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   Abstract—Domain  adaptation  (DA)  aims  to  find  a  subspace,
where  the  discrepancies  between  the  source  and  target  domains
are reduced. Based on this subspace, the classifier trained by the
labeled source samples can classify unlabeled target samples well.
Existing  approaches  leverage  Graph  Embedding  Learning  to
explore such a subspace. Unfortunately, due to 1) the interaction
of  the  consistency  and  specificity  between  samples,  and  2)  the
joint  impact  of  the  degenerated  features  and  incorrect  labels  in
the samples, the existing approaches might assign unsuitable sim-
ilarity,  which  restricts  their  performance.  In  this  paper,  we  pro-
pose  an approach called  adaptive  graph embedding with  consis-
tency and specificity (AGE-CS) to cope with these issues. AGE-CS
consists  of  two  methods,  i.e.,  graph  embedding  with  consistency
and  specificity  (GECS),  and  adaptive  graph  embedding  (AGE).
GECS jointly learns the similarity of samples under the geomet-
ric  distance  and  semantic  similarity  metrics,  while  AGE  adap-
tively adjusts  the relative importance between the geometric  dis-
tance and semantic similarity during the iterations. By AGE-CS,
the  neighborhood  samples  with  the  same  label  are  rewarded,
while  the  neighborhood  samples  with  different  labels  are  pun-
ished.  As  a  result,  compact  structures  are  preserved,  and
advanced performance is achieved. Extensive experiments on five
benchmark datasets  demonstrate that  the proposed method per-
forms better than other Graph Embedding methods.
    Index Terms—Adaptive adjustment, consistency and specificity, do-
main  adaptation,  graph  embedding,  geometrical  and  semantic  met-
rics.
  

I.  Introduction

A  large amount of data from different domains is required
to train a robust  classification model.  However,  in some

emerging target domains, only a small amount of labeled data
is  available,  which  is  insufficient  to  learn  critical  classifica-
tion knowledge. Moreover, it is time-consuming and costly to
manually  collect  labeled data.  In  the  light  of  these  problems,
domain  adaptation  (DA)  is  proposed  to  utilize  labeled  sam-
ples  from  a  well-known  domain  (the  source  domain)  to  tag
unlabeled  samples  from  the  emerging  domain  (the  target
domain) [1]. Up to now, DA has been widely applied to vari-
ous  fields,  e.g.,  infection  detection  [2],  [3],  disease  detection
[4],  anomaly  detection  [5]–[7],  emotion  recognition  [8],  and
visual localization [9].

The primary nature of DA is to learn a projected subspace,
where  the  discrepancies  between  the  source  and  target
domains  are  reduced  [1],  [10].  Based  on  a  learned  subspace,
the  classifier  can  properly  classify  the  unlabeled  target  sam-
ples by utilizing the source knowledge.

Recently,  some  researchers  adopt  local  structure  preserva-
tion  to  align  the  distributions  [11]–[13].  These  methods  con-
struct a similarity matrix by measuring the geometric distance
of samples, so as to preserve a local structure of the domains.
However, here are still two issues to be addressed.

1)  The  Existing  Methods  Neglect  the  Interactions  of  the
Consistency  and  Specificity  Between  Samples: The  consis-
tency denotes the common properties between samples, while
specificity  denotes  specific  properties  of  different  samples.
For example, the same category and common features of two
samples might contribute to their consistency, while different
categories  and  specific  features  of  two  samples  might  con-
tribute to their specificity. In this case, there exist four possi-
ble  relationships  between  two  samples:  a)  a  number  of  com-
mon  features  with  the  same  category;  b)  a  number  of  com-
mon  features  with  different  categories;  c)  a  number  of  spe-
cific features with the same category; and d) a number of spe-
cific features with different categories.

Since most existing works measure similarity by geometric
distance, they might connect the samples a) and b) with larger
weights, and the samples c) and d) with smaller weight. As a
result, the samples b) and c) are weighted inappropriately, and
performance  is  limited.  As  revealed  by  [14],  the  consistency
degree  of  a  system reflects  whether  the  projection  is  reliable
or not. The result of having low consistency makes the knowl-
edge of a model more unstable, which is not what we want. In
order  to  achieve  high  consistency,  an  improved  strategy
should  be  used  to  measure  the  consistency  and  specificity
between samples appropriately.

2) The Existing Methods Overlook Noise Samples That Con-
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tain  Degenerated  Features  or  Incorrect  Labels: In  reality,
there  exist  some  samples  with  degenerated  features  [15]  or
incorrect  labels  [16].  These  samples  might  mislead  the  simi-
larity learning such that the local structure of domains cannot
be well-preserved.

In light of the above two issues, one promising approach is
to  measure  the  similarity  by  the  geometric  distance  and
semantic  information  appropriately.  However,  it  faces  two
challenges:

1)  How  can  we  unify  the  geometric  distance  and  semantic
similarity metrics to get a unified similarity?

2) How can we measure the relative importance between the
geometric distance and semantic similarity metric, and adap-
tively adjust them?

In  this  paper,  we  address  the  above  two  issues,  and  intro-
duce  a  novel  method  called adaptive  graph  embedding  with
consistency and specificity (AGE-CS). AGE-CS is composed
of two parts: a) Graph embedding with consistency and speci-
ficity (GECS); and b) Adaptive graph embedding (AGE).

GECS adopts both the geometric distance and semantic sim-
ilarity metrics to learn a similarity. In doing so, the neighbor-
hood samples with same labels are rewarded, while the neigh-
borhood  samples  with  different  labels  are  penalized.  As  a
result,  the  consistency  and  specificity  between  samples  are
jointly measured, and promising performance is guaranteed.

AGE  explores  the  potential  relationship  between  geometry
and  semantics,  and  adaptively  adjusts  their  weight  based  on

the  theoretical  guarantee.  By  adopting  AGE,  the  relative
importance  of  the  geometric  distance  and  the  semantic  simi-
larity  metric  is  demonstrated.  Hence,  the  structural  informa-
tion of two domains is preserved and advanced performance is
achieved.

The  contributions  of  this  paper  are  as  follows  and  the
flowchart of AGE-CS is shown in Fig. 1.

1) AGE-CS is proposed, which consists of GECS and AGE.
By AGE-CS, the compact structural information of domains is
preserved,  while  the  discrepancies  between  domains  are
reduced. As a result, advanced performance is achieved.

2) GECS jointly determines the similarity of samples under
the geometric distance and semantic similarity metrics. Conse-
quently,  the  neighborhood  samples  with  same  labels  are
rewarded,  while  the  neighborhood  samples  with  different
labels are penalized.

3) AGE adaptively adjusts the relative importance between
geometry  and  semantics,  which  results  in  compact  structure
preservation.

4)  Extensive  experiments  and comparisons  on  five  popular
datasets are performed to demonstrate the effectiveness of the
proposed method.  

II.  Related Work

In this section, we present a brief review of Graph Embed-
ding methods,  which can be divided into two categories,  i.e.,
geometry-based  graph  embedding  (GGE)  methods  [17]–[21]
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Fig. 1.     The flow chart  of  AGE-CS.  (a)  GECS measures  the  similarity  of  samples  by geometric  distance;  (b)  GECS measures  the  similarity  of  samples  by
semantic similarity metric; (c) AGE adaptively adjusts the relative importance of the geometric distance and semantic similarity metric; (d) MMD minimizes
the distribution; and (e) By using AGE-CS, the compact structural information of domains is preserved, while discrepancies between domains are reduced. As a
result, the discriminative classification boundary is obtained and advanced performance is guaranteed.
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and semantics-guided graph embedding (SGE) methods [12],
[13], [22]–[25]. Interested readers can refer to the surveys [10]
and [1] to gain a comprehensive perspective on DA methods.

As one of the categories, approaches with geometry-based
graph  embedding  (GGE) assign  the  neighborhood  relation-
ship  by  feature  matching  and  measure  the  similarity  of  sam-
ples  by  geometric  distance.  Liu et  al. jointly  adopt  local  and
global  GGE  methods  to  explore  the  discriminative  manifold
structure  of  multi-source  domains  [17].  They  hold  the  view
that  the  distance  between  samples  in  the  same  domains  is
smaller  than  that  in  different  domains.  Thus,  intra-class-and-
inter-class-based  GGE  methods  are  proposed,  and  good  per-
formance is achieved on multi-source transfer tasks. Wang et
al. propose  manifold  embedded  distribution  alignment
(MEDA)  that  utilizes  GGE  to  preserve  the  geometric  struc-
ture of the learned manifold [18]. In MEDA, samples are pro-
jected into the manifold subspace, and their geometrical struc-
tures are explored simultaneously. As a result, MEDA avoids
degenerated  feature  transformation  and  achieves  promising
performance.  In  addition,  Vascon et  al. apply  an  affinity
matrix  to  convey  the  similarity  of  domains  [19].  Since  they
propagate the similarity between the labels directly, the target
labels are obtained effectively. Moreover, Xiao et al. leverage
both  low-rank  representation  and  GGE to  preserve  the  struc-
tural  relationships  of  samples  [20].  They  jointly  explore  the
discriminative features of samples and label information. With
the  help  of τ-technology,  a  linear  regression  classifier  is
achieved  and  the  geometric  structure  is  mined.  Differently,
Sun et  al. jointly  utilize  the  maximum  mean  discrepancy
(MMD),  manifold  learning,  and  scatter  preservation  to  learn
discriminative  and  domain-invariant  features  [21].  During
training, semantics and features are incorporated into a latent
example-class  matrix,  and  the  geometrical  information  is
explored  on  the  latent  space.  With  experiments,  they  verify
the effectiveness of GGE.

As  the  other  category, semantics-guided  graph  embed-
ding (SGE) methods assign the neighborhood relationship by
semantic mapping and measure the similarity of samples by a
geometric metric. If all samples are connected, SGE is equiva-
lent  to  the  scatter  component  analysis  (SCA)  [26].  Li et  al.
propose  domain  invariant  and  class  discriminative  (DICD)
that  jointly  adopts  within-class  and  between-class  scatters  to
learn  domain-invariant  features  [22].  Since  both  intra-class
and inter-class SGE methods are employed, DICD digs out the
discriminative  information  sufficiently  and  achieves  compact
clusters. Li et al. embed SGE into a coupled projection learn-
ing framework [23]. The distributions, scatters, and semantics
are jointly leveraged, and a more feasible solution is gained by
solving  two  coupled  projection  matrices.  Gholenji  and  Tah-
moresnezhad adopt  both  distribution  alignment  and  discrimi-
native  manifold  learning  methods  to  exploit  statistical,  local,
and global  structures  [13].  Different  from DICD,  Gholenji et
al. introduce  repulsive  terms  to  align  cross-domain  distribu-
tions, which leads to consistent representation. However, since
additional constraints are involved, this method requires more

training time. Zhao et al. use density peak landmark selection
(DPLS) and manifold learning to mine the potential structural
information  of  domains  [24].  In  this  way,  samples  are  well-
measured according to  global  density.  By DPLS,  the  reliable
samples  are  selected  and  the  geometric  structures  are  further
explored  by  these  high-quality  samples.  In  experiments,  they
verify  its  significant  improvements.  Meng et  al. jointly  pre-
serve the marginal and local structures to obtain discriminant
information and propose margin and locality structure preser-
vation  [12].  Different  from  SPDA,  it  focuses  on  exploring
consistent  and  inconsistent  information,  which  exhibits
promising  performance  in  the  few-shot  setting.  Li et  al. pro-
pose Label Correction to align the distribution shift caused by
the target pseudo labels [25]. Based on the SGE method, they
divide  the  optimization  process  into  two  stages.  At  the  first
stage, they align the distributions by minimizing marginal and
conditional distributions. Then, they correct the target pseudo
labels  so  as  to  further  align  the  distributions.  Since  distribu-
tions  are  well-measured  on  these  two  stages,  their  method
achieves significant performance. However, it takes more time
to align the distributions.

Although  the  above-mentioned  methods  achieve  promising
improvements,  they  not  only  neglect  the  interactions  of  the
consistency  and  specificity  between samples,  but  also  do  not
consider noise samples. As a result, further research is neces-
sary.

Different  from  the  previous  works,  in  light  of  the  unso-
lved problems, in this paper, we measure the similarity under
both  geometric  distance  and  semantic  similarity.  The  differ-
ences between the proposal and previous works are two folds.

1)  We propose GECS to measure the similarity of  samples
from both geometric distance and semantic similarity perspec-
tives,  while  the  afore-mentioned  studies  cope  with  one  of
them only. By using GECS, the consistent and specific prop-
erties  of  domains  are  further  explored  and  performance  is
improved.

2) We propose AGE to adaptively measure the relative imp-
ortance between geometry and semantics. A mathematical ana-
lysis  of  the  optimal  parameter  is  given  (refer  to  Theorem  1)
and  the  transfer  performance  is  guaranteed.  To  our  best
knowledge, there is no relevant study that reveals the relative
importance between geometry and semantics mathematically.  

III.  Proposed Method

This section introduces AGE-CS in detail. First, we give the
notations used in this paper and the problem setting. Then, the
conventional  methods  and  their  drawbacks  are  reviewed.
Next, the proposed GECS and AGE are discussed. At last, the
overall  objective  function  and  its  optimization  procedure  are
given.  

A.  Notations and Problem Setting
In this subsection, the notations used in this paper are shown

in Table I, and the problem setting of DA is as follows.
Xs =

{
xs,i
}ns
i=1

Xt =
{
xt,i
}nt
i=1 Ys =

Problem Setting: Let  be the set of source sam-
ples,  be  the  set  of  target  samples,  and 
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{
ys,i
}ns
i=1 ∈ R

ns ns nt

Ds =
{(

xs,i,ys,i
)}ns

i=1
PXs,Ys

Dt =
{(

xt,i
)}nt

i=1
PXt ,Yt PXs,Ys , PXt ,Yt Yt ∈ Rnt

W ∈ Rm×d

 be the set of source labels,  where  and  are
the  number  of  source  and  target  samples,  respectively.  DA
assumes  that  the  source  domain  comes
from  the  source  joint  distributions ,  while  the  target
domain  is  from  the  target  joint  distribution

,  where  and  is  inaccessible  dur-
ing  training.  Then,  DA  aims  to  learn  a  projection  matrix

 such  that  the  classifier f trained  on  the  source
domain can classify the target domain correctly. That is,
 

min
W
L( f (WT Xt),Yt)) (1)

L(A,B)
f (X)

Yt Xt

where  is  a  loss  function  that  measures  the  loss
between A and B,  is  the  classifier  trained  on  feature
space X, and  is the set of ground-truth labels of , which is
inaccessible during training.  

B.  Distribution Alignment and Graph Embedding
In  this  subsection,  we  review  conventional  methods  and

point out two existing problems.
In order  to  reduce the discrepancies  between two domains,

the  usual  practice  is  to  reduce  the  marginal  and  conditional
distributions between the two domains [27]. That is,
 

min
W

fDA(W,Xs,Xt)

=µ

∥∥∥∥∥∥∥∥ 1
ns

ns∑
i=1

WT xs,i−
1
nt

nt∑
j=1

WT xt, j

∥∥∥∥∥∥∥∥
2

F

+ (1−µ)
C∑

c=1

∥∥∥∥∥∥∥∥ 1
nc

s

nc
s∑

i=1

WT xc
s,i−

1
nc

t

nc
t∑

j=1

WT xc
t, j

∥∥∥∥∥∥∥∥
2

F

s.t. WT XHXT W = I (2)
where

W ∈ Rm×d1)  is the projection matrix;
Xc

s =
{
xs,i
}nc

s
i=1 Xc

t =
{
xt,i
}nc

t
i=12)  and  denote  the  set  of  samples

belonging  to c-th  class  of  the  source  and  target  domains,
respectively;

nc
s Xc

s nc
t

Xc
t

3)  represents the number of elements in , and  repre-
sents the number of elements in ;

H = In×n− 1
n 11T

In×n ∈ Rn×n

1 ∈ Rn

4)  is  the  centering  matrix  that  maximizes
the  scatter  of  samples,  is  an  identity  matrix,  and

 is a vector with all elements in it being 1;
5) μ is a hyper-parameter.
However,  by  adopting  (2),  the  discrepancies  between  the

two  domains  might  still  be  large,  which  degrades  perfor-
mance.  Hence,  the  local  connectivity  of  each  domain  is
explored by using Graph Embedding as follows.

X = {xi}ni=1 ∈ Rm×n

fGE(W,S ,γ,X)
W ∈ Rm×d

S n×n

Definition  1  (Graph  embedding  (GE)): Given  sample
domain ,  GE  is  defined  as  the  actions

 that  preserve  the  structure  of  domain X by
learning a projection matrix  and a similarity matrix

. That is,
 

min
W,S ,γ

fGE(W,S ,γ,X)

=

n∑
i=1

n∑
j=1

∥∥∥WT xi−WT x j
∥∥∥2

2 si, j+γs2
i, j

s.t.
n∑

j=1

si, j = 1,0 ≤ si, j ≤ 1 (3)

γwhere  is a parameter to be learned.
Remark 1: It is worth noting that Definition 1 is slightly dif-

ferent from the conventional one [28]. However, Definition 1
unifies  the  definitions  used  in  DA  [12],  [19],  [21],  [25],
[28]–[30] by the following three updated strategies:

a) S is given by graph mapping and is fixed during the opti-
mization process [12], [19], [21], [28], [29], [31]. In this case,
two factors need to be ensured: reliable semantic mapping and
accurate feature measurement;

b) S is  given  by  graph  mapping  and  is  updated  during  the
optimization process [30], [32]. In this case, three factors need
to  be  ensured:  reliable  semantic  mapping,  accurate  feature
measurement, and reliable information extraction in the itera-

 

TABLE I 

The Notations

Notation Dimension Description

PXs ,Ys − XsThe joint distribution of 
PXt ,Yt − XtThe joint distribution of 

d R The dimension after projection

k R The neighborhood number

W R The projection matrix

m R The dimension of a domain

n R n = ns +nt

The number of source and target samples
( )

ns R The number of source samples

nt R The number of target samples

(βs)i R xs,i

The importance weight of the semantic informa-
tion of 

(βt)i R xt,i

The importance weight of the semantic informa-
tion of 

γs R S sThe regularization parameter of 

γt R S tThe regularization parameter of 

α,λ,δ,τ R The hyper-parameters

1 Rn The row vector with all elements being one

Ys Rns The source label matrix

Ŷt Rnt The target pseudo label matrix

Xs Rm×ns The set of source samples

Xt Rm×nt The set of target samples

S s Rns×ns The similarity matrix of the source samples

S t Rnt×nt The similarity matrix of the target samples

Gs Rns×ns XsThe semantic graph of 

Gt Rnt×nt XtThe semantic graph of 

Ĝs Rns×ns
XsThe semantic graph of  organized by distance

from small to large

Ĝt Rnt×nt
XtThe semantic graph of  organized by distance

from small to large
H Rn×n The centering matrix
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tive process;
c) S is  learned  according  to  its  constraints  during  the  opti-

mization  process  [25].  In  this  case,  four  factors  should  be
guaranteed:  reliable semantic mapping,  accurate feature mea-
surement,  reliable  information  extraction  in  the  iterative  pro-
cess, and stable convergence.

Remark 2: Since strategy c) is more challenging than strate-
gies a)  and b),  in  this  paper,  we discuss GE with strategy c).
The methods that  apply the above strategies  are  compared in
the experiments.

Based  on  (3),  we  simultaneously  reduce  the  discrepancies
between  the  domains  and  explore  the  local  structures  of  the
source and target domains by (4). That is,
 

min
W,S s,S t ,γs,γt

fDA(W,Xs,Xt)

+ fGE(W,S s,γs,Xs)

+ fGE(W,S t,γt,Xt) (4)

S s = {(ss)i, j,1 ≤ i, j ≤ ns} ∈ Rns×ns S t = {(st)i, j,1 ≤ i,
j ≤ nt} ∈ Rnt×nt

where  and 
 are  the  similarity  matrices  of  the  source  and

target domains, respectively.
With the above actions, the geometric structures of the two

domains  are  explored  and  the  discrepancies  between  the  two
domains are reduced. As a result, joint knowledge of the fea-
tures is learned and good performance is obtained.

Unfortunately,  there  are  still  two  factors  that  might  hinder
the performance:

S s S t

WT X

1)  The  Interactions  of  the  Consistency  and  Specificity
Between Samples: In (4), the similarity matrices  and  are
formed by measuring the geometric distances on the subspace

,  respectively.  However,  these  actions  cannot  be  per-
formed in these two mentioned situations, i.e., a) two samples
share  a  number  of  common  features  in  different  categories;
and b) two samples share a number of specific features in the
same category.

WT X

2)  The  Samples  With  Degenerated  Features  in  the  Two
Domains: There  might  exist  some  samples  with  degenerated
features in the two domains [15], which distorts the subspace
learning.  If  the  learned  feature  space  is  distorted,  the
similarity of samples might be wrongly measured and perfor-
mance is hindered.

For  these  problems,  we  propose  GECS in  the  next  subsec-
tion.  

C.  Graph Embedding With Consistency and Specificity
To overcome the drawbacks of  (4),  we introduce GECS as

presented by Definition 2.

X = {xi}ni=1 ∈ Rm×n

Y ∈ Rn

G ∈ Rn×n gi, j =

1, yi = y j

0, yi , y j

fGECS(W,S ,γ,Υ,G,X)
fGE(W,S ,γ,X)

Definition 2 (Graph embedding with consistency and speci-
ficity  (GECS)): Let  be  a  sample  set  and

 be  the  label  matrix  of X.  Given  semantic  graph

 with each element , GECS is defi-

ned as the action  that embeds the sem-
antic graph G into the learning process of GE .
That is, 

min
W,S ,γ,Υ

fGECS(W,S ,γ,Υ,G,X)

=

n∑
i=1

n∑
j=1

∥∥∥WT xi−WT x j
∥∥∥2

2 si, j

+ ∥Υ(S −G)∥2F +γs2
i, j

s.t.
n∑

j=1

si, j = 1,0 ≤ si, j ≤ 1 (5)

Υ =


√
β1 · · · 0
...

. . .
...

0 · · ·
√
βn


xi

where  is a matrix of hyper-parameters

for  balancing  the  relative  importance of the  geometric  and
semantic distances of each sample .

By (5), the objective function given by (4) is modified to
 

min
W,S s,S t ,γs,γt ,Υs,Υt

fDA(W,Xs,Xt)

+ fGECS(W,S s,γs,Υs,Gs,Xs)

+ fGECS(W,S t,γt,Υt,Gt,Xt) (6)
where

Gs ∈ Rns×ns Gt ∈ Rnt×nt1)  and  are the semantic graph of the
source and target domains with each element
 

(gs)i, j =

{
1, ys,i = ys, j

0, ys,i , ys, j
(7)

and
 

(gt)i, j =

{
1, ŷt,i = ŷt, j

0, ŷt,i , ŷt, j.
(8)

Υs ∈ Rns×ns Υt ∈ Rnt×nt2)  and  are matrices of hyper-parame-
ters of the source and target domains, respectively, i.e.,
 

Υs =


√

(βs)11 · · · 0
...

. . .
...

0 · · ·
√

(βs)ns

 (9)

and
 

Υt =


√

(βt)1 · · · 0
...

. . .
...

0 · · ·
√

(βt)nt

 . (10)

ŷt,i ∈ Ŷt xt,i3)  is the pseudo label of .
With these actions, two advantages are obtained:
1)  GECS  Compensates  for  Inappropriate  Assignment

Caused by the Geometric Distance: Due to the interaction of
the  consistency  and  specificity  between  samples,  the  neigh-
borhood  samples  with  different  labels  might  be  connected
with  a  large  weight,  which  breaks  the  concept  of  similarity
learning.  By  introducing  GECS,  the  neighborhood  samples
with  the  same  label  are  rewarded,  while  the  neighborhood
samples  with  different  labels  are  punished.  By  doing  so,  the
similarity is jointly measured.

2)  GECS  Reduces  the  Impact  of  Noise  Samples: Since  (4)
measures the similarity by the geometric distance, it might be
affected  by samples  with  degenerated  features.  In  (6),  GECS
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embeds  the  semantic  information  into  the  similarity  learning
and  jointly  measures  the  similarity,  which  corrects  the  inap-
propriate measurement caused by noise samples.

As a result, the similarities are remeasured under both geo-
metric  distance  and  semantic  similarity  metrics,  and  a  com-
pact structure is guaranteed. Apart from the promising perfor-
mance  of  GECS,  another  problem  catches  our  attention:
Determine  how  to  measure  the  relative  importance  between
the  geometric  distance  and  semantic  similarity  of  each  sam-
ple.

Gs GtDue to  the  involvement  of  the  semantic  graphs  and ,
the strategy proposed in [33], [34] does not work. In this case,
further  work should be done.  In the next  subsection,  we pro-
pose AGE to adaptively adjust the hyper-parameters of GECS.  

D.  Adaptive Graph Embedding
To  adaptively  adjust  the  hyper-parameters  in  GECS,  we

introduce AGE as given by Definition 3. Then, Theorem 1 is
proposed to guarantee the optimal solutions of AGE.

X = {xi}ni=1 ∈ Rm×n Y ∈ Rn

G ∈ Rn×n

gi, j =

1, yi = y j

0, yi , y j

βi
G F T

Definition  3  (Adaptive  graph  embedding  (AGE)): Let
 be a sample set,  be the label matrix

of X,  and  be  a  semantic  graph  with  each  element

. AGE is defined as the processes to update

the balance parameter  and regularization parameter γ in (5)
by the updating strategies  and  in -th iteration, respec-
tively, i.e.,
 

βTi = G(X,GT ),∀i ∈ [1,n] (11)
 

γT = F (X,GT ,βTi ),∀i ∈ [1,n]. (12)
G FThe performance of the updating strategies  and  is theo-

retically guaranteed based on the following theorem.
W ∈ Rm×d X ∈ Rm×n

G ∈ Rn×n

gi, j =

1, yi = y j

0, yi , y j
yi ∈ Y

βi

Theorem 1: Let  be a projection matrix, 
be a sample set, and  be a supervised graph with each

element ,  where  is  the  semantics  of

sample set X. To solve the optimization problem given by (11)
and (12), parameter  can be updated by
 

βi =

−
d̂i,k+1− d̂i,k

k(ĝi,k+1− ĝi,k)
, ĝi,k+1 , ĝi,k

τ, ĝi,k+1 = ĝi,k

(13)

while parameter γ can be updated by
 

γ =
1
n

n∑
i=1

(
1
2

(kd̂i,k −
k∑

j=1

d̂i, j)−βi(kĝi,k −
k∑

j=1

ĝi, j+1)) (14)

where
1) k is the neighborhood number;

x̂ j xi2)  is the j-th nearest sample from ;
di j =

∥∥∥WT xi−WT x j
∥∥∥2

2 xi

x j WT X
3)  is the distance metric of samples 

and  on the subspace ;
d̂i, j xi x̂ j

d̂i,: = {d̂i,1, d̂i,2, . . . , d̂i,n} xi

di,: = {di,1,di,2, . . . ,di,n}

4)  denotes  the  distance  between  and ,  and
 is the sorted vector of  that arranges

 in a non-decreasing order;
ĝi, j xi x̂ j5)  denotes the semantic relationship of  and , i.e., 

ĝi, j =

{1, if xi and x̂ j share the same label
0, otherwise.

(15)

τ ∈ R6)  is  an arbitrary value that  is  used to emphasize the
semantic information;
   Proof: The proof can be found in Appendix. ■

(βs)i (βt) j
1 ≤ i ≤ ns,1 ≤ j ≤ nt

γs γt

From Theorem 1, (11) and (12) are learned by (13) and (14),
respectively.  Hence,  the  hyper-parameters  and 
( ) in (6) can be updated by (13), while the
hyper-parameters  and  can  be  updated  by  (14),  respec-
tively. By doing so, the relative importance between the geo-
metric distance and semantic similarity is well-measured dur-
ing the iteration and the impact of the noise samples is further
eased. Therefore, advanced performance is achieved.  

E.  Overall Objective Function
In  this  subsection,  we give  the  objective  function of  AGE-

CS.  By  bringing  (2)  and  (5)  to  (6),  the  objective  function  of
the proposed method can be written in a matrix form as
 

min
W,S ,Υ,γs,γt

fDA(W,Xs,Xt)

+ fGECS(W,S s,γs,Υs,Gs,Xs)

+ fGECS(W,S t,γt,Υt,Gt,Xt)

= tr(WT X(M+αL)XT W)++∥Υ(S −G)∥2F
+γs(ss)2

i, j+γt(st)2
i, j

s.t.
ns∑
j=1

(ss)i, j = 1,0 ≤ (ss)i, j ≤ 1,∀i, j ∈ [1,ns]

nt∑
j=1

(st)i, j = 1,0 ≤ (st)i, j ≤ 1,∀i, j ∈ [1,nt]

WT XHXT W = I (16)
where

X = [Xs,Xt]1)  denotes the sample set of the two domains;
M0

Xs Xt
∑C

c=1 Mc

M = µM0+ (1−µ)∑C
i=1 Mc

2)  is  a  matrix  that  measures  the  marginal  distribution
between  and  by  (17),  while  computes  their
conditional  distribution  according  to  (18).  By  combining  the
above matrices  together,  measures
the marginal and conditional distributions jointly;
 

(M0)i, j =



1
n2

s
, xi, x j ∈ Xs

1
n2

t
, xi, x j ∈ Xt

− 1
nsnt
, otherwise

(17)

 

(Mc)i, j =



1
(nc

s)2 , xi, x j ∈ Xc
s

1
(nc

t )2 , xi, x j ∈ Xc
t

− 1
nc

snc
t
,

{
xi ∈ Xc

s ∧ x j ∈ Xc
t

x j ∈ Xc
s ∧ xi ∈ Xc

t

0 otherwise.

(18)
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L = D−S ∈ Rn×n D ∈ Rn×n

Di,i =
∑n

j=1 si, j S =

S s 0
0 S t


3)  is the Laplacian matrix,  is the

degree  matrix  whose  diagonal  element  is  calculated  by

,  and  is  the  learned  similarity

matrix of the two domains; and

Υ =

Υs 0
0 Υt

4)  is a group of parameters of X, which gives

the weight of the semantics.  

F.  Optimization Process
Υs Υt

γs γt

According to (16), there are six variables, i.e., , , S, W,
, and  that need to be optimized.
Before presenting the optimization process, we give the fol-

lowing symbols.
x̂s, j xs,i1)  is the j-th nearest source sample from ;
x̂t, j xt,i2)  is the j-th nearest target sample from ;
(d̂s)i, j = ∥xs,i− xs, j∥22 xs,i x̂s, j3)  is the distance between  and ;
(d̂t)i, j = ∥xt,i− xt, j∥22 xt,i x̂t, j4)  is the distance between  and ;
Ĝs ∈ Rns×ns Xs5)  is the sorted semantic graph of  with each

element giving as
 

(ĝs)i, j =

{1, if xs,i and x̂s, j share the same label
0, otherwise.

(19)

Ĝt ∈ Rnt×nt Xt6)  is  the  sorted  semantic  graph  of  with  each
element giving as
 

(ĝt)i, j =

{
1, if xt,i and x̂t, j share the same pseudo label
0, otherwise.

(20)

Then,  we  update  each  of  the  variables  alternatively  while
keeping the others fixed.

Υs Υt (βs)i (βt)i1) Update  and : According to (13),  and  are
updated by
 

(βs)i =


(d̂s)i,k+1− (d̂s)i,k

k((ĝs)i,k+1− (ĝs)i,k)
, (ĝs)i,k+1 , (ĝs)i,k

τ, (ĝs)i,k+1 = (ĝs)i,k

(21)

 

(βt)i =


(d̂t)i,k+1− (d̂t)i,k

k((ĝt)i,k+1− (ĝt)i,k)
, (ĝt)i,k+1 , (ĝt)i,k

τ, (ĝt)i,k+1 = (ĝt)i,k

(22)

where τ is an arbitrary value that is used to emphasize seman-
tic information.

γs γt γs γt2)  Update  and :  According  to  (14),  and  are
updated by
 

γs =
1
ns

ns∑
i=1

(
1
2

(k(d̂s)i,k −
k∑

j=1

(d̂s)i, j)

− (βs)i× (k(ĝs)i,k −
k∑

j=1

(ĝs)i, j+1)) (23)

 

γt =
1
nt

nt∑
i=1

(
1
2

(k(d̂t)i,k −
k∑

j=1

(d̂t)i, j)

− (βt)i× (k(ĝt)i,k −
k∑

j=1

(ĝt)i, j+1)). (24)

S s S t
S s S t

x̂s, j x̂t, j

3) Update S: Updating S is the same as updating  and .
According to (32),  and  can be updated row by row with
their k-nearest elements  and , respectively, i.e.,
 

(ŝs)i, j =
1

γs+ (βs)i
(−1

2
(d̂s)i, j+ (βs)i× (ĝs)i, j),∀ j ∈ [1,k]

(25)
 

(ŝt)i, j =
1

γt + (βt)i
(−1

2
(d̂t)i, j+ (βt)i× (ĝt)i, j),∀ j ∈ [1,k].

(26)
S s S t TOnce  and  are computed, we smooth S in the -th iter-

ation as
 

S T = δ
[
(S s)T 0

0 (S t)T

]
+ (1−δ)S T−1 (27)

where δ is a hyper-parameter that smooths the learning of S.
4)  Update W:  Let  the  derivative  of  (16)  with  respect  to W

be  zero,  the  solution  can  be  derived  as  a  generalized  eigen-
value-decomposition problem as
 

(X(M+αL)XT +λIm×m)W = XHXT WΘ (28)
Im×m ∈ Rm×mwhere  is an identity matrix that avoids the trivial

solution and λ is a hyper-parameter.
For a better illustration, we summarize the algorithm proce-

dure as shown in Algorithm 1.

Algorithm  1 Adaptive  Graph  Embedding  With  Consistency  and
Specificity (AGE-CS)

Xs XtInput:　 　  and : the source and target samples;
Ys　　　　　 : the source label;

　　　　　d: the dimensionality of the projection subspace;
α,λ,δ,k, τ　　　　　 : the hyper-parameters;

　　　　　T: the number of iterations;
Output:　  W: the projection matrix;

Ŷt Xt　　　　　 : the pseudo label matrix for target samples 
T̃ = 0 S = 0Initialize ; ;

Ŷt Xs XtInitialize pseudo label  by training  and ;
T̃ < Twhile:  do

T̃ ← T̃ +1;　　　　1) 
(βs)i (βt)i　　　　2) Update  and  by (21) and (22), respectively;
γs γt　　　　3) Update  and  by (23) and (24), respectively;

　　　　4) Update S by (25)–(27);
　　　　5) Update W by (28);

WT Xs WT Xt　　　　6) Train classifier f by  and ;
Ŷt　　　　7) Update  by the trained classifier f.

end while
  

G.  Time Complexity
The complexity of  the components  during the optimization

process is as follows:
Ls Lt O(n2

s)
O(n2

t )
a) The complexity of constructing matrix  and  is 

and , respectively;
M0 O(n2)b) The complexity of constructing matrix  is ;∑C

c=1 Mc O(n2)c) The complexity of constructing matrix  is ;

O(m3)
d)  The  complexity  of  solving  the  generalized  eigenvalue-

decomposition problem with respect to (28) is .
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Assume T is the number of iterations, and the overall com-
plexity of AGE-CS is
 

O(T (n2
s +n2

t +2n2+m3+m2n)) = O(T (n2+m2n+m3)).
  

IV.  Experiments

In  this  section,  we  first  describe  the  five  involved  datasets
and the experimental  settings.  Then,  comparison experiments
with other popular algorithms are given. Moreover, the param-
eter  sensitivity,  convergence  analysis,  and  ablation  experi-
ments of AGE-CS are evaluated. For the sake of reproduction,
the  source  codes  for  the  experiments  are  released  at https://
github.com/zzf495/AGE-CS. Besides, we introduce a promis-
ing  repository  that  implements  some  of  the  shallow  domain
adaptation  methods  at https://github.com/zzf495/Re-imple-
mentations-of-SDA.  

A.  Involved Datasets
In  this  paper,  we  adopt  five  widely  used  databases  for

experiments,  including  Office+Caltech10,  Office31,  Office-
Home,  ImgeCLEF-DA,  and  COIL20.  The  overview  of  the
datasets are shown in Table II and the details are as follows.

A→ D A→W A→ C, . . . , C→W

Office+Caltech10 [35] is a commonly used dataset in shal-
low  transfer  learning.  It  includes  four  sub-domains,  i.e.,  A
(Amazon),  W  (Webcam),  C  (Caltech),  and  D  (DSLR).  The
number of images for Amazon, Webcam, Caltech, and DSLR
is  958,  295,  1123,  and  157,  respectively,  with  each  domain
containing  10  classes.  In  the  experiments,  we  use  the  SURF
features extracted by [35], where the images with 800-bin his-
tograms are trained and encoded.  Interested readers  can refer
to  [35]  for  details  of  data  processing.  12  cross-domain  tasks,
e.g., , ,  and  are  conducted
for comparisons.

A→ D A→W, . . . W→ D

Office31 [36] is composed of three sub-domains, i.e., Ama-
zon (A), DSLR (D), and Webcam (W). The dataset is formed
from  4110  images  of  objects  in  31  common  categories.  Its
sub-domains  are  composed  of  online  e-commerce  pictures,
high-resolution  pictures,  and  low-resolution  pictures,  respec-
tively. In the experiments, features with 2048 dimensions are
extracted  by  using  ResNet50  and  six  tasks  are  formed,  i.e.,

, , .

Ar→ Cl Ar→ Pr . . . ,Re→ Pr

Office-Home [37]  contains  65  kinds  of  different  objects
with  30  475  original  samples  and  is  composed  of  four  sub-
domains: Art (Ar), Clipart (Cl), Product (Pr), and Real-World
(Re).  The  sizes  of  these  sub-domains  are  2427,  4365,  4439,
and 4357, respectively.  In the experiments,  we use ResNet50
models  to  extract  the  features  and  conduct  12  cross-domain
tasks, i.e., ,  , .

C→ I C→ P . . . ,P→ I

ImageCLEF-DA includes three sub-domains, i.e., Caltech-
256  (C),  ImageNet  ILSVRC2012(I),  and  Pascal  VOC2012
(P).  Each  domain  contains  600  images  of  12  categories  with
2,048 dimensions. Following [32], six cross-domain tasks, i.e.,

, , , are performed in the experiments.

[0◦,85◦]∪ [180◦,265◦]
[90◦,175◦]∪ [270◦,365◦]

→
→

COIL20 [38]  consists  of  two  domains,  i.e.,  COIL1  and
COIL2,  with 1440 images  in  each  domain.  The  dataset  is
formed  by  taking  75  images  as  the  base  and  deriving  new
images  every  five  degrees  of  rotation.  COIL1  contains  the
images  in ,  while  COIL2  contains  the
images  in .  In  the  experiments,  two
cross-domain  tasks  are  adopted,  i.e.,  COIL1  COIL2  and
COIL2  COIL1.  

B.  Comparison Method
For  comparisons,  seven  state-of-the-art  shallow  transfer

learning methods are introduced:
Domain  Invariant  and  Class  Discriminative  Feature

Learning  (DICD,  2018) [22]  which  jointly  minimizes  the
marginal  distribution,  conditional  distribution,  and  intra-class
scatter, while maximizes the inter-class scatter.

Easy  Transfer  Learning  (EasyTL,  2019) [39]  which  uti-
lizes  intra-domain  programming  to  exploit  the  intra-domain
structures.

Discriminative  Joint  Probability  Maximum  Mean  Dis-
crepancy  (DJP-MMD, 2020) [40]  which  explores  the  trans-
ferability and discriminability of the domains under the inde-
pendence assumption.

Geometrical  Preservation  and  Distribution  Alignment
(GPDA, 2021) [21] which jointly utilizes the maximum mean
discrepancy (MMD), manifold learning, and scatter preserva-
tion to learn discriminative and domain-invariant features.

Progressive Distribution Alignment Based on Label Cor-
rection (PDALC, 2021) [25] which adopts label correction to
align the distribution shift caused by the target pseudo labels.

Discriminant  Geometrical  and  Statistical  Alignment
(DGSA,  2022) [24]  which  adopts  density  peak  landmark
selection  and  manifold  learning  to  mine  the  potential  struc-
tural information of the two domains.

Incremental  Confidence  Samples  into  Classification
(ICSC,  2022) [41]  which  improves  DJP-MMD  by  progres-
sively labeling and adaptive adjustment strategy. During itera-
tions, the inappropriate estimations of the distributions as well
as the pseudo labels are corrected.  

C.  Experimental Setting
For  fair  comparisons,  the  best  results  from  the  original

papers are cited for comparison. If the results for the datasets

 

TABLE II 

Overview of the Datasets

Dataset Domain Feature Class Sample

Office+Caltech10 A, D, C, W SURF (800) 10 958/157/1123/295

Office31 A, D, W ResNet50 (2048) 31 2817/498/795

Office-Home Ar, Cl, Pr, Re ResNet50 (2048) 65 2421/4379/4428/4357

ImageCLEF-DA C, I, P ResNet50 (2048) 12 600/600/600

COIL20 COIL1, COIL2 Raw (1024) 20 720/720
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T = 10 τ = 10−3 α = 5

are  not  available,  we  grid-search  the  hyper-parameters  listed
in  the  methods  and  report  the  best  results.  For  the  proposed
method,  we  fix , ,  and .  Then,  we  grid-
search the regularization parameter λ in [0.01, 0.02, 0.05, 0.1,
0.2, 0.5, 1, 2, 5, 10], the dimension d in [10, 20, 30, 40, 50, 60,
70, 80, 90, 100], the neighborhood number k in [8, 10, 16, 32,
64], and the smooth parameter δ in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9].  

D.  Comparison Experiments

→
The experimental results are shown in Tables III–VII, where

A  C denotes that domain A is transferred to domain C. For
easy viewing, the highest accuracies are shown in bold.

→

Results on Office+Caltech10 (SURF): As shown in Table III,
AGE-CS achieves 57.10% classification accuracy and outper-
forms  all  the  compared  methods  in  average.  Compared  with
PDALC,  AGE-CS  achieves  1.77% improvement  on  average.
Finally,  AGE-CS achieves 64.75% classification accuracy on
task A  W which is 10.15% higher than PDALC.

→
→

Results on Office31 (ResNet50):  The results are shown in
Table IV.  AGE-CS  obtains  89.31% classification  accuracy
which  is  3.24% higher  than  ICSC.  Next,  AGE-CS  achieves
93.17% and  93.08% classification  accuracy  on  tasks  A  D
and A  W, which is higher than ICSC by 5.37% and 5.28%,
respectively.  Four  best  performances  out  of  six  tasks  are

achieved by AGE-CS.
Results on Office-Home (ResNet50): From Table V, AGE-

CS  achieves  nine  best  performances  with  69.66% classifica-
tion accuracy. In the experiments, AGE-CS shows its compet-
itiveness  with  PDALC,  and  achieves  0.66% improvement
compared to PDALC.

Results  on  ImageCLEF-DA  (ResNet50):  The  results  are
shown  in Table VI.  AGE-CS,  PDALC,  and  ISCS  achieves
90.60%,  89.79%,  and 88.83% classification accuracy, respec-
tively.  AGE-CS  achieves  0.81% improvement  compared  to
the PDALC and five best performances out of six tasks.

Results  on  COIL20:  As  shown  in Table VII,  AGE-CS
achieves  99.38% classification  accuracy,  while  GPDA achie-
ves 96.15% classification accuracy. Compared to PDALC and
ICSC, AGE-CS achieves 6.67% and 9.38% average improve-
ment, respectively.

Based on the experimental observations, the following con-
clusions are given:

1)  AGE-CS  is  effective.  In  the  experiments,  AGE-CS  out-
performs  PDALC,  ICSC,  and  GPDA,  and  achieves  the  best
average  performances  on  the  five  datasets.  The  promising
results  might  be  attributed  to  the  effectiveness  of  the  pro-
posed adaptive supervision graph embedding method. In other
words,  AGE-CS  appropriately  measures  the  similarity
between the samples of the two domains, and reduces the dis-

 

TABLE III 

Classification Accuracies (%) on Office+Caltech10 (SURF)

Source Target DICD EasyTL DGSA JPDA GPDA PDALC ICSC AGE-CS

C A 47.29 52.61 60.00 47.60 43.70 58.10 55.53 61.38

C W 46.44 53.90 51.90 45.76 42.40 56.60 59.32 57.63

C D 49.68 51.59 49.10 46.50 52.20 52.20 54.14 58.60

A C 42.39 42.30 47.20 40.78 40.80 47.90 42.21 44.35

A W 45.08 43.05 53.50 40.68 41.40 54.60 54.24 64.75

A D 38.85 48.41 49.70 36.94 40.10 44.60 50.96 57.96

W C 33.57 35.35 33.70 34.55 31.90 39.90 36.69 35.71

W A 34.13 38.20 40.40 33.82 35.60 47.20 40.08 40.81

W D 89.81 79.62 89.20 88.54 87.30 94.30 75.80 91.08

D C 34.64 36.06 33.90 34.73 32.50 34.00 34.19 36.95

D A 34.45 38.31 44.60 34.66 35.70 42.70 40.50 42.80

D W 91.19 86.10 87.50 91.19 84.80 91.90 85.42 93.22

AVERAGE 48.96 50.46 53.39 47.98 47.37 55.33 52.42 57.10
 

 

TABLE IV 

Classification Accuracies (%) on Office31 (ResNet50)

Source Target DICD EasyTL DGSA JPDA GPDA PDALC ICSC AGE-CS

A D 82.13 85.10 81.53 82.13 85.80 81.12 87.80 93.17

A W 84.28 83.80 81.51 86.04 87.40 81.51 87.80 93.08

D A 73.48 71.80 70.93 71.07 70.60 71.64 74.10 75.54

D W 99.12 95.10 98.11 97.74 98.40 95.97 95.00 98.74

W A 71.57 69.60 69.86 68.51 72.80 70.11 74.30 76.11

W D 99.80 96.80 99.80 99.20 99.40 97.79 97.40 99.20

AVERAGE 85.06 83.70 83.62 84.11 85.73 83.02 86.07 89.31
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crepancies of the two domains during the iteration. As a result,
the  appropriate  data  structure  is  learned,  while  the  distribu-
tions are well-aligned.

2)  AGE-CS  is  stable.  In  the  experiments,  some  compared
methods  might  lose  their  competitiveness  for  some  specific
datasets.  For  example,  ICSC  achieves  86.07% classification
accuracy  on  Office31,  while  obtaining  90% classification
accuracy on COIL. In contrast, AGE-CS achieves all the best
performance  on  the  involved  datasets,  which  demonstrates
that AGE-CS is considered to be comprehensive.  

E.  Parameter Sensitivity and Convergence Analysis

α ≤ 5 α = 10

The sensitivity of parameter α: As shown in Fig. 2(a), the
results  show  that  classification  accuracy  increases  with  the
increase of α ( ), and decreases when . Obviously,
an appropriate value of α can facilitate the transfer of the two
domains, but a large value of α might lead to large discrepan-

α = 5cies. In this case, we propose to set .

λ = 0.1 λ = 0.05

λ = 0.01

The  sensitivity  of  parameter λ:  The  results  are  shown  in
Fig. 2(b). The change in λ has a bit of impact on classification
accuracy.  AGE-CS  achieves  the  best  performances  when

 on the Office+Caltech and  on the COIL. For
the  other  datasets,  the  best  performances  are  achieved  when

. With the above observations, λ can be set as 0.01 for
most datasets, and changed for some specific tasks.

d = 20 d = 100
d = 60

d ∈ [30,100] d = 100

The  sensitivity  of  dimension d:  The  results  are  shown  in
Fig. 2(c).  AGE-CS  achieves  the  best  performance  when

 on  COIL  and  ImageCLEF-DA,  on  Office31
and  Office-Home,  and  on  Office+Caltech10,  respec-
tively.  Moreover,  the  performance  becomes  stable  when

. Therefore, we can fix  for most datasets
and change it according to specific tasks.

T = 20
Convergence  Analysis  with  respect  to  the  number  of

iteration T:  We  fix  and  run  AGE-CS  to  analyze  the

 

TABLE V 

Classification Accuracies (%) on Office-Home (ResNet50)

Source Target DICD EasyTL DGSA JPDA GPDA PDALC ICSC AGE-CS

Ar Cl 53.00 52.80 50.10 46.35 52.90 54.70 51.70 54.36

Ar Pr 73.60 72.10 68.50 60.60 73.40 76.10 71.30 75.76

Ar Re 75.70 75.90 74.20 67.62 77.10 79.50 75.70 80.22

Cl Ar 59.70 55.00 51.20 50.52 52.90 63.20 62.00 64.85

Cl Pr 70.30 65.90 67.50 62.81 66.10 75.40 70.70 76.77

Cl Re 70.60 67.60 67.70 62.59 65.60 75.10 70.70 76.52

Pr Ar 60.90 54.40 54.40 51.79 52.90 63.70 62.40 65.43

Pr Cl 49.40 46.90 46.10 47.72 44.90 52.60 50.00 53.33

Pr Re 77.70 74.70 74.50 72.09 76.10 79.80 76.00 79.89

Re Ar 67.90 63.80 60.80 59.99 65.60 69.30 68.20 68.85

Re Cl 56.20 52.30 51.20 49.99 49.70 56.00 52.40 56.86

Re Pr 79.70 78.00 77.30 74.34 79.20 82.60 79.00 83.04

AVERAGE 66.23 63.28 61.96 58.87 63.03 69.00 65.84 69.66
 

 

TABLE VI 

Classification Accuracies (%) on ImageCLEF-DA (ResNet50)

Source Target DICD EasyTL DGSA JPDA GPDA PDALC ICSC AGE-CS

C I 90.00 91.50 92.00 88.33 92.33 93.83 91.30 94.17

C P 78.17 77.70 78.00 72.42 78.51 80.71 78.70 81.39

I C 93.33 96.00 95.67 90.83 96.33 96.00 94.70 96.50

I P 80.03 78.70 80.03 75.97 79.53 80.88 80.90 80.54

P C 89.00 95.00 93.67 82.00 91.17 94.33 94.70 96.33

P I 83.50 90.30 92.50 78.83 85.67 93.00 92.70 94.67

AVERAGE 85.67 88.20 88.65 81.40 87.26 89.79 88.83 90.60
 

 

TABLE VII 

Classification Accuracies (%) on COIL20

Source Target DICD EasyTL DGSA JPDA GPDA PDALC ICSC AGE-CS

COIL1 COIL2 95.69 80.69 90.97 92.08 96.70 92.64 89.72 99.58

COIL2 COIL1 93.33 78.61 93.19 89.86 95.60 92.78 90.28 99.17

AVERAGE 94.51 79.65 92.08 90.97 96.15 92.71 90.00 99.38
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convergence  of  AGE-CS.  For  the  observation  purpose,  the
objective function values are recorded. As shown in Fig. 2(d),
the  objective  function  value  decreases  with  the  increase  in
iteration. The results indicate that the proposed method has a
good convergence property.

d = 100 α = 5 λ = 0.1 k = 10
σ = 0.1

In some emerging fields, there may not be any labels for the
target  domain,  which  makes  the  choice  of  hyper-parameters
more  difficult.  As  an  empirical  result  of  the  ablation  experi-
ment,  we  let , ,  (or  0.01), ,  and

,  and  verify  the  effectiveness  of  AGE-CS  by  some
parameter-free metrics [42]. Then, a series of heuristic search
strategies  [43]  on λ and σ can  be  conducted  to  achieve
advanced performance, and be applied in big data scenarios.  

F.  Ablation Study
The ablation experiments are conducted on the five datasets.

We fix GECS as the basic component,  and add the combina-
tions  of  the  other  two  components  to  it.  For  simplicity,  we
denote  the  components:  1)  maximum  mean  discrepancy
(MMD);  and  2)  AGE.  The  results  are  shown  in Table VIII,
and the ablation methods of AGE-CS are as follows:

●  GECS:  the  method  that  removes  both  MMD  and  AGE,
and use GECS only;

● GECS+AGE: the method that uses GECS and AGE;
● GECS+MMD: the method that uses GECS and MMD;
● AGE-CS: the method that uses GECS, MMD, and AGE.

From the  results  of Table VIII,  we  can  draw the  following
conclusions:

a) MMD is important for transfer tasks. In the experiments,
the  results  of  GECS,  GECS+MMD,  and  AGE-CS  show  that
MMD is vital  to the proper measurement of  similarity.  If  the
discrepancies between the two domains are large, AGE might
fail  to  generate  a  compact  similarity matrix.  As a  result,  per-
formance  is  degraded.  In  contrast,  AGE-CS  achieves  better
performance  than  GECS+MMD,  with  2.31%,  1.42%,  0.62%,
2.16%,  and  7.5% improvements  on  Office+Caltech10,
Office31, Office-Home, ImageCLEF-DA, and COIL, resepec-

 

TABLE VIII 

The Ablation Study of AGE-CS on Five Datasets

Methods/Accuracy GECS GECS+
AGE

GECS+
MMD AGE-CS

Components
MMD ✓ ✓

AGE ✓ ✓

Datasets

Office+Cal-
tech10 51.67 52.08 54.79 57.10

Office31 83.79 83.90 87.89 89.31

Office-Home 67.20 64.01 69.04 69.66
ImageCLEF-

DA 86.24 88.09 88.44 90.60

COIL 83.19 82.43 91.88 99.38
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Fig. 2.     The sensitivity of hyper-parameters with respect to α, λ, d, and the convergence analysis of the iteration with respect to T.
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tively.
b)  AGE  helps  improve  performance.  The  experimental

results  of  GECS  and  GECS+AGE  show  that  AGE  promotes
the  integration  of  the  two  domains,  and  improves  classifica-
tion  performance.  Finally,  by  comparing  GECS+AGE  and
AGE-CS,  we  find  that  MMD  facilitates  AGE  to  achieve  the
better performance, which confirms the significance of reduc-
ing the domain discrepancies.  

V.  Conclusion

In  this  paper,  we  propose  a  method  called  adaptive  graph
embedding  with  consistency  and  specificity  (AGE-CS)  to
address two problems of graph embedding. AGE-CS includes
two  parts:  graph  embedding  with  consistency  and  specificity
(GECS), and adaptive graph embedding (AGE). GECS jointly
learns  the  similarity  of  samples  under  the  geometric  distance
and semantic similarity metrics, while AGE adaptively adjust
the relative importance of them. By AGE-CS, compact struc-
tures are preserved while discrepancies are reduced. Both the
experimental  results  conducted on five datasets  and the abla-
tion study verify the effectiveness of AGE-CS.

Limitations: Although AGE-CS achieves promising results,
there are three problems that need to be studied in depth:

1)  Research  on  Adaptive  Strategies: In  this  study,  we  pro-
pose  Theorem 1  to  adaptively  tune  the  hyper-parameter β of
semantic  graph G.  Although  some  promising  results  are
achieved,  the  relative  importance  of  distribution  alignment
and  geometric  structure  is  not  well  addressed.  In  reality,  a
parameter-free algorithm is more promising for broad applica-
tions. Hence, further studies on the latent relationship between
constraints are required.

2) Research on Incomplete Data: Since AGE-CS measures
the  geometric  and  semantic  distance  effectively,  it  assumes
that  the  data  is  complete.  In  reality,  there  are  some  domains
with  incomplete  features.  In  this  case,  AGE-CS  might  not
work  well.  A  promising  way  is  to  complement  this  incom-
plete  data  with  information  from  its  nearest  neighbors  [44],
which is left as our follow-up work.

3) Research on Effective Algorithm: Due to the serial nature
of generalized eigen-decomposition problem, AGE-CS is dif-
ficult to extend as a parallel algorithm. In this case, an appli-
cation of  the  gradient  descent  approach [45]  may help  AGE-
CS solve this tricky problem.  

Appendix

Proof of Theorem 1: Equation (5) can be written as
 

min
sT
i,:1=1,0≤si, j≤1

n∑
i, j=1

di, jsi, j+βi

n∑
i, j

(si, j−gi, j)2+γ(si, j)2 (29)

∀i ∈ [1,n], (29) can be further written in a vector form as
 

min
sT
i,:1=1,0≤si, j≤1

∥∥∥∥∥si,:+
1

2γi
di,:

∥∥∥∥∥2
2
+
βi

γi

∥∥∥si,:−gi,:
∥∥∥2

2 (30)

γi xiwhere  is the optimal parameter of  with respect to γ.
By introducing the Lagrangian operator, (30) can be solved

by 

min
si,:

∥∥∥∥∥si,:+
1

2γi
di,:

∥∥∥∥∥2
2
+
βi

γi

∥∥∥si,:−gi,:
∥∥∥2

2+ ξ(sT
i,:1−1)

s.t. 0 ≤ si, j ≤ 1 (31)
si, jwhich indicates that the optimal solution of  is

 

si, j = (
1
γi+βi

(−1
2

di, j+βigi, j)+ ξ)+ (32)

si, j ≥ 0where ξ is a constant that makes .
si,k+1 ≤ 0For  the k-nearest  neighbor  clustering,  we  have .

Therefore,
 

sT
i,:1 =

k∑
j=1

ŝi, j = 1. (33)

By bringing (32) into (33), we get
 

k∑
j=1

((−1
2

d̂i, j+βiĝi, j)+ ξ) = 1. (34)

Hence, the value of ξ is
 

ξ =
1
k
−

k∑
j=1

ŝi, j

=
1
k
− 1
γi+βi

k∑
j=1

(−1
2

d̂i, j+βiĝi, j). (35)

0 ≤ ŝi, j ≤ 1 ŝi,k > 0 ŝi,k+1 ≤ 0Because , ,  and ,  the  following
triangle inequalities should be satisfied:
 

1
γi+βi

(− 1
2 d̂i,k +βiĝi,k)+ ξ > 0

1
γi+βi

(− 1
2 d̂i,k+1+βiĝi,k+1)+ ξ ≤ 0.

(36)

By combining (35) and (36), we get
 

1
2

(kd̂i,k −
k∑

j=1

d̂i, j)−βi(kĝi,k −
k∑

j=1

ĝi, j)−βi ≤ γi

1
2

(kd̂i,k+1−
k∑

j=1

d̂i, j)−βi(kĝi,k+1−
k∑

j=1

ĝi, j)−βi > γi.

(37)

Let
 

Ai (p) =
1
2

(d̂i,p−
k∑

j=1

d̂i, j) (38)

and
 

Bi (p) = −(kĝi,p−
k∑

j=1

ĝi j). (39)

Bringing (38) and (39) to (37), we obtain
 

Ai(k)+βiBi(k)−βi ≤ γi < Ai(k+1)+βiBi(k+1)−βi. (40)
γi γi

γi βi

Obviously, when RHS1 of  is greater than LHS2 of , the
value of  makes sense. Hence,  should satisfy
  
1 Right hand side
2 Left hand side
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Ai(k+1)+βiBi(k+1) > Ai(k)+βiBi(k)

⇔ (Bi(k+1)−Bi(k))βi > Ai(k)−Ai(k+1)

⇔ (−k(ĝi,k+1− ĝi,k))βi > Ai(k)−Ai(k+1). (41)

Ai (k)−Ai (k+1) = 1
2

(
d̂i,k − d̂i,k+1

)
≤ 0 i ∈ [1,n]

βi

Since , for all ,
 should satisfy

 
βi > −

Ai(k)−Ai(k+1)
k(ĝi,k+1− ĝi,k)

, ĝi,k > ĝi,k+1

βi ≤ −
Ai(k)−Ai(k+1)
k(ĝi,k+1− ĝi,k)

, ĝi,k < ĝi,k+1.

(42)

βiInequality (42) indicates that  can be given as
 

βi = −
Ai(k)−Ai(k+1)
k(ĝi,k+1− ĝi,k)

+ ϵ, ĝi,k − ĝi,k+1 > 0

βi = −
Ai(k)−Ai(k+1)
k(ĝi,k+1− ĝi,k)

− ϵ, ĝi,k − ĝi,k+1 < 0
(43)

ϵwhere  is a very small positive number.
limϵ ϵ = 0

βi

Since ,  within  the  error  tolerance,  (43)  indicates
that the value of  can be given by
 

βi =

−
Ai(k)−Ai(k+1)
k(ĝi,k+1− ĝi,k)

= − d̂i,k+1− d̂i,k

k(ĝi,k+1− ĝi,k)
, ĝi,k+1 , ĝi,k

τ, ĝi,k+1 = ĝi,k
(44)

τ ∈ Rwhere  is an arbitrary value used to emphasize semantic
information.

βiWhen  is learned, we can set γ as same as [34]. That is,
 

γ =
1
n

n∑
i=1

γi =
1
n

n∑
i=1

(Ai(k)+βiBi(k)−βi)

=
1
n

n∑
i=1

(
1
2

(kd̂i,k −
k∑

j=1

d̂i, j)−βi(kĝi,k −
k∑

j=1

ĝi, j+1)). (45)
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