  the  specified  trajectory. By  these
observations, we demonstrate the trackability criterion of The-
orem 1 for  the  case  and the  relevant  trackability-based
ILC tracking result of Theorem 3, together with revealing the
relation between the trackability of the specified output trajec-
tory  and  the  accomplishment  of  the  perfect  output  tracking
task in ILC.

q = 2 p = 3Example  2: Let  and ,  and  then  we  consider  the
system (2) with
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G1(s) =



24s2+155s+195
20(s3+6s2+11s+6)

120s2+361s+273
100(s3+6s2+11s+6)

111s2+523s−348
100(s3+6s2+11s+6)

111s2−53s−240
100(s3+6s2+11s+6)

5s2+42s+45
10(s3+6s2+11s+6)

61s2+156s+99
50(s3+6s2+11s+6)



T

G2(s) =



1
s+1

1
10(s+1)

s+21
10(s2+4s+3)

5s+6
5(s2+4s+3)

2s2+9s−9
2(s3+6s2+11s+6)

10s2−9s−27
10(s3+6s2+11s+6)



T

D(s) = [1,0,1]T

T = 10
for  which  the  conditions  C1)–C4)  are  satisfied.  By  taking

,  we  are  interested  in  the  following  two  cases  of  the
specified output trajectory and the initial input:
 

d) yd(t) =
[

2+10sin(t)
1.1+10sin(πt/5)

]
, u0(t) = 0

e) yd(t) =
[

2+10sin(t)
1.1+10sin(πt/5)

]
, u0(t) = [10 −10 5]T

yd(t) ∈C1
2[0,T ] u0(t) ∈C3[0,T ]where  and . For both cases, we

yd(t)
Γ(s)

can also  verify  that  the  initial  condition (7)  holds,  and there-
fore  is trackable in ILC by Theorem 2. To implement the
ILC updating law (34), we select the gain matrix operator 
as
 

Γ(s) = s
[ 0.6 0.1

0.1 0.1
−0.5 0.4

]
G1(s)Γ(s)which makes  be proper such that (44) holds.

200

200

q ≤ p

In Fig. 2, we depict the simulation results for both cases d)
and e), from which the zero convergence of the output track-
ing error along the iteration axis can be observed. In particu-
lar, for both cases, the outputs learned after  iterations are
capable  of  tracking  the  specified  trajectory  perfectly  even
though  the  input  trajectories  learned  after  iterations  are
different  from  each  other  since  they  correspond  to  different
initial  inputs.  This  validates  not  only  the  trackability-based
ILC result of Theorem 4, but also the heavy dependence of the
input learned with ILC on the initial input for the case .

Discussions: By Examples 1 and 2,  we illustrate  the valid-
ity of our trackability-based ILC analysis for both under-actu-
ated and over-actuated systems. It is clear that the trackability
plays a crucial role in realizing the perfect ILC tracking task.
Further, Figs. 1 and 2 demonstrate that it is feasible to employ
a unified condition to implement the ILC convergence analy-
sis from the perspectives of both input and output.  
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q ≥ pFig. 1.     (Example 1). Tracking performances of ILC for . Upper: Case a); Middle: Case b); Lower: Case c).
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VI.  Conclusions

In  this  paper,  we  have  discussed  the  fundamental  tracka-
bility  problems  for  continuous-time  ILC  systems.  We  have
explored the trackability criteria with the help of utilizing the
frequency-domain  algebraic  equations  to  determine  whether
the  specified  output  trajectory  is  trackable  in  ILC,  despite
under-actuated  or  over-actuated  systems.  In  particular,  we
have investigated how to arrive at all inputs that can generate
the  trackable  trajectory.  The  (uniform)  convergence  analysis
has  been  implemented  by  newly  developing  an  FCS-induced
method  of  ILC.  It  has  been  disclosed  that  the  perfect  output
tracking task of ILC is closely connected to the trackability of
the  specified  output  trajectory.  Our  proposed  trackability-
based  ILC results  have  been  verified  through  two simulation
examples.

In  addition,  the  analysis  methods  and  results  for  tracka-
bility-based ILC established in this paper can be generalized.
In fact, for any specified trajectory that is not trackable, if it is
rectified with certain proper  methods (e.g.,  the initial  rectify-
ing  method  in  [16],  [24]),  then  similar  results  to  those  of
trackability-based ILC can be  developed.  This  can be  further
extended  to  consider  higher-order  relative  degrees  and  itera-
tion-dependent intervals of time for the controlled systems. Of
particular notice is also that thanks to using the z-transforma-
tion  instead  of  the  Laplace  transformation,  we  may  establish
the  same  trackability-based  ILC  analysis  and  design  frame-
work  for  discrete-time  systems.  These  issues  and  their  data-
driven extensions of involving the practical robustness against
the  unknown  models,  time  delays,  and  disturbances  will  be
explored in our future work.  

Appendix

Proof of Lemma 1: By Definition 2 and with [20, Chapter 1,
Theorem  5.3],  we  directly  have  the  equivalence  between  1)
and 2). Next, we prove the equivalence between 1) and 3).

GF(s)Sufficiency: Because  is proper, let us denote
 

DF = lim
s→∞

GF(s). (65)

ρ (lims→∞GF(s)) < 1Based on (65) and thanks to , there exists
some induced matrix norm [19] such that
 

∥DF∥ ≤ ρ1 (66)
0 ≤ ρ1 < 1 GF(s)where . By (65), we write  in the form of

 

GF(s) = ĜF(s)+DF (67)
ĜF(s) ∈ RFn×n(s) ΦF(t) ≜

L−1
[
ĜF(s)

]
∈ Rn×n βF ≜maxt∈[0,T ]∥ΦF(t)∥

βF
Fk+2(s)−Fk+1(s) =GF(s) [Fk+1(s)−Fk(s)] ∀k ∈ Z+
t ∈ [0,T ] k ∈ Z+

and thus  is strictly proper such that 
 is smooth. Let , and

it  is  obvious  that  is  finite.  By  incorporating  (67),  we  can
get  from , 
that, for all  and for all ,
 

fk+2(t)− fk+1(t) =
w t

0
ΦF(t−τ) [ fk+1(τ)− fk(τ)

]
dτ

+DF
[
fk+1(t)− fk(t)

]
. (68)

Then by taking the norm on both sides of (68) and leverag-
ing (66), we can arrive at
 

∥ fk+2(t)− fk+1(t)∥ ≤
w t

0
∥ΦF(t−τ)∥∥ fk+1(τ)− fk(τ)∥dτ

+ ∥DF∥∥ fk+1(t)− fk(t)∥

≤ βF

w t

0
∥ fk+1(τ)− fk(τ)∥dτ

+ρ1 ∥ fk+1(t)− fk(t)∥ (69)
λ > 0for which we consider any  and can verify

 w t

0
∥ fk+1(τ)− fk(τ)∥dτ =

w t

0
eλτ

[
e−λτ∥ fk+1(τ)− fk(τ)∥

]
dτ

≤ ∥ fk+1(t)− fk(t)∥λ
w t

0
eλτdτ

=
eλt −1
λ
∥ fk+1(t)− fk(t)∥λ. (70)

To proceed with (69) and (70), we can further obtain
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q ≤ pFig. 2.     (Example 2). Tracking performances of ILC for . Upper: Case d); Lower: Case e).
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e−λt∥ fk+2(t)− fk+1(t)∥ ≤ βFe−λt
w t

0
∥ fk+1(τ)− fk(τ)∥dτ

+ρ1e−λt∥ fk+1(t)− fk(t)∥

≤ βF
1− e−λt

λ
∥ fk+1(t)− fk(t)∥λ

+ρ1e−λt∥ fk+1(t)− fk(t)∥

≤
(
ρ1+λ

−1βF
)
∥ fk+1(t)− fk(t)∥λ

k ∈ Z+which implies that, for all ,
 

∥ fk+2(t)− fk+1(t)∥λ ≤
(
ρ1+λ

−1βF
)
∥ fk+1(t)− fk(t)∥λ. (71)

ρ1 ∈ [0,1) λ > 0 ρ1+λ
−1βF ≤

(ρ1+1)/2 ≜ ρ ρ ∈ [0,1)
Thanks to ,  we choose  such that 

. Clearly,  holds, and consequently, the
use of (71) results in
 

∥ fk+2(t)− fk+1(t)∥λ ≤ ρ∥ fk+1(t)− fk(t)∥λ, ∀k ∈ Z+
by which we have
 

∥ fk+1(t)− fk(t)∥λ ≤ ρk∥ f1(t)− f0(t)∥λ, ∀k ∈ Z+. (72)
ε > 0

N(ε) ≥max {0, ln (ε(1−ρ)/∥ f1(t)− f0(t)∥λ)/ ln(ρ)}
Then from (72), we know that for any , there exists some
integer  such
that
 

∥ fi(t)− f j(t)∥λ ≤
i−1∑
k= j

∥ fk+1(t)− fk(t)∥λ

≤
i−1∑
k= j

ρk∥ f1(t)− f0(t)∥λ

≤
∞∑

k=N(ε)

ρk∥ f1(t)− f0(t)∥λ

≤ ρ
N(ε)

1−ρ ∥ f1(t)− f0(t)∥λ

≤ ε, ∀i ≥ j ≥ N(ε).
∥ fi(t)− f j(t)∥λ ≤ ε ∀ j ≥ i ≥ N(ε)

{ fk(t) : k ∈ Z+}

Similarly,  we  can  also  get , .
Then from Definition 2, it follows that the functional sequence

 is an FCS.
{ fk(t) : k ∈ Z+}

limk→∞∆ fk(t) = 0 ∀t ∈ [0,T ] t ∈ [0,T ]
Necessity: If  is an FCS, then with Definition

2, ,  holds. For any given ,
this is actually an asymptotic stability result of the system (68)
along  the  iteration  axis  since  (68)  essentially  denotes  a  dis-
crete linear system given by
 

∆ fk+1(t) = DF∆ fk(t)+
w t

0
ΦF(t−τ)∆ fk(τ)dτ, ∀k ∈ Z+.

ρ (DF) < 1 ρ (lims→∞GF(s)) < 1It  basically  requires ,  that  is, .
For the necessity of Lemma 1, the readers can also be referred
to that of [25, Lemma 1] because (68) can be described in the
form of the 2-D linear continuous-discrete system [25, (13)].

fk(t) ∈Cn[0,T ] ∀k ∈ Z+
Cn[0,T ]

f∞(t) ∈Cn[0,T ] limk→∞
∥ fk(t)− f∞(t)∥λ = 0 limk→∞ fk(t) = f∞(t) ∈Cn[0,T ]

Furthermore, if , , then we can easily
conclude  from  the  completeness  of  the  space  that
there  exists  some  function  such  that 

, i.e., . ■
Φ(t) ≜L−1

[
G(s)

]
G(s)

Φ(t) Φ(t) = Φsp(t)+DGδ(t) Φsp(t)
Proof  of  Lemma  2: Let .  Since  is

proper,  satisfies ,  where  is

DG ∈ Rm×n lims→∞G(s) = DG
f (t) =L−1

[
G(s)F(s)

]smooth  and  is  such  that .  By
noticing , we can validate
 

f (t) =
w t

0
Φsp(t−τ) f (τ)dτ+DG f (t), t ∈ [0,T ]

f (t) ∈Cm[0,T ] f (t) ∈Cn[0,T ]
G(s) lims→∞G(s) = 0
Φ(t) =L−1

[
G(s)

]
L−1

[
G(s)v

]
= Φ(t)v ∈Cm[0,T ] v ∈ Rn

from which  is immediate due to .
Moreover, if  is strictly proper, then  and,
consequently,  is  smooth,  which  guarantees

 for any . ■
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