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Briefing: This perspective introduces the concept and
framework of knowledge factories with knowledge machines
for knowledge workers to achieve knowledge automation for
Industry 5.0 and intelligent industries.

Introduction

The big hit of ChatGPT makes it imperative to contemplate
the practical applications of big or foundation models [1]-
[5]. However, as compared to conventional models, there is
now an increasingly urgent need for foundation intelligence
of foundation models for real-world industrial applications.
To this end, here we would like to address the issues related
to building knowledge factories with knowledge machines for
knowledge workers by knowledge automation, that would ef-
fectively integrate the advanced foundation models, scenarios
engineering, and human-oriented operating systems (HOOS)
technologies for managing digital, robotic, and biological
knowledge workers, and enabling decision-making, resource
coordination, and task execution through three operational
modes of autonomous, parallel, and expert/emergency, to
achieve intelligent production meeting the goal of “6S™:
Safety, Security, Sustainability, Sensitivity, Service, and Smart-
ness [6]-[10].

Being a generative Al language model, ChatGPT [11]-[14]
adheres to the “Big Problems, Big Models” paradigm [5]. Its
training data consists of Common Crawl, a vast collection of
textual data from web pages, books, articles, and other publicly
available resources, which makes it proficient in addressing
general queries. While ChatGPT is trained on a vast array of
topics, its depth of knowledge on highly specialized subjects
might not match that of dedicated experts in a specific field.
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It does not have the capability to analyze real-time data or
trends either. In view of this, we must advocate a “Small
Problems, Big Models” paradigm, training big models [2] with
multimodal data from extremely specific subjects. In this way,
widely applying these big models in factories for workers
during production and other crucial scenarios, we could solve
domain-specific queries, and enable real-time analysis of data
with continuous learning ability.

Nonetheless, given that small problems should and have
traditionally been resolved with small models, why are large
models needed? If so, do we have sufficient data to train
big models for small problems? In reality, and especially in
the current trend, a small problem must be solved together
with many surrounding other small problems. Therefore, today
we have to address those small problems deeply in vertical
and widely in horizontal, thus the need for domain-specific
foundation models and the source of big data for their training.
Those special big models offer the capacity to holistically
evaluate and generate effective and comprehensive solutions
for small problems.

Furthermore, we need to structure and organize a new
ecosystem to coordinate biological workers, robotic workers,
and digital workers for future smart production [15], [16]
, specifically by building knowledge factories with knowl-
edge machines for knowledge automation. We also need
to design corresponding operational processes and assign
proper roles for those three types of knowledge workers, so
they can work together synergistically and efficiently. Let
us address those important issues in the following sections.
Essential Elements of Knowledge Factories

Aiming at knowledge automation [17], the essential ele-
ments for knowledge factories include business big models,
scenarios engineering, and HOOS. The schematic diagram of
the collaboration of these elements in knowledge factories is
shown in Fig. 1.

o Business big models. Knowledge factories [1], [4]-[7]
would involve three types of workers: digital workers,
robotic workers, and biological workers, as described
in the next section. Business big models are the key
technology that assists biological workers and drives
digital and robotic workers to execute operational tasks
more efficiently and intelligently. They are the cognitive
knowledge bases storing domain knowledge and skills
for production. Essentially, a knowledge worker itself is
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Fig. 1. The collaboration of essential elements for knowledge factories.

a foundation model for special functions in a knowledge
factory, and interaction among knowledge workers with
business big models is an important issue to be addressed.
Note that the theory and method of parallel cognition [18]
should be useful in constructing business big models by
facilitating the design of efficient Q&A sessions among
various knowledge workers and business big models.

Scenarios engineering. Traditional feature engineering-

based deep learning has achieved the state-of-the-art

(SOTA) performance. However, these algorithms are im-

plemented without the in-depth consideration of inter-

pretability, security, and sustainability. Thus, it is im-

possible to apply these SOTA algorithms to real-world

factories directly. In knowledge factories, scenarios engi-
neering [19] can be seen as the integration of industrial
scenarios and operations within a certain temporal and
spatial range, where a trustworthy aritificial intelligence

model could be established by intelligence & index (I&1),

calibration & certification (C&C), and verification &

validation (V&V). Through the effective use of scenarios
engineering, knowledge factories should achieve the goal

of “6S” [20], [21].

e HOOS. The primary function of HOOS [22], which is an
upgraded version of management and computer operating
systems, is to set up task priority, allocate human re-
sources, and make interruptions. With the help of HOOS,
workers in the knowledge factories could communicate
and cooperate more efficiently, thus greatly reducing the
laborious and tedious works and related physical and
mental loads to biological workers. Many research on
conventional and smart operating systems can be used in
HOOS design and implementation [23]-[25].
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The Knowledge Workforce:
Digital, Robotic, and Biological Workers

Knowledge workforce in knowledge factories is categorized
into three primary classes: digital workers, robotic workers,
and biological workers. The interplay of these worker types in
knowledge factories is illustrated in Fig. 2. Biological workers
are real humans, while robotic workers [26] are designed to
aid biological humans in performing complex physical-world
tasks, and digital workers are introduced to serve as virtual
representations of both biological and robotic workers. The
role and function of digital workers encompass facilitating
human-machine interactions, coordinating tasks, conducting
computational experiments, and other activities that broaden
the scopes of both biological and robotic workers [27].

The advancements in foundation model technologies, exem-
plified by tools like ChatGPT, should accelerate the integration
of digital workers in knowledge factories [12], [28]. Digital,
robotic, and biological workers interact, align, and collaborate
under the DAOs (Decentralized Autonomous Organizations
and Decentralized Autonomous Operations) framework [17],
[29]. The various elements of physical, social, and cyber
spaces interact with each other through digital workers to
ensure the completion of required tasks under distributed,
decentralized, autonomous, automated, organized, and orderly
working environments.

In knowledge factories, digital workers should be the pri-
mary source of workforce, facilitating the synergy between
biological and robotic workers by automating task distribution
and process creation. In our current design, at least 80% of
the total workforce should consist of digital workers. Robotic
workers, responsible mainly for physical tasks, should make up
no more than 15% of the workforce. Biological workers are
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Fig. 2. The knowledge workforce in knowledge factories.

responsible for decision-making and emergency intervention
and should be less than 5% of the total workforce. Knowledge
factory utilizes HOOS to achieve interaction and collaboration
among three types of knowledge workers. By leveraging the
majority of digital and robotic workers, knowledge factories
boost efficiency, lessen the strain on biological workers, save
resources, and promote sustainable production.

The Process for Knowledge Automation: APeM

The process for knowledge automation involves three dis-
tinct working modes: autonomous modes (AM), parallel
modes (PM), and expert/emergency modes (EM), collectively
known as APeM. These modes play various roles in the
workflow of knowledge factories, as described in Fig. 3.
AM represents the ultimate concept of unmanned factories.
AM should be the primary mode of operations, accounting
for over 80% of the production process, requiring mainly
the involvement of digital and robotic workers. PM should
be activated in fewer than 15% of cases, providing remote
access for human experts to resolve any unforeseen issues or
failures that arise during production. If an issue persists even
after PM deployment, the corresponding production process
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switches to EM, which accounts for less than 5% of the time,
where experts or emergency teams are dispatched to the site
to resolve the problem directly. Once the issue is rectified, the
production process reverts to PM, monitored remotely for a
set duration, and then transitioned back to AM.

In general, PM should address unpredictable and rare long-
tail issues in most of production processes. These issues
might involve unexpected defects in a production chain or
an equipment malfunction. Using this mode, experts can
manipulate robotic workers and identify problematic areas
through anomaly detection and diagnosis during remote access
operations. Nonetheless, some production challenges elude
solutions via PM, especially if the data is not accessible by
industrial sensors or robotic workers, or if robotic workers
cannot emulate specific human actions. In such cases, the data
in actual factories should be collected and labeled, and related
scenarios need to be recalibrated. Big models undergo iterative
retraining as new data is introduced, and perform verification
and validation to ensure the revised models are up to par.
Knowledge acquisition and refinement will then be achieved
as modes are toggled.
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Fig. 3. The process for knowledge automation: APeM.
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Conclusion Remarks

This article presents the framework of building knowledge
factories with knowledge machines for knowledge automation
by knowledge workers. Equipped with domain-specific big
models, digital and robotic workers would assist biological
workers to perform decision-making, resource coordination,
and task execution. Through knowledge processing under AM,
PM, and EM, big models are iteratively optimized and verified
through scenarios engineering and acquire new knowledge and
refine its knowledge base.

Current big models lack the ability to defend against mali-
cious attacks, as well as the capability to reason about com-
plex problems. In the future, for trustworthy and explainable
knowledge factories, it is essential to incorporate federated
intelligence and smart contracts technologies in constructing
and training big models to ensure their safety, security, sus-
tainability, privacy, and reliability.
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