
 

Letter

Multi-Feature Fusion-Based Instantaneous Energy
Consumption Estimation for Electric Buses

Mingqiang Lin, Member, IEEE, Shouxin Chen, Wei Wang, Member,
IEEE, and Ji Wu, Member, IEEE

   Dear Editor,

This  letter  presents  a  multi-feature  fusion-based  method  for  esti-
mating the instantaneous energy consumption of electric buses. More
specifically,  to  improve  the  accuracy  of  instantaneous  energy  con-
sumption estimation of electric buses, we propose a new energy con-
sumption  estimation  method  based  on  random  forest  regression
(RFR)  with  multi-feature  fusion.  The  multi-feature  includes  driving
behavior, vehicle status, and external environment. The experimental
results  show  that  the  absolute  mean  average  percentage  error
(MAPE) value of the method proposed in this paper is 7.10%, which
has a higher estimation accuracy than several state-of-the-art methods.

Electrification  of  transportation  is  currently  an  effective  means  of
achieving energy savings and emission reductions [1]. However, the
range of electric buses is lower than that of fossil fuel-powered buses
due  to  battery  technology,  which  leads  to “mileage  anxiety” among
electric bus drivers and operators. Accurate energy consumption esti-
mation  for  electric  buses  can  effectively  reduce “mileage  anxie-
ty” and better guide the planning and use of electric buses, which can
ultimately contribute to the electrification of public transportation.

Depending on the estimation resolution,  energy consumption esti-
mation methods based on segmentation and power estimation meth-
ods  based  on  instantaneous  states  can  be  classified.  The  segmenta-
tion  method  usually  divides  the  electric  bus  operation  process  into
certain  criteria  (e.g.,  acceleration  segment,  deceleration  segment,
cruise segment,  etc.)  and then estimates the energy consumption for
each segment. The instantaneous state method estimates the instanta-
neous  power  and  aims  to  study  the  energy  consumption  at  each
moment. The instantaneous state method is better than the segmenta-
tion  method  in  predicting  the  energy  consumption  at  specific
moments [2].

Integrated  learning  is  a  machine  learning  system  that  integrates
multiple  learners  by  generating  base  learners  and  performing  spe-
cific  combination  strategies  to  build  strong  learners,  usually  obtain-
ing  superior  generalization  performance  than  a  single  learner.  RFR
belongs  to  the  Bagging class  of  integrated  learning,  which does  not
have strong dependencies among base learners, can handle very high
dimensional  data,  and  has  a  very  high  accuracy  rate.  The  introduc-
tion  of  randomness  makes  RFR  less  prone  to  overfitting,  has  good
noise  immunity,  and  is  insensitive  to  outliers.  Therefore,  RFR  can
achieve better results in the estimation of instantaneous energy con-

sumption of electric buses.
Related  work: In  recent  years,  many  researchers  have  devoted

themselves  to  solving  the  vehicle  energy  consumption  estimation
problem,  mainly  divided  into  two  categories:  vehicle  model-driven
and data-driven methods.

Vehicle  model-driven  approaches  mostly  utilize  model  simula-
tions or real-world tests. To reduce uncertainty in vehicle energy con-
sumption  prediction,  Beckers et  al.  [3]  proposed  a  physics-based
energy  consumption  prediction  model  derived  from  first  principles
and supplemented with measurements specific to electric city buses,
including  dynamometer  tests  and  coasting  measurements.  Hjelkrem
et  al.  [4]  proposed  an  integrated  model  of  longitudinal  dynamics
incorporating  auxiliary  systems  including  heating,  ventilation,  air
conditioning,  and  other  electrical  components.  Through  a  review of
real-world  energy  consumption  studies,  Luin et  al.  [5]  proposed  a
simplified  energy  consumption  model  based  on  vehicle-specific
power,  evaluated on a  standard driving cycle,  which allows a better
description of the energy flow during braking energy due to the use
of a charging power limiting function.

With  the  development  of  intelligent  connected  vehicles,  access  to
data  such  as  real-time  vehicle  status  parameters  and  weather  has
become easier,  facilitating the use of data-driven approaches.  Abde-
laty et  al.  [6]  obtained  support  vector  machine  models  with  high
accuracy  in  estimating  energy  consumption  by  comparing  several
machine  learning  models  with  statistical  models,  and  the  results
showed that the battery state of charge has a greater effect on energy
consumption  and  the  resistance  coefficient  has  a  smaller  effect.
Abdelaty and Mohamed [7] proposed a deep learning neural network
model to predict the energy consumption of an electric bus based on
the route, driving behavior, and environmental parameters to predict
the energy consumption of electric buses. To enable the use of smart-
phone measurements to estimate the instantaneous energy consump-
tion  of  a  vehicle,  Kanarachos et  al.  [8]  proposed  an  alternative
approach based on indirect monitoring that uses recurrent neural net-
works to process the GPS position, speed, altitude, acceleration, and
the number of visible satellites of the smartphone.

However,  regardless  of  whether  vehicle  model-driven  or  data-
driven methods are used, we note that most research works only con-
sider driving behavior and external environment features,  while few
consider  vehicle  state  features  (e.g.,  state  parameters  of  battery  and
motor).  Therefore,  in  this  study,  we  propose  a  multi-feature  fusion-
based  method  for  estimating  the  instantaneous  energy  consumption
of  electric  buses.  The  main  contributions  of  this  paper  include  the
following：

1)  Multi-feature  are  selected  from  three  major  factors  that  affect
energy consumption: driving behavior,  vehicle status,  and the exter-
nal environment.

2)  The  double  randomness  of  random  forest  can  eliminate  the
influence of outlier samples and missing samples in the data and has
better prediction performance.

3) Experiments were conducted in ten Beijing No. 51 buses and the
feature importance was analyzed.

Data collection and process: The  data  used  in  this  study  are  the
driving data of  ten No.  51 buses in Beijing from May 2020 to May
2021. In addition, we obtained the corresponding weather data from
the weather website (https://rp5.ru/).

We selected the data of the electric bus in the discharged state and
removed the data of the electric bus stopping and waiting at the sta-
tion to obtain 1 545 682 sample data. 70% of the sample data of all
buses  were  randomly  selected  as  the  training  set  and  the  remaining
30% were used as the test set. The principal components analysis [9]
was  used  to  identify  and  remove  5% of  the  training  set  anomalies,
resulting in 1 027 878 training set data and 463 705 test set data, after
which the data were normalized using the z-score method.

Feature selection: We select features from three major factors that
affect  energy consumption:  driving behavior,  vehicle status,  and the
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external environment.
The  driving  behavior  features  include  speed  (v),  acceleration  (a),

gear  (G),  accelerator  pedal  (AP),  and  decelerator  pedal  (DP)  status.
The acceleration pedal and deceleration pedal states are used to mea-
sure  the  degree  of  pedal  depression  and  take  values  from  0% to
100%.  Since acceleration cannot be obtained directly from the data,
we  use  the  average  acceleration  of  adjacent  sampling  intervals  to
approximate the instantaneous acceleration.

The vehicle status features include the status parameters of the bat-
tery, motor, and motor controller. The battery state of charge (SOC),
the  maximum  battery  cell  temperature  (Tmax),  the  minimum  battery
cell  temperature  (Tmin),  motor  speed  (vm),  motor  torque  (M),  motor
temperature (Tm), motor controller current (Ic), and motor controller
temperature (Tc) are selected in this paper.

The external environmental features include environmental temper-
ature (Te), wind speed (vw), wind direction (Dw), humidity (H), and
special  weather  (SW).  Among  them,  special  weather  refers  to  rain,
thunderstorm, hail, etc.

Proposed  model: Integration  learning  is  a  very  popular  machine
learning strategy, and the base learner commonly used for regression
tasks is the regression tree (RT). There are three main core ideas of
integration algorithms: Bagging, Boosting, and Stacking. The RT-ba-
sed Bagging model RFR is used for energy consumption estimation.

.

RT is a regression model for predicting continuous data. The gen-
eration of  RT is  described as  follows:  assuming X is  the input  vari-
able and Y is the output continuous variable, a binomial decision tree
is  constructed  by  recursively  dividing  each  region  into  two  subre-
gions in the input space where the training data set D is located and
determining the output values on each subregion
 

D = {(x1,y1) , (x2,y2) , . . . , (xm,ym)} . (1)
Iterate  through each  feature j,  and  each  value s of  that  feature,  in

turn,  calculate  the  loss  function  of  each  cut  point  and select  the  cut
point  (j, s)  with  the  smallest  loss  function  to  divide  the  region  and
determine the output value of the response.
 

Lossmin =min
j,s

min
c1

∑
xi∈R1( j,s)

(yi − c1)+min
c2

∑
xi∈R2( j,s)

(yi − c2)


R1 ( j, s) = {x|x ( j) ≤ s}R2 ( j, s) = {x|x ( j) > s}

ĉn =
1

Mn

∑
xi∈Rn( j,s)

yi, x ∈ Rn, n = 1,2 (2)

Rn ĉnwhere  is the partitioned input space,  is the fixed output value.

R1,R2, ...,Rn

Continue  using  the  above  steps  for  both  subregions  to  divide  the
input space into N regions , generating RT.
 

f (x) =
N∑

n=1

cnI (x̂ ∈ Rn) (3)

f (x)where  is the value of RT.
When  the  input  space  division  is  determined,  the  optimal  output

value  on  each  cell  is  solved  by  the  squared  error  minimization
method.
 ∑

xi∈Rn

(yi − f (xi))2. (4)

Bagging is bootstrap aggregating, where bootstrap is a simple ran-
dom sampling with put-back. Its principle in the regression task is to
average the results of multiple base learners.
 

g (x) =
1
K

K∑
k=1

gk (x) (5)

g(x) gk (x)where  represents the final predicted value, and  represents
the predicted value of the k-th base learner.

RFR  is  an  RT-based  Bagging  model,  which  is  a  parallel  idea  to
create  multiple  tree  models  at  the  same  time  without  any  influence
between  these  tree  models. Fig. 1 shows  the  structure  of  RFR.  Its
main  feature  is  that  it  has  twofold  randomness,  namely  data  sam-
pling  randomness  and  feature  sampling  randomness.  Data  sampling

randomness is a common property of Bagging-like methods, which is
reflected in RFR in that the input data of each tree is randomly taken
from a part of the whole training data set. The feature sampling ran-
domness is a unique property of RFR, which means that the feature
selection of each tree is also random. With the dual randomness, each
tree has a personality. Eventually, all prediction results are averaged
as the prediction results of RFR.
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Fig. 1. The structure of RFR.
 

Experiments and analysis: We take the product of the total volt-
age  and  the  total  current  in  the  instantaneous  state – the  instanta-
neous power – as the target variable. R-square (R2), is used to mea-
sure  the  fit  of  the  model,  and  when  the  R2  value  is  closer  to  1,  it
means that the model fits better. The mean absolute percentage error
(MAPE)  is  used  to  measure  the  magnitude  of  the  error  value,
expressed  as  a  percentage.  Our  experiments  use  Intel  Core  i7-
11800H @ 2.30GHz CPU and Windows 1064bit OS. RFR is imple-
mented by python 3.8. Considering the training set data size, we use
the K-fold cross-validation (K = 3) method for training.

We  used  another  integrated  model,  adaboost  regressor  (AR),  and
the  classical  regression  model,  Bayesian  ridge  (BR),  as  a  control
group to compare the prediction performance of RFR. Table 1 gives
the results of the tri-fold cross-validation of the three models during
training, with the corresponding R2 and MAPE calculated as well as
their  mean  (Mean)  and  standard  deviation  (SD).  The  results  show
that  the  average  model  explanation  degree  (R2 = 0.9793)  and  aver-
age  prediction  accuracy  (MAPE  =  7.10%)  of  RFR  are  better  than
those of AR and BR, where the prediction error of the AR model is
larger,  which may be due to the presence of large noise in the data.
Because  AR  uses  the  Boosting  algorithm,  the  Boosting  algorithm
pays more attention to the samples that cause larger values of the loss
function.  If  there  are  outlier  anomalous  samples  in  the  sample,  the
anomalous  samples  may  receive  higher  weights  in  the  iterations,
affecting the prediction accuracy of  the  final  strong learner.  In  con-
trast,  RFR  uses  the  Bagging  algorithm,  which  averages  the  predic-
tion  results  of  all  samples.  Thus  reducing  the  interference  effect  of
the outlier samples. The reason why the prediction effect of BR is not
as  good  as  RFR may be  the  interference  effect  of  the  samples  with
missing features. BR is based on ordinary linear regression with the
prior probability of the model parameters and represents the parame-
ters with a probability distribution. However, the prediction function
of BR for a category variable feature in the test set that has not been
seen  in  the  training  set  is  invalidated  for  this  sample,  so  BR is  less
effective in predicting samples with missing features. In contrast, the
features  selected  by  each  base  learner  of  RFR  are  random,  which
reduces the interference effect of feature-missing samples.

Table 2 gives the prediction performance of the RFR model when
only a single class of features is considered. The results show that the
vehicle  state  and  driving  behavior  has  a  greater  effect  on  the  tran-
sient energy consumption of the electric bus, while the external envi-
ronment has a smaller effect, which may be due to the half-hour sam-
pling period of weather and time, which does not reflect the transient
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situation well.
 

Table 1.  Comparison of Different Models

Cross validation
AR BR RFR

R2 MAPE R2 MAPE R2 MAPE

1 0.9439 17.74% 0.9728 8.79% 0.9792 7.13%

2 0.9521 15.62% 0.9729 8.76% 0.9794 7.09%

3 0.9517 15.89% 0.9729 8.75% 0.9794 7.09%

Mean 0.9493 16.42% 0.9729 8.77% 0.9793 7.10%

SD 0.0038 0.94% 0.0001 0.01% 0.0001 0.02%
 
 

 
Table 2.  Comparison of Different Features in RFR

Cross val-
idation

External environ-
ment Driving behavior Vehicle status

R2 MAPE R2 MAPE R2 MAPE

1 0.0124 61.15% 0.7792 22.91% 0.9709 9.17%

2 0.0114 60.7% 0.7793 22.91% 0.9706 9.21%

3 0.0138 60.76% 0.7777 22.91% 0.9707 9.15%

Mean 0.0125 60.87% 0.7787 22.91% 0.9708 9.18%

SD 0.0010 0.20% 0.0007 0.00% 0.0001 0.02%
 
 

The specific performance of RFR in predicting the power values of
the test set is given in Table 3, where the MAPE is 7.10%, which has
a  good  prediction  accuracy  compared  to  the  Xgboost  model  pro-
posed in a similar study [10] (MAPE value of 12.68%).
 

Table 3.  Test Result

Test data Power (kW) RFR prediction

1 67.3844 69.7605

2 30.4552 31.9392

··· ··· ···

463 705 98.2256 93.8832

R2 − 0.9795

MAPE − 7.10%
 
 

Fig. 2 shows  the  top  ten  feature  importance  of  the  proposed
method.  The  motor  controller  current  is  the  most  important  feature,
which is because the function of the motor controller is to convert the
electrical energy stored in the power battery into the electrical energy
required  by  the  motor  according  to  various  commands  from  the
driver,  so  the  motor  controller  current  can  represent  the  sum  of  all
driving  behaviors  to  some  extent.  In  addition,  the  minimum battery
cell temperature, SOC, and the maximum battery cell temperature are
the  second,  fourth,  and  fifth  important  features,  respectively,  which
indicate that the battery temperature, as well as the SOC, has a signif-
icant impact on the estimation of instantaneous energy consumption,
which may be caused by the fact that the state of the battery affects
the  discharge  efficiency.  The  acceleration  pedal  state  is  the  third
important feature, yet the importance of acceleration does not rank in
the  top ten,  most  likely  because  the  acceleration we calculate  is  the
average acceleration of two adjacent sampling moments, and it does
not reflect the transient situation very well. Among the external envi-
ronmental features, only the environmental temperature is important
for the instantaneous energy consumption, firstly because the power
consumption  of  the  air  conditioner  is  highly  related  to  the  environ-
mental temperature, and secondly because the environmental temper-
ature also affects the instantaneous energy consumption by influenc-
ing the temperature of the battery, motor, and motor controller.

Conclusions: The popularity of  electric  buses is  a  highly promis-

ing  approach  to  electrifying  public  transportation.  A  multi-feature
fusion-based  method  for  estimating  the  instantaneous  energy  con-
sumption of electric buses is proposed, taking into account the driv-
ing  behavior,  vehicle  state,  and  external  environment.  The  results
show that the R2 value of the proposed model is close to 0.98 and the
MAPE  value  is  7.10%,  which  has  a  strong  model  fitting  effect  as
well  as  estimation  accuracy.  Meanwhile,  it  will  become  relatively
easier  to  obtain  accurate  data  for  real-time passenger  load  and  real-
time  traffic  flow,  and  future  research  can  consider  incorporating
these two features to obtain better estimation results.
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Fig. 2. Top ten feature importance of the proposed method.
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