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a b s t r a c t

Class-incremental learning (CIL) aims to recognize classes that emerged in different phases. The joint-
training (JT), which trains the model jointly with all classes, is often considered as the upper bound of
CIL. In this paper, we thoroughly analyze the difference between CIL and JT in feature space and weight
space. Motivated by the comparative analysis, we propose two types of calibration: feature calibration
and weight calibration to imitate the oracle (ItO), i.e., JT. Specifically, on the one hand, feature
calibration introduces deviation compensation to maintain the class decision boundary of old classes in
feature space. On the other hand, weight calibration leverages forgetting-aware weight perturbation to
increase transferability and reduce forgetting in parameter space. With those two calibration strategies,
the model is forced to imitate the properties of joint-training at each incremental learning stage, thus
yielding better CIL performance. Our ItO is a plug-and-play method and can be implemented into
existing methods easily. Extensive experiments on several benchmark datasets demonstrate that ItO
can significantly and consistently improve the performance of existing state-of-the-art methods. Our
code is publicly available at https://github.com/Impression2805/ItO4CIL.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Owing to the strong representation learning ability, deep neu-
al networks have recently demonstrated impressive performance
n various applications. The progress is mainly achieved based
n the underlying assumption that the training data is station-
ry, independent and identically distributed. However, such an
ssumption can be unrealistic in practice because of the complex,
ynamic and open world where new tasks or classes would
merge sequentially. For example, after deployment, an auto
omous car may encounter new objects that have to be rec-
gnized. Hence, there is a need for a machine learning system
o learn new knowledge continually while maintaining the old
nowledge, which is the goal of incremental learning (Delange
t al., 2021; Maltoni & Lomonaco, 2019; Parisi et al., 2019) (IL,
lso known as lifelong learning or continual learning). Generally
peaking, there are mainly three kinds of setting for IL (van de
en & Tolias, 2019), i.e., domain-incremental learning (DIL), task-
ncremental learning (TIL) and class-incremental learning (CIL).
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For DIL, the label space of the tasks may not change, but the
input-distribution (i.e., domain) is continually changing (Kirk-
patrick et al., 2017; Simon et al., 2022; Tao, Hong, Chang, & Gong,
2020; Yang, Zhou, Zhan, Xiong, & Jiang, 2019). For example, an
autonomous driving system has to survive in different environ-
ments where the observed domains come with an unpredictable
sequence. For TIL and CIL, new classes continually appear, and the
model has to recognize all seen classes. Specifically, as illustrated
in Fig. 1, TIL assigns different classifiers for different tasks and
needs task-identity (task-ID) at inference time, while CIL only has
a single head that learns a unified classifier for all seen classes.
This paper focuses on the more challenging and realistic CIL.

The major challenge of CIL is the catastrophic forgetting prob-
lem (Goodfellow, Mirza, Xiao, Courville, & Bengio, 2013): after
learning new classes, the mode would suffer from serious per-
formance degradation in previously learned classes. To alleviate
this problem, some studies (Kirkpatrick et al., 2017; Zenke, Poole,
& Ganguli, 2017) explicitly constrain the change of important
parameters, while others (Li & Hoiem, 2018) use knowledge dis-
tillation (Hinton et al., 2015) to retain important knowledge im-
plicitly. Data replay based methods (Rebuffi, Kolesnikov, Sperl, &
Lampert, 2017) save and re-learn a small portion of old data when
learning new classes, which serve as a strong baseline for CIL.
However, there exists a natural imbalance problem: the number

of training samples of new classes is far more than that of old
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Fig. 1. Illustration of task-incremental learning (TIL) and class-incremental
learning (CIL). TIL assigns different classifiers for different tasks and needs task-
ID for inference, while CIL only has a single head that learns a unified classifier
for all classes. This paper focuses on CIL.

classes. Consequently, a variety of techniques have been proposed
to further mitigate the imbalance problem in data replay based
CIL. For example, some methods (Ahn et al., 2021; Castro et al.,
2018; Douillard et al., 2020; Lee, Lee, Shin, & Lee, 2019) include a
fine-tuning step on a balanced subset of all classes at the end of
each training phase. Other methods (Castro et al., 2018; Rebuffi
et al., 2017; Zhao, Xiao, Gan, Zhang, & Xia, 2020) use post-hoc
techniques to rectify the imbalance problem.

In this paper, we propose a novel perspective to tackle the
forgetting problem in CIL by rethinking the different properties
between CIL and joint-training (JT), which learns all classes jointly
and is considered as the upper bound of CIL. Specifically, as shown
in Fig. 2, we compare CIL with JT in both feature space and weight
pace. (1) Feature space. As illustrated in Fig. 2(a), In JT, all the
classes are learned jointly with the balanced number of training
samples. Therefore, the feature distributions of different classes
are balanced. Besides, for each class, the feature distributions
of training and test set are well matched. Therefore, the model
can be well generalize to all classes. While in CIL, old and new
classes are learned sequentially, and only a few samples of old
classes are saved in memory. Consequently, the spanned feature
distributions of old and new classes are imbalanced. Moreover,
for each old class, the model can easily overfit the saved samples.
Those two issues indicate severe feature deviation between the
training and test instances in CIL. (2) Weight space. As illustrated
in Fig. 2(b), in JT, with balanced and joint learning objective
function, all classes could have small loss (i.e., RJT ) and the local
minima is relatively flat. However, in CIL, learning new classes
will result in a severe performance drop in old classes. This
indicates worse weight smoothness: the loss increase (R2 − R1)
is significant when updating θ1 to θ2.

Motivated by the above analysis, we propose to imitate the
properties of JT during the incremental learning process. There-
fore, the simple and effective feature calibration and weight
calibration are proposed, as illustrated in Fig. 2. (1) Feature cali-
bration. On the one hand, in feature space, to mimic the balanced
(between different classes) and matched (between training and
test set) feature distribution in JT, we propose deviation com-
pensation to eliminate the feature deviation of old classes, thus
maintaining the feature distribution of old classes. To this end,
a self-paced linear transformation is applied to the output logits
for each class during training, which encourages larger margins
between old and new classes, as shown in Fig. 2(a). (2) Weight
calibration. On the other hand, in parameter space, to mimic the

minima that can well generalize to all classes in JT, we propose
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to smooth the weights of the model at each incremental learning
stage (as shown in Fig. 2(a)), so that updating the model on new
classes would lead to less forgetting of old knowledge. To this
end, one simple technique is making the model robust to random
noise injected into weights. To be more efficient and effective,
we propose forgetting-aware adversarial weight perturbation.
With large margin and flat minima properties, when learning
new tasks, the new classes would be less overlapped with old
classes, which can not only benefit new class generalization but
also reduce the forgetting of old classes. Therefore, the proposed
method can lead to a forward compatible effect that prepares the
classifier to predict novel classes.

Through comprehensive experiments on several benchmark
datasets, we verify that our plug-and-play method can consis-
tently and significantly improve existing CIL approaches, achiev-
ing state-of-the-art performance. Our main contributions are
summarized as follows:

• We explore and study how CIL differs from joint training
(i.e., the oracle), and identify the crucial difference in both
feature space and weight space. Therefore, we propose to
improve CIL by imitating the oracle (ItO).
• The proposed ItO method consists of two simple and ef-

fective strategies to calibrate the feature distribution and
model parameters, respectively.
• Extensive experiments demonstrate that our proposed

method yields consistent improvements over previous state-
of-the-art approaches.

The rest of this paper is organized as follows. In Section 2,
we present related work. Section 3 provides the preliminaries of
CIL. In Section 4, we describe the proposed ItO method in detail.
In Section 5, we verify the effectiveness of our method by com-
prehensive experiments. Finally, Section 6 gives the concluding
remarks.

2. Related work

We give a brief review of representative methods for deep
learning based incremental learning. More information can be
found in surveys (Lesort et al., 2020; Lomonaco & Maltoni, 2016;
Maltoni & Lomonaco, 2019; Masana et al., 2020).

Non-exemplar based methods. Methods in this category do not
store any old data. Parameter regularization such as EWC (Kirk-
patrick et al., 2017), SI (Zenke et al., 2017), VCL (Nguyen, Li, Bui,
& Turner, 2018), OWM (Zeng, Chen, Cui, & Yu, 2019), OGD (Fara-
jtabar, Azizan, Mott, & Li, 2020) and Adam-NSCL (Wang, Li, Sun,
& Xu, 2021) constrain the change of the important network
parameters. Rather than directly avoiding forgetting in the pa-
rameter space, knowledge distillation (KD) (Hinton et al., 2015)
based methods (Dhar et al., 2019; Li & Hoiem, 2018; Liu et al.,
2020; Zhu, Zhang, & Liu, 2021) implicitly tackle the forgetting
problem by keeping the model’s input–output behavior on new
data. Recently, another line of work, e.g., PASS (Zhu, Zhang, Wang,
Yin, & Liu, 2021) and IL2A (Zhu, Cheng, Zhang, & Liu, 2021),
constrain the distributions of old classes in the deep feature space
to maintain previously learned decision boundary. They yield
strong performance and become state-of-the-art non-exemplar
CIL methods.

Generative replay based methods. Methods in this category gen-
erate and learn pseudo-samples of old classes when learning new
classes. Early approaches (Kemker & Kanan, 2018; Shin, Lee, Kim,
& Kim, 2017; Xiang, Fu, Ji, & Huang, 2019) simultaneously train
an additional generative model to consolidate old knowledge.
Then, when updating the model on new classes, pseudo-samples
of old classes are generated for joint-training. Recently, some
works (Smith et al., 2021; Yin et al., 2020) explore using the
classification model itself to generate samples of old classes.
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Fig. 2. Illustration of our motivation. (a) Feature calibration. Compared with JT, there exists a severe feature deviation between the training and test set for each
ld class in CIL. We propose deviation compensation to alleviate the feature deviation. (b) Weight calibration. In CIL, when updating the model (from θ1 to θ2), the
oss of old classes is significantly increased (from R2 to R2). We calibrate an incremental learner by learning smoother weights.
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xemplar and bias correction based methods. Exemplar based
ethods (Douillard et al., 2020; Hou, Pan, Loy, Wang, & Lin,
019; Rebuffi et al., 2017; Wu et al., 2019) alleviate forgetting
y storing and replaying some training samples of each old class.
ethods in this category have shown superior CIL performance.
owever, they suffer from imbalance problem: new classes often
ave much more training samples than that of old classes. As
result, the model can easily overfit the stored samples. To

lleviate the imbalance problem, some methods like EEIL (Castro
t al., 2018), UCIR (Hou et al., 2019), SS-IL (Ahn et al., 2021) and
D (Lee et al., 2019) use training-time strategies, while others like
CaRL (Rebuffi et al., 2017), BiC (Wu et al., 2019), IL2M (Belouadah
Popescu, 2019), WA (Zhao et al., 2020), and ScaIL (Belouadah
Popescu, 2020) leverage post-hoc techniques. For example,

EIL (Castro et al., 2018), GD (Lee et al., 2019) and PODnet (Douil-
ard et al., 2020) include a fine-tuning step on a balanced subset
f all classes at the end of each incremental learning stage. Rather
han directly storing raw samples, Pellegrini, Graffieti, Lomonaco,
nd Maltoni (2020) proposed to store and replay activations
olumes at some intermediate layer, which can reduce the com-
utation and storage requirement. Flashcards (Gopalakrishnan,
ingh, Fayek, Ramasamy, & Ambikapathi, 2022) leverages and
eplays some predefined random image patterns to capture the
ncoded knowledge of an incremental learning model.

ynamic architectures. Many dynamic architecture based meth-
ds (Fernando et al., 2017; Hung et al., 2019) have been devel-
ped for TIL. Specifically, to prevent the forgetting of old tasks, the
ld parameters are frozen and new branches are allocated to learn
ew tasks. However, those methods are often impractical for CIL.
ecently, DER (Yan, Xie, & He, 2021), FOSTER (Wang, Zhou, Ye, &
han, 2022) and Dytox (Douillard, Ramé, Couairon, & Cord, 2022)
ynamically expand feature extractor to preserve old knowledge
hile learning new concepts, which yield strong CIL performance.

. Preliminaries: Notations and problem statement

CIL involves many sequentially arrived tasks, and each new

ask consists of some new classes. Formally, for each incremental
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task t , the training data is donated by Dt = {(xti , y
t
i )}

Nt
i=1, where Nt

onate the number of training samples in task t , xti is an sample
n the input space X and yti ∈ Ct is its corresponding target
abel. Ct is the class set of task t and the class sets of different
ask are disjoint, i.e., Ci ∩ Cj = ∅ if i ̸= j. Following Douillard
t al. (2020), Hou et al. (2019), Rebuffi et al. (2017), Wu et al.
2019), we assume an exemplar-memory Mt−1 is used to store a
iny subset of old samples, i.e., |Mt−1| ≪ Nt . Therefore, at each
ncremental learning stage t , both the reserved old data and new
ata, i.e., Mt−1 ∪ Dt are used to jointly train the model.
The classification model typically consists of a feature ex-

ractor and a unified classifier. Specifically, the feature extractor
e.g., deep convolutional neural network) maps the input into
feature vector in the deep feature space. The classifier is the

inal fully-connected layer with softmax option which produces
probability distribution as the prediction for each input. To fa-
ilitate analysis, we donate the deep neural network based model
ith two components: a feature extractor fθt (·) and a unified

inear classifier wt . Note that the unified classifier wt includes
he classification weights of all learned classes (i.e., c ∈ C1:t ) by
tage t . At inference time, the prediction for a test sample xtest is
btained by

ˆtest = arg maxc∈C1:t
w⊤t,c fθt (xtest), (1)

here w⊤t fθt (xtest) represents the outputted logit vector (i.e., the
core before softmax) by the model θt for all learned class C1:t so
ar .

. Main method

To imitate the properties of JT in both feature space and
arameter space, we propose ItO method which mainly consists
f two simple and effective components. For each component,
e introduce the motivation, and then describe the realization

n detail.
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Fig. 3. Illustration of the effectiveness of our proposed feature calibration (FC).
The red arrow represents feature deviation: the test data of old class tend to
move to regions of new class. Feature calibration compensates for the effect by
forcing large margin (black arrow) between old class and decision boundary.
Thus, even after feature deviation, test samples of old class can still be correctly
classified.

4.1. Feature calibration by deviation compensation

4.1.1. Motivation
An ideal way to remedy the catastrophic forgetting issue in

CIL is to fully maintain the feature distribution of old classes
when updating the model on new classes, which appears difficult
with only a small fraction of old data available. Specifically, as
illustrated in Fig. 2(a) and Fig. 3, the feature distribution of old
and new classes are severely imbalanced, and the distributions of
training and test set are mismatched in the feature space. Conse-
quently, at inference time, many instances of old classes would
be mapped to the positions near the decision boundaries, making
it hard to correctly classify them. Consequently, the model cannot
well generalize to old classes after learning new classes.

Since directly maintaining each old class’s distribution is diffi-
cult, we therefore take an alternative way to design a training-
time calibration strategy that can compensate for the effect of
feature deviation of old classes. Our high-level idea is to in-
crease the margin between the distribution of old classes and
decision boundaries. In this way, even with some feature devi-
ation, the test instances of old classes can still be mapped to
the right decision region, as illustrated in Fig. 3. Technically,
we propose to artificially reduce the logit values on old class
nodes, i.e., w⊤c,t fθt (xtest), c ∈ C1:t−1 during training, which could
force or encourage the model itself to yield larger decision values
or old classes. To this end, we design two different forms of
alibration technique, i.e., additive feature calibration (AFC) and
ultiplicative feature calibration (MFC).

.1.2. Realization
dditive feature calibration. Additive feature calibration reduces

the logit values on old class nodes of a training sample by an
additive term β , resulting in a modified cross-entropy loss as
follows:

ℓce−afc((x, y); θt , wt ) = −log

(
exp[w⊤y,t fθt (x)− βy]∑
c exp[w

⊤
c,t fθt (x)− βc]

)
, (2)

where (x, y) ∈Mt−1 ∪ Dt . If c ∈ Ct , we set βc = 0; if c ∈ C1:t−1,
we set βc = −log [(Mt + λNt )/m], in which Mt is the number of
saved samples in Mt−1, Nt is the number of training instances
in new classes set Dt , m donates the number of saved samples
of each old class and λ is a hyperparameter. As can be seen, we
have β > 0 for each old class and β = 0 for each new class.
c c
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Multiplicative feature calibration. Multiplicative feature cali-
bration reduces the logit values on old class nodes via multi-
plication, leading to a modified cross-entropy loss as follows:

ℓce−mfc((x, y); θt , wt ) = −log

(
exp[αy · w

⊤
y,t fθt (x)]∑

c exp[αc · w
⊤
c,t fθt (x)]

)
, (3)

f c ∈ Ct , we set αc = 1; if c ∈ C1:t−1, we set αc = m/n, where
donates the number of samples in each new class. That is, we
ave αc < 1 for each old class and αc = 1 for each new class.

.1.3. Discussion
arge margin effect. Our feature calibration method has the
ffect of enlarging the margin between old class and decision
oundary. Specifically, for additive calibration, the large margin
ffect can be directly seen from Eq. (2), in which all old classes
ave the same large margin because each old class has the same
umber of saved samples in a memory buffer. While for multi-
licative calibration, the margin is adaptive based on the output
ogit values. Concretely, donate the logit value on the old class
ode c as oc,i = w⊤c,t fθt (xi), then the calibrated value is αc · oc,i =
c,i − [oc,i(1 − αc)]. Therefore, the margin is oc,i(1 − αc), which
epends on the original logit value oc,i. Larger oc,i results in a
arger distance to decision boundary, which is reasonable and
esirable.

omparison with other margin loss. In the area of face recog-
ition, several kinds of margin loss such as L-softmax (Liu, Wen,
u, & Yang, 2016), AM-softmax (Wang, Cheng, Liu, & Liu, 2018),
osFace (Wang, Wang, et al., 2018) and ArcFace (Deng, Guo, Xue,
Zafeiriou, 2019), have been proposed to enlarge the inter-class
argin. Our feature calibration strategies are indeed different

rom them. (1) Class-dependent. In the previous work (Deng
t al., 2019; Liu et al., 2016; Wang, Cheng, Liu, & Liu, 2018;
ang, Wang, et al., 2018) where only a single learning phase is

nvolved and all classes are balanced, the margin between classes
s chosen to be a class-independent constant. However, in our
ethod, the margin is class-dependent and different for old and
ew classes in CIL. Specifically, in Eqs. (2) and (3), we only enlarge
he margin between each old class to its decision boundary. (2)
elf-adaptive. The value of the margin depends on the number
f samples of old and new classes, and would change during the
ncremental learning process (see Section 4.1.2 for more details).
hile in Deng et al. (2019), Liu et al. (2016), Wang, Cheng, Liu,

nd Liu (2018), Wang, Wang, et al. (2018), the margin is a pre-
efined constant. (3) Effective. As will be shown in Section 5.4,
he class-independent margin in Deng et al. (2019), Liu et al.
2016), Wang, Cheng, Liu, and Liu (2018), Wang, Wang, et al.
2018) yields no improvement in CIL.

omparison with other bias correction methods. As described
n Section 2, many CIL methods leverage post-hoc strategy to
orrect the bias problem at the end of each IL phase. For example,
ome Ahn et al. (2021), Castro et al. (2018), Douillard et al. (2020),
ee et al. (2019) use balanced fine-tuning and others (Belouadah
Popescu, 2019; Wu et al., 2019; Zhao et al., 2020) use class
eight normalization or alignment. While our proposed feature
alibration technique can automatically learn a balanced feature
pace between old and new classes. Compared with another
raining-time bias correction method UCIR (Hou et al., 2019), our
eature calibration is much more effective.

.2. Weight calibration by forgetting-aware weight perturbation

.2.1. Motivation
In JT, all classes are learned jointly and supposed to be well

eparated. However, in CIL, updating the model on new classes
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ould inevitably introduce weight shift, which results in signif-
cant performance drop of old classes. To facilitate the general-
zation ability in CIL, we propose to prepare for the weight shift
n CIL by smoothing the weights. Particularly, CIL could benefit
rom smooth weights from two aspects: (1) Less forgetting.
ith smooth weights, the weight loss landscape (Li, Xu, Taylor,

tuder, & Goldstein, 2018; Neyshabur, Bhojanapalli, McAllester, &
rebro, 2017) would be flat. That is, the loss would be uniformly
ow in the neighborhood area of each weight. Therefore, the
oss of old classes would not increase significantly when learn-
ng new classes, resulting in less forgetting of previous knowl-
dge. (2) Better adaption. With smooth weight space, the model
rained on previous classes would be a better initialization for the
ext task, which would facilitate new class learning and in turn,
itigate the forgetting of old knowledge.

.2.2. Realization
A common way to smooth the weight is to minimize the

oss under weight perturbation. Specifically, small random noise
an be added to the model parameters and the loss functions
ith different noise are minimized to find flat minima region.
ormally, we can minimize the empirical loss given by

ce−wc((x, y); θt , wt ) =
1
K

K∑
j=1

ℓ
(
(x, y); θt + ϵj, wt

)
, (4)

here ϵj is a noise vector sampled from a pre-defined noise distri-
ution (e.g., Gaussian distribution) P(ϵ), K is the sampling times,
is a training sample. However, direct minimizing Eq. (4) could
e inefficient and less effective due to the following reasons.
irstly, Eq. (4) involves multi-sampling process and the weight
erturbation is based on each training sample, which is inefficient
onsidering the large number of training data. Secondly, weight
erturbation with random noise could be less effective.
Therefore, in this paper, we choose to minimize the batch-

evel loss with the worst-case perturbation. Suppose the batch
ize is n, the training loss in a batch is L = 1

n

∑n
j=1 ℓce((x, y);

θt , wt ), then we optimize the following objective:

min
θt

L(θt + ϵ∗(θt )), where ϵ∗(θt ) ≜ argmax
∥ϵ∥≤ρ

L(θt + ϵ), (5)

where ρ ≥ 0 is a hyperparameter. To efficiently seek the worst-
case perturbation, we approximate inner maximization problem
in Eq. (5) via a first-order Taylor expansion of L(θt + ϵ) w.r.t. ϵ
around 0, obtaining

ϵ∗(θt ) ≜ argmax
∥ϵ∥≤ρ

L(θt + ϵ) ≈ argmax
∥ϵ∥≤ρ

(L(θt )+ ϵ⊤∇θtL(θt ))

= argmax
∥ϵ∥≤ρ

ϵ⊤∇θtL(θt ) ≈ ρ
∇L(θt )
∥∇L(θt )∥

.
(6)

Optimizing above objective helps find the flat regions with
smooth weights in the weight space that can be generalize well.
While in CIL, reducing the forgetting of old knowledge is an
important purpose. Therefore, we propose the forgetting-aware
weight perturbation, in which the knowledge distillation (Hinton
et al., 2015) loss ℓkd is also involved. Formally, the following total
loss is used in Eq. (5):

L =
1
n

n∑
j=1

ℓce((x, y); θt , wt )

+
1
n

n∑
j=1

ℓkd[O(xj; θt−1, wt−1),O(xj; θt , wt )], (7)

where O(·) donates the outputted probability distribution (Castro
et al., 2018; Rebuffi et al., 2017) or feature vector (Douillard et al.,
42
Algorithm 1: One CIL step with ItO
Input: Previous model Θ t−1 = {θt−1, wt−1}, training data

Mt−1 ∪ Dt , number of saved samples per class m,
batch size n, scheduled learning γ , number of
iterations K , neighborhood size ρ

Output: Updated model Θ t = {θt , wt}, memory set Mt
1 for k← 1 to K do
2 Sample a mini-batch data {(xi, yi)}ni=1
3 # Modify the cross-entropy (CE) loss for feature

calibration
4 CE loss with feature calibration

Lce =
1
n

∑n
j=1 ℓce−afc(xj;Θ t )

5 # Knowledge distillation (KD) loss
6 KD loss Lkd =

1
n

∑n
j=1 ℓkd[Out(xj;Θ t−1),Out(xj;Θ t )]

7 Total loss L = Lce + Lkd
8 # Weight calibration with forgetting-aware weight

perturbation
9 Compute worst-case perturbation ϵ̂← ρ

∇L(Θ)
∥∇L(Θ)∥

10 Gradient update Θ ← Θ − γ∇L(Θ + ϵ̂)
11 Update memory set Mt ←−Mt−1 ∪ {(xi, yi)}mi=1

2020; Hou et al., 2019). Intuitively, the forgetting-aware weight
perturbation guides the model to learn weights that not only
generalize well to current training classes but also lead to less
forgetting of old classes.

4.2.3. Discussion
Our weight calibration is motivated from the perspective of

weight loss landscape, which is a widely used to characterize
the generalization gap in standard training scenario (Li et al.,
2018; Neyshabur et al., 2017), however, there are few explo-
rations under incremental learning. A similar weight perturbation
technique has been used for adversarial robustness (Wu, Xia,
& Wang, 2020) or standard single-task learning scenario (Foret,
Kleiner, Mobahi, & Neyshabur, 2020). However, in Wu et al.
(2020), the weight perturbation is based on adversarial samples,
while ours is based on clean samples. Besides, ours is moti-
vated to reduce the forgetting in CIL, therefore, we propose the
forgetting-aware weight perturbation, which is designed for CIL
and different from Foret et al. (2020), Wu et al. (2020).

Comparison with F2M. Recently, Shi et al. proposed F2M (Shi,
Chen, Zhang, Zhan, & Wu, 2021) random noise based weight
perturbation to find flat local minima for incremental few-shot
learning. Our weight calibration is different from F2M (Shi et al.,
2021) in several aspects: (1) Forgetting-aware. F2M only in-
olves classification loss of base classes when searching for flat
inima. In CIL, the knowledge distillation loss can indicate the

orgetting of previous knowledge. Therefore, our weight pertur-
ation is forgetting-aware by searching and optimizing the di-
ection that forgets previous knowledge mostly. (2) Worst-case.
2M adds random noise to the weights, which is less effective and
fficient than worst-case weight perturbation in our method. The
ffect of worst-case optimization has been widely demonstrated
n previous work (Wu et al., 2020). (3) Different phase. Our
ethod is used in all CIL phases, while Shi et al. only perform
2M at the first (base) learning stage. (4) Better performance.

As shown in Section 5.4, the worst-case weight perturbation
performs better than the random noise based perturbation used
in F2M.
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.3. Overall learning objective

The proposed ItO method, which comprises two strategies
amed feature calibration and weight calibration, is plug-and-
lay and can be implemented into existing data replay based CIL
ethods easily by only modifying the cross-entropy loss in those
ethods. Algorithm 1 provides pseudo-code for plugging ItO into
IL methods, e.g., UCIR (Hou et al., 2019) or PODnet (Douillard
t al., 2020). Note that the additive feature calibration based CE
oss ℓce−afc is used as default in line 4, while one can also use the
ultiplicative form ℓce−mfc . Besides, we do not specify the KD loss

Lkd in Algorithm 1 since it may have different forms in different
baselines.

4.4. Comparison with CwD

Recently, Shi et al. (2022) found that the models trained with
more classes have more uniform representations. Based on this
observation, they proposed a Class-wise Decorrelation (CwD)
method that enforces data representations to be more uniformly
scattered by minimizing the Frobenius norm of the correlation
matrix at the initial phase. Our method has the same purpose to
mimic the properties of the oracle model. However, our method is
different from CwD (Shi et al., 2022) in several aspects: (1) Differ-
nt insight. CwD focuses on the uniformity of the representation
f each class, while we focus on both the feature distribution
alance in feature space and the weight smoothness in parameter
pace. (2) Different strategy. CwD minimizes the Frobenius norm
f the correlation matrix, while we use deviation compensation in
eature space and forgetting-aware adversarial weight perturba-
ion in parameter space. (3) Different phase. CwD only performs
n the initial phase of CIL, while our method performs in all phases
uring the course of CIL. (4) Better performance. As shown in
ection 5.4, our method can consistently outperform CwD on
ifferent baselines and benchmarks.

. Experiments

In this section, we first describe our experimental setups in
ection 5.1. Then in Section 5.2, we show the proposed ItO can
ignificantly boost strong CIL methods. In Section 5.3, we con-
uct ablation study to verify the effect of feature calibration and
eight calibration individually. Finally, in Section 5.4, we provide

urther experiments to understand the proposed method for CIL.

.1. Experimental setup

ataset and networks. We conduct extensive experiments on
hree benchmark datasets. CIFAR-100 (Krizhevsky et al., 2009) has
0,000 training and 10,000 test images of 32 × 32 size from 100
lasses. ImageNet-Sub (Wu et al., 2019) is a subset of ImageNet
ILSVRC 2012) (Deng et al., 2009) that contains 100 classes. To
erify the effectiveness of our method on large-scale dataset,
e also conduct experiments on the larger and more difficult

mageNet-Full (Deng et al., 2009) dataset, which comprises 1000
lasses and over 1.2 million images with 224 × 224 size. Follow-
ng (Douillard et al., 2020; Hou et al., 2019), we train ResNet-32
or CIFAR-100 and ResNet-18 (He, Zhang, Ren, & Sun, 2016) for
mageNet-Sub/ImageNet-Full from scratch.
43
Comparison approaches. We apply our proposed ItO to the fol-
lowing strong methods: UCIR (Hou et al., 2019) and PODnet
(Douillard et al., 2020). Besides, we also provide results on non-
exemplar based methods such as LwF-MC (Li & Hoiem, 2018)
and PASS (Zhu, Zhang, Wang, et al., 2021), as well as popular
data replay based baselines such as ER (van de Ven & Tolias,
2019), iCaRL (Rebuffi et al., 2017), BiC (Wu et al., 2019) and
WA (Zhao et al., 2020). Besides, we also integrate our method
with dynamic architecture based approaches like DER (Yan et al.,
2021) and FOSTER (Wang et al., 2022). In Section 5.4, we com-
pare our method with two recently proposed regularization tech-
niques DDE (Hu, Tang, Miao, Hua, & Zhang, 2021) and CwD (Shi
et al., 2022). For each data replay based method, we apply both
the original classifier and near-class-mean (NME) classifier, and
report the results of the better one.

Evaluation protocol and metrics. Following Douillard et al. (2020
Hou et al. (2019), Zhu, Zhang, Wang, et al. (2021), we train the
model on half of classes for the first task, and equal classes in
the rest phases. For each dataset, three different incremental
settings, i.e., 5, 10 and 25 IL phases are conducted to evaluate
the CIL performance in both short and long incremental steps.
For example, on CIFAR-100, 10 phases setting means that the
first task includes 50 classes, and the following 10 incremental
phases (or tasks) have 5 classes in each task. For data replay
based method, we save and replay R samples for each class.
In summary, the setting for CIL can be denoted as T-phase-R-
replay. For evaluation metrics, we use two metrics to measure
the performance of a CIL model: (1) Final accuracy afinal is defined
as the top-1 accuracy of all learned classes at the final incremental
stage in the CIL process. (2) Average accuracy is computed as
At =

1
t

∑t
i=1 ai, in which ai is the top-1 accuracy of all the classes

that have already been learned at stage i.

Implementation details. Among the compared methods, PASS
(Zhu, Zhang, Wang, et al., 2021) is implemented using the official
code. For other methods, the experiments are conducted based on
the open-sourced code framework in Zhou, Wang, Ye, and Zhan
(2021). Since our method is plug-and-play, we use the original
hyper-parameters (e.g., learning schedule, training epochs) as
that of the above codebase. For data replay based approaches,
we use herd selection (Rebuffi et al., 2017) to select and store 10
samples for each old class in our main experiments. For hyper-
parameter λ in feature calibration, we use λ = 0.2 for CIFAR-100
and λ = 0.05 for ImageNet-Sub and ImageNet-Full.

5.2. Results and analyses

Results on CIFAR-100 and ImageNet-Sub. To verify the calibra-
tion effectiveness of our method in CIL, we implement it on
UCIR (Hou et al., 2019) and PODnet (Douillard et al., 2020), and
compare with other strong CIL methods. Note that for data replay
based methods, we store and replay 10 samples for each old class.
Comparative results on CIFAR-100 and ImageNet-Sub are shown
in Tables 1 and 2. Firstly, we confirm the strong performance
of PASS (Zhu, Zhang, Wang, et al., 2021), which can outperform
several data replay based methods without saving old samples.
Secondly, as we can observe, across various CIL benchmarks, our
ItO can consistently and significantly improve the final incre-
mental accuracy and average incremental accuracy of UCIR and
PODnet. Take 10 phases setting as an example: on CIFAR-100, our
ItO achieves 55.19% final accuracy and 64.60% average accuracy,
resulting in 6.42% final accuracy and 3.82% average accuracy
improvement on PODnet; On ImageNet-Sub, we boost PODNet by
6.84% on final accuracy and 3.91% on average accuracy, achieve
the new state-of-the-art performance.
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Table 1
Comparisons of final and average incremental accuracies (%) on CIFAR-100 under 5, 10 and 25 phases. Data replay based methods
store 10 samples for each class.
Method 5 phases 10 phases 25 phases

Final Average Final Average Final Average

LwF-MC (Li & Hoiem, 2018) 23.19 39.83 15.20 27.79 4.27 15.21
PASS (Zhu, Zhang, Wang, et al., 2021) 55.67 63.84 49.03 59.87 44.12 55.07
ER (van de Ven & Tolias, 2019) 37.53 44.95 29.77 34.35 30.68 36.00
iCaRL-CNN (Rebuffi et al., 2017) 31.04 41.51 26.56 35.41 25.01 32.04
iCaRL-NME (Rebuffi et al., 2017) 40.68 51.80 36.95 44.72 34.11 39.49
BiC (Wu et al., 2019) 38.42 54.46 32.29 49.88 26.84 43.53
WA (Zhao et al., 2020) 49.16 58.11 40.69 46.98 35.06 41.78

UCIR (Hou et al., 2019) 49.93 60.58 47.38 57.59 42.54 52.33
+ ItO (ours) 56.87+6.94 65.80+4.95 54.28+6.90 63.46+5.86 46.17+3.63 56.53+4.20
PODnet (Douillard et al., 2020) 51.97 63.09 48.94 60.78 40.30 53.23
+ ItO (ours) 55.85+3.88 65.23+2.14 55.19+6.24 64.60+3.82 49.15+8.85 60.97+7.74
Table 2
Comparisons of final and average incremental accuracies (%) on ImageNet-Sub under 5, 10 and 25 phases settings. Data replay based
methods store 10 samples for each class.
Method 5 phases 10 phases 25 phases

Final Average Final Average Final Average

LwF-MC (Li & Hoiem, 2018) 34.34 54.18 17.98 40.49 5.10 18.35
PASS (Zhu, Zhang, Wang, et al., 2021) 56.68 67.33 52.24 62.09 36.22 48.93
ER (van de Ven & Tolias, 2019) 44.04 53.38 39.94 48.26 25.52 25.46
iCaRL-CNN (Rebuffi et al., 2017) 30.72 44.87 25.98 36.90 19.62 27.72
iCaRL-NME (Rebuffi et al., 2017) 47.20 59.62 40.52 51.37 32.94 40.38
BiC (Wu et al., 2019) 41.88 61.74 30.34 54.17 22.22 39.37
WA (Zhao et al., 2020) 50.32 61.18 40.42 52.23 32.22 40.52

UCIR (Hou et al., 2019) 59.12 71.89 54.10 68.35 45.92 57.61
+ ItO (ours) 67.84+8.72 75.05+3.16 66.38+12.28 74.45+6.09 54.38+8.46 63.37+5.76
PODnet (Douillard et al., 2020) 67.96 76.68 63.18 73.70 47.44 59.09
+ ItO (ours) 70.54+2.58 78.14+1.46 70.02+6.84 77.61+3.91 61.34+13.90 71.78+12.69
Fig. 4. Comparisons of the step-wise accuracies on CIFAR-100 and ImageNet-Subset under three different settings. For UCIR and PODnet, dashed lines present the
baseline, and solid lines present the methods with our proposed ItO.
Long step CIL performance. Particularly, in long incremental
teps setting, e.g., 25 phases setting, data replay method with-
ut bias calibration (e.g., ER and iCaRL-CNN) performs much
44
worse than that of 5 or 10 phases. iCaRL-NME uses near-class-
mean classifier for inference, which can be viewed as an under-
sampling based post-hoc bias correction strategy. It remarkably
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Fig. 5. Step-wise accuracies on CIFAR-100 with 10 incremental phases.
Table 3
Comparisons of final and average incremental accuracies (%) on ImageNet-Full
under 10 and 25 phases settings. Data replay based methods store 10 samples
for each class.
Method 10 phases 25 phases

Final Average Final Average

iCaRL-CNN (Rebuffi
et al., 2017)

21.32 31.14 17.23 24.91

iCaRL-NME (Rebuffi
et al., 2017)

32.25 42.53 27.08 34.83

UCIR (Hou et al., 2019) 52.64 60.43 47.71 56.87
+ ItO (ours) 55.71+3.07 62.61+2.17 51.87+4.16 59.92+3.05
PODnet (Douillard et al.,
2020)

54.77 63.75 48.82 59.19

+ ItO (ours) 55.45+0.68 63.95+0.20 52.55+3.73 61.43+2.24

Table 4
ItO can give remarkable performance boosts to the representative dynamic
architectures based methods DER (Yan et al., 2021) and FOSTER (Wang et al.,
2022). CIFAR-100 with 10 incremental phases.
Method R=5 R=10

Final Average Final Average

DER (Yan et al., 2021) 43.19 58.63 52.80 65.07
+ ItO (ours) 46.75+3.56 61.25+2.62 55.01+2.21 66.45+1.38
FOSTER (Wang et al.,
2022)

49.08 60.39 54.81 64.67

+ ItO (ours) 51.58+2.50 64.14+3.75 56.32+1.51 66.29+1.62

improves the performance of iCaRL-CNN. Latter, BiC, WA, UCIR
and PODnet use different bias correction strategies, which also
improve the performance to some extent. Our proposed ItO fur-
ther calibrates both the feature space and weight space, leading
to significant improvement over UCIR and PODnet. For exam-
ple, ItO achieves 71.87% average accuracy under 25 phases and
boosts PODNet by 12.69%. Fig. 4 shows the step-wise results of
incremental accuracy.

Results on ImageNet-Full. In Table 3, we present the results on
ImageNet-Full dataset. Our method remarkably boosts the UCIR.
For example, UCIR+ItO has 59.92% average incremental accuracy
under 25 phases setting, outperforming UCIR by 3.05%. For POD-
net, ItO has similar results under 10 phases setting, while has
better performance under 25 phases setting. Note that the base-
line PODnet uses sophisticated balanced fine-tuning to correct the
bias at the end of each IL phase, while our method can calibrate
the bias automatically.

Integrating ItO with dynamic architectures. Recently, dynamic
architecture based methods have been successfully applied in CIL.
For example, DER (Yan et al., 2021), FOSTER (Wang et al., 2022)
and Dytox (Douillard et al., 2022) yield state-of-the-art perfor-
mance by dynamically expanding the network. Here we integrate
45
Table 5
Ablation study: feature calibration (FC) and weight calibration (WC). Ex-
periments are conducted on CIFAR-100 with 10 incremental steps (T = 10,
R = 10).
Method FC WC UCIR PODnet

Final Average Final Average

Baseline ✗ ✗ 47.38 57.59 48.94 60.78
+ FC ✓ ✗ 52.00+4.62 61.02+3.43 53.50+4.56 63.31+2.53
+ WC ✗ ✓ 47.47+0.09 59.07+1.48 51.24+2.30 61.62+0.84
+ ItO ✓ ✓ 54.28+6.90 63.46+5.86 55.19+6.24 64.60+3.82

our proposed ItO with DER and FOSTER. The implementation is
based on their official code. Specifically, experiments on CIAFR-
100 with two settings, i.e., 10-phase-5-replay and 10-phase-10-
replay are conducted respectively. The results are summarized in
Table 4 and Fig. 5. Firstly, we find that FOSTER is more robust
to the number of saved samples than DER. Secondly, as can
be observed, our method can give large performance boosts to
the above methods, which verifies that ItO can be successfully
integrated with dynamic architecture based methods.

5.3. Ablation study

The proposed ItO method is comprised of two components:
feature calibration (FC) by deviation compensation and weight
calibration (WC) by forgetting-aware wright perturbation. Here
the effect of individual aspects is analyzed. Fig. 6 and Table 5
show the results of using FC and WC alone and together. One
can observe that: (1) FC has a remarkable effect on mitigating
the imbalance problem and achieves much better results than
Baseline, e.g., FC improves the performance of PODnet with a
margin of 4.56% on final accuracy. (2) WC has a relatively small
effect without FC since the imbalance problem of the classifier
is severe. (3) The performance of baseline could be significantly
improved by combining FC with WC, which demonstrates that FC
and WC could benefit from each other and both the calibration
effects play an important role in CIL.

5.4. Further understanding of proposed method

Comparisons of additive and multiplicative feature calibration.
For feature calibration, we have designed two simple but different
forms of calibration technique, i.e., additive feature calibration
(AFC) and multiplicative feature calibration (MFC). In our previous
experiments, AFC is used as default. Here we conduct experi-
ments to compare AFC with MFC. Fig. 7 shows the comparison of
AFC and MFC on improving the baseline methods, i.e., UCIR and
PODnet. One can see that the boost of using AFC is higher than
using MFC.
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a

Fig. 6. Ablation study: comparisons of the step-wise accuracies on CIFAR-100 (T = 10, R = 10) with feature calibration (FC) and weight calibration (WC) strategies
lone and together.
Fig. 7. Comparisons of additive feature calibration (AFC) and multiplicative feature calibration (MFC) on CIFAR-100 (T = 10, R = 10).
Table 6
Compare our method with DDE and CwD with 10 incremental steps.
Method CIFAR-100 ImageNet-Sub

UCIR PODnet UCIR PODnet

Final Average Final Average Final Average Final Average

Baseline 46.34 58.31 48.28 58.92 51.06 64.04 60.03 70.40
+ DDE (Hu et al., 2021) 51.31 62.00 49.22 60.52 59.06 69.05 63.02 73.00

Baseline 47.38 57.59 48.94 60.78 54.10 68.35 63.18 73.70
+ CwD (Shi et al., 2022) 48.58 58.67 50.70 61.31 56.13 69.60 64.70 74.13
+ ItO (ours) 54.28 63.46 55.19 64.67 66.38 74.46 70.02 77.61
Fig. 8. Comparisons of final and averaged accuracy with different number of replay data per class. Experiments are conducted on CIFAR-100 with 10 incremental
steps.
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Robustness to different replay numbers. To demonstrate the
effect and robustness of our proposed ItO, we vary the number of
saved and replayed samples for each old class, which is donated
by R. Specifically, we implement baseline methods and our ItO on
more challenging cases where rarer old data are replayed (R = 1,
5), as well as easier cases where each old class has 20 samples
(R = 20). As can be observed in Fig. 8, original methods have
severe performance degradation when only 1 or 5 samples are
replayed per class. For example, when reducing the number of the
replayed samples from 10 to 1, the final accuracy drops 22.68%
for UCIR and 21.52% for PODnet. In contrast, our method shows
its robustness to the number of replay data. Particularly, in the
more challenging setting with fewer old samples replayed, the
improvements provided by our ItO is significantly increased. For
example, it obtains up to 23.07% improvement of PODnet on final
accuracy when replaying only 1 data per class.
46
Weight perturbation: worst-case v.s. random noise. In our weigh
calibration, we add worst-case weight perturbation to find the
forgetting-aware direction for calibration. Here we compare the
worst-case perturbation with random noise based perturbation.
As shown in Fig. 9, random noise is less effective than worst-case
based perturbation. Besides, perturbation with random noise is
inefficient because it involves multi-sampling process and many
of the perturbed directions are useless.

Large margin: class-dependent v.s. class-independent. As dis-
ussed in Section 4.1.3, our feature calibration (FC) strategy has
he large margin effect for old classes in each CIL phase. Partially,
he margin introduced by FC is class-dependent, which is dif-
erent from existing margin losses (Deng et al., 2019; Liu et al.,
016; Wang, Cheng, Liu, & Liu, 2018; Wang, Wang, et al., 2018)
hat use a class-independent (CID), constant margin. For example,
n additive FC (Eq. (2)), the margin for a old class c ∈ C
1:t−1
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Fig. 9. Worst-case v.s. random weight perturbation. Before comparison, we apply feature calibration (FC) to UCIR and PODnet. ItO uses the worst-case based
erturbation. The numbers in the legends represent the average incremental accuracy.
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Fig. 10. Class-independent (CID) margin yields no improvement for CIL.

is βc > 0 and depends on the number of saved old samples;
For a new class c ∈ Ct , the margin βc = 0. When assigning

constant margin for both new and old classes, we observe
n Fig. 10 that the CID margin yields no improvement for CIL.
ctually, the relative position of old and new classes is crucial
nd the feature imbalance problem is still existing when using
he CID margin.

ompare with CwD and DDE. We noticed that there are other
regularization techniques that have been proposed for CIL more
recently. Here we compare our proposed ItO with DDE (Hu et al.,
2021) and CwD (Shi et al., 2022). Specifically, DDE (Hu et al.,
2021) implicitly constrains the neighborhood relation by pre-
dicting a sample with its neighborhood. Besides, it also contains
an incremental momentum effect removal module to reduce the
bias in CIL. CwD (Shi et al., 2022) regularizes representations of
each class to scatter more uniformly for improving the feature
transferability in CIL. In Table 6, we show the comparison among
DDE, CwD and our ItO. As can be observed, our method can
fairly outperform DDE and CwD with different baselines on both
CIFAR-100 and ImageNet-Sub datasets.

6. Conclusion

In this paper, we study CIL problem from a new viewpoint:
improving CIL by mimicking the oracle model (joint-training) in
both feature space and weight space. Motivated by the analysis,
we propose ItO, which consists of two types of calibration: feature
calibration (FC) and weight calibration (WC). Specifically, FC is re-
alized by additive or multiplicative deviation compensation, and
WC is achieved by forgetting-aware weight perturbation. Our ItO
is plug-and-play and can be implemented into existing methods
easily. Through extensive experiments, we show that our method
yields consistent and significant performance improvements over
previous SOTA methods by a large margin. Future works will
consider more challenging scenarios like few-shot and federated
CIL.
47
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