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   Abstract—With  the  popularity  of  online  learning  in  educa-
tional settings, knowledge tracing (KT) plays an increasingly sig-
nificant role. The task of KT is to help students learn more effec-
tively  by  predicting  their  next  mastery  of  knowledge  based  on
their  historical  exercise  sequences.  Nowadays,  many  related
works  have  emerged  in  this  field,  such  as  Bayesian  knowledge
tracing  and  deep  knowledge  tracing  methods.  Despite  the
progress that has been made in KT, existing techniques still have
the following limitations: 1) Previous studies address KT by only
exploring  the  observational  sparsity  data  distribution,  and  the
counterfactual data distribution has been largely ignored. 2) Cur-
rent  works  designed for  KT only  consider  either  the  entity  rela-
tionships  between  questions  and  concepts,  or  the  relations
between two concepts, and none of them investigates the relations
among students,  questions,  and concepts,  simultaneously,  leading
to inaccurate student modeling. To address the above limitations,
we  propose  a  graph  counterfactual  augmentation  method  for
knowledge tracing.  Concretely,  to  consider  the  multiple  relation-
ships  among  different  entities,  we  first  uniform  students,  ques-
tions, and concepts in graphs, and then leverage a heterogeneous
graph convolutional  network to conduct  representation learning.
To  model  the  counterfactual  world,  we  conduct  counterfactual
transformations  on  students’ learning  graphs  by  changing  the
corresponding  treatments  and  then  exploit  the  counterfactual
outcomes  in  a  contrastive  learning  framework.  We  conduct
extensive  experiments  on  three  real-world  datasets,  and  the
experimental results demonstrate the superiority of our proposed
GraphCA  method  compared  with  several  state-of-the-art  base-
lines.
    Index Terms— Contrastive  learning,  counterfactual  representation,
graph neural network, knowledge tracing.
  

I.  Introduction

THE development of computer science and artificial intelli-
gence  has  promoted the  progress  of  the  education indus-

try. Many computer-assisted education applications have been

developed  rapidly,  especially,  large-scale  online  education.
More  and  more  researchers  are  paying  more  attention  to
developing  learning  strategies  to  help  improve  their  learning
effect  and  efficiency  in  online  learning  [1],  [2].  Though  a
large  scale  of  students’ learning  data  can  be  collected,  con-
ducting effective personalized knowledge tracing (KT) in the
online  scenario  is  a  challenging  task  due  to  its  inherent  data
sparsity issue. That is,  most students solely answered a small
number  of  questions  in  history,  leading  to  inaccurate  student
and question representation learning for KT.

Recently,  several  studies  have  been  focused  on  addressing
the  data  sparsity  issue  of  KT.  For  example,  Pandey  and
Karypis [3] focus on solving the data sparsity problem of KT
by  only  leveraging  the  students’ past  activities  that  are  rele-
vant to the given knowledge concept (KC), where a self-atten-
tion  based  approach  is  proposed.  Wang et  al.  [4]  propose  a
novel  deep  hierarchical  knowledge  tracing  (DHKT)  model,
which solves the data sparsity problem by using the hierarchi-
cal information between questions and concepts to obtain only
the rich relationships between questions and concepts. Yang et
al. [5] utilize the graph convolutional network (GCN) to cap-
ture  the  inter-question  and  inter-concept  abundant  relations
and  propose  a  graph-based  knowledge  tracing  interaction
model to mitigate the data sparsity in KT. Chen et al. [6] pro-
vide  prerequisite  relationships  between  concepts  for  KT  by
incorporating  the  knowledge  structure  information  and  creat-
ing links between questions for dealing with the data sparsity
problem.

However, the data sparsity issue in KT is still unsolved, due
to  the  following  limitations  of  existing  methods:  1)  Existing
methods for  solving the data sparsity issue omit  the usage of
counterfactual  data.  Counterfactual  data  refers  to  the  interac-
tions  that  have  not  happened,  but  could,  would,  or  might
under  differing  conditions  [7].  Following  its  definition  in
causal inference, we can further deem this kind of data as an
augmentation of the observed data, providing us with an effi-
cient  way  to  confront  the  data  sparsity  issue.  The  relations
between the observed data and counterfactual data are shown
in Fig. 1(b).  The  motivation  we  leverage  the  counterfactual
technique is that it provides us with an effective way to model
the  counterfactual  data,  which  further  helps  us  alleviate  the
data  sparsity  issue  in  KT  modeling.  Counterfactual  data  is  a
kind  of  interaction  behavior  that  is  not  observational  in  the
past, as one student can only interact (the observed) with one
question at the same time. Although the counterfactual data is
not  observational,  it  may  contain  useful  information.  For
example,  if  we  know  two  questions  examine  similar  knowl-
edge  points,  and  the  answer  for  one  of  them  has  been
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recorded,  then,  we  can  deduce  similar  answers  to  the  other
one. By doing this, we can augment the answer records of stu-
dents to alleviate the data sparsity issue. Intuitively, modeling
the  counterfactual  world  enables  us  to  consider  more  unob-
served  characteristics  of  students,  and  thus  can  learn  more
accurate representations for both students and questions. Moti-
vated by the work in [7], we generate the counterfactual data
for every student according to the following strategies (as we
have shown in Fig. 1(a), and more details can be seen in Sec-
tion  III-D):  The  question  replacement  operation  and  counter-
factual  disruption.  The  example  of  the  resulting  sub-graph  is
shown in Fig. 1(a). Counterfactual transformation can be seen
as one kind of data augmentation method.  2)  Another limita-
tion  of  existing  works  is  that  existing  studies  fail  to  capture
the  structure  information  among  multiple  entities,  i.e.,  the
relationships  among  students,  questions,  and  concepts.  And,
as the students can only interact with a small number of ques-
tions  (data  is  sparse),  directly  modeling  them  is  infeasible.
One  intuitive  way  of  dealing  with  this  issue  is  to  resort  to
other  relationships  among  different  entities.  However,  previ-
ous  works  only  consider  either  the  entity  relationships
between questions and concepts, or the relations between two
concepts,  and  none  of  them  investigates  their  relationships,
simultaneously.  To  overcome  this  challenge,  we  further  con-
sider the student-question relationship in a unified graph. We
incorporate students into the graph to further consider the stu-
dent-question-concept  relationship  mainly  because  students’
knowledge  state  can  be  modeled  by  the  questions  that  they
have  answered.  Though  some  questions  may  have  the  same
concepts,  we can still  distinguish the students by their differ-
ent answers to these questions, as we present students not only
by  the  questions,  but  also  by  their  answers  to  the  questions.
The  more  information  involved  with  a  student  we  have,  the
more likely we are to better  modeling students.  As the direct
connection with students only involves questions,  incorporat-
ing  concepts  would  not  increase  the  combinatorial  space.
Instead,  further  considering  the  concepts,  enables  us  to  learn
more  accurate  question  representations,  which  will  further
affect  students’ representation  learning.  Modeling  students,
questions,  and  concepts  in  a  unified  graph  facilitates  us  in
learning their high-order relationships. An example of model-
ing them in a unified graph is shown in Fig. 2.

To  overcome  the  above  limitations,  we  propose  a  counter-
factual graph counterfactual augmentation method for knowl-

edge tracing, namely GraphCA. Our main idea to confront the
data sparsity problem is to model the counterfactual data dis-
tribution rather than solely the observational data distribution.
Specifically,  we  aim  to  answer  the  following  counterfactual
question, “what  the  student  representation  would  be  if  we
intervene  on  the  observed  answers”.  More  concretely,  given
the observed question sequence, we first unify students, ques-
tions, and concepts in a student-question-concept (SQC) rela-
tion graph to model their higher-order relationships. Then, we
intervene  on  the  observed  answers  by  generating  interrupted
sub-graphs,  from which we can obtain counterfactual  student
representation  via  counterfactual  contrastive  graph  learning.
In  counterfactual  learning,  we  perform  counterfactual  graph
transformations from two views based on two factual observa-
tions.  First,  the  student’s  knowledge  state  represented  by  the
question  sequence  may  remain  similar  even  if  we  replace
them  with  similar  questions.  Motivated  by  this,  we  obtain
counterfactually  positive  user  representation  by  randomly
replacing similar questions within the question sequence. Sec-
ond, the student’s knowledge state is independent of the ques-
tion orders that the student has answered. As such, we achieve
the  counterfactually  positive  samples  by  randomly  changing
the  order  of  the  questions.  The  goal  of  our  counterfactual
strategies  is  to  answer  two “what  if...” questions.  The  first
strategy  that  intervenes  with  the  students  by  the  question
replacement operation tends to answer “what the student rep-
resentation  would  be  if  we  intervene  on  the  observed
answers”.  The  section  strategy  that  disrupts  students’ answer
records  by  changing  their  answer  orders  tends  to  answer
“what the student representation would be if...”.  We resort to
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Fig. 1.     An illustration of modeling unobserved data from a counterfactual perspective.
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Fig. 2.     An  example  of  modeling  the  relationships  among  students,  ques-
tions, and concepts in a unified graph.
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the  counterfactual  learning  technique  to  generate  the  aug-
mented  data  mainly  because  it  provides  us  with  an  efficient
way to explore the unobserved data, which was seldom inves-
tigated in previous works.  Another reason we leverage coun-
terfactual  learning  as  our  solution  is  that  the  augmented  data
can  help  us  to  answer  the “what  if...” questions  under  the
potential outcome framework, which cannot be guaranteed by
other  related  methods.  In  both  cases,  we  reach  the  negative
representation  by  directly  corrupting  the  student’s  original
representation  (the  details  can  be  seen  in  Section  III-E-3).
Then,  to  effectively  learn  a  more  stable  user  representation,
we further conduct  contrastive learning between the observa-
tional  and the counterfactual  user representations.  That  is,  by
contrast  with  such  out-of-distribution  hard  negative  samples,
the  learned  representations  are  potentially  more  stable,  since
they are less sensitive to noisy questions. Moreover, contrast-
ing  with  out-of-distribution  positive  samples  potentially
makes  the  learned  representations  more  accurate,  since  they
trust the indispensable samples more.

The main contributions of this work are summarized as fol-
lows:

1) We focus on the data sparsity issue of knowledge tracing
and solve it  by leveraging the counterfactual data in an inno-
vatively  devised  counterfactual  contrasting  graph  learning
method,  namely  GraphCA.  More  concretely,  we  first  obtain
the  counterfactual  positive  samples  by  generating  interrupted
sub-graphs based on two observational facts, and then learn an
enhanced  user  representation  by  a  contrastive  graph  learning
method.

2)  We  consider  the  multiple  relationships  among  students,
questions,  and  concepts  in  a  unified  heterogeneous  graph  to
enhance  the  representations  of  students  by  the  concepts
involved in questions.

3)  We  conduct  extensive  experiments  on  three  real-world
datasets, and the experimental results demonstrate the superi-
ority  of  our  method  compared  with  several  state-of-the-art
baselines.  

II.  Related Work

In  this  section,  we  briefly  review  existing  works  on  tradi-
tional  KT,  graph-based  KT,  contrastive  learning-based  KT,
the  studies  that  solve  the  data  sparsity  issue  in  KT,  and Het-
erogeneous graph neural  networks.  Then, we review and dis-
cuss the counterfactual learning that is related to our research.  

A.  Traditional KT Methods
Traditional  KT  methods  can  be  classified  into  three  cate-

gories,  i.e.,  cognitive  diagnosis  models  (CDMs),  Bayesian-
based methods, and RNN-based methods.

1)  Cognitive  Diagnosis  Model: Cognitive  diagnosis  model
(CDM)  is  a  technique  that  classifies  learners’ mastery  of
knowledge  concepts  through  their  answer  records  [8],  which
can be further divided into two categories, i.e., continuous and
discrete  modeling  methods  [9].  As  for  continuous  models,
Deonovic et  al.  [10]  propose  an  item response  theory  (IRT)-
based method to describe the students’ comprehensive knowl-
edge  state.  However,  IRT-based  methods  only  consider  the
static  proficiency  value  of  students,  which  is  insufficient  for

tracing students’ dynamic knowledge. As for discrete models,
De  La  Torre  [11]  introduce  a Q matrix  (question-concept
matrix)  with  each  dimension  representing  the  student’s  mas-
tery of the knowledge concept to model Deterministic Inputs.
But this work suggests that students’ abilities are static, which
is  inconsistent  with  the  reality  that  students’ abilities  are
dynamic and changing.

2)  Bayesian-Based  Methods: In  this  category,  Bayesian
knowledge  tracing  (BKT)  [12]  is  the  first  work  that  investi-
gates  knowledge  tracing  by  devising  a  BKT-based  method,
where a hidden Markov model (HMM) is utilized to model the
learner’s  knowledge  mastery  level  and  a  set  of  binary  vari-
ables to model student’s knowledge states. In previous studies
on BKT [13], [14], a common approach is to introduce learn-
ing parameters such as the probability of student guesses and
errors, the difficulty of the question, the ability of the student,
and the learning rate of the learner, to learn more information
about  the  student’s  learning  process.  However,  the  disadvan-
tage of the BKT-based approach is that it assumes that once a
student learns a concept,  he/she will  never forget it  [15].  But
in  fact,  students’ learning  process  is  usually  accompanied  by
severe knowledge forgetting.

3)  RNN-Based  Methods: Existing  methods  in  this  category
often tackle  KT as  a  sequential  modeling task [16]–[18].  For
example,  Piech et  al.  [18]  propose  a  deep  learning-based
knowledge  tracing  (DKT)  model  by  using  a  recurrent  neural
network  (RNN)  to  track  students’ knowledge  states.  Zhang
et  al.  [19]  propose  a  dynamic  key-value  memory  network
(DKVMN)  model  to  study  students’ mastery  level  of  each
concept.  Nagatani et  al.  [20]  further  add  students  forgetting
information  based  on  DKT  to  enhance  the  performance  pre-
diction  for  students.  Abdelrahman  and  Wang  [21]  propose
sequential key-value memory networks by unifying the recur-
rent  modeling  capability  of  DKT  and  the  memory  capability
of DKVMN to model student learning. Liu et al. [22] take into
account  the  student’s  exercising  records  and  the  text  content
of  corresponding exercises  by a  bidirectional  long short-term
memory  (LSTM)  to  learn  student  representations.  However,
this  kind  of  method  mainly  focused  on  modeling  students’
learning  sequences,  and  the  high-order  relationships  between
questions and concepts are ignored.  

B.  Graph-Based KT Methods
To  model  the  high-order  relationships  between  questions

and concepts,  researchers  have leveraged the  power  of  graph
neural  network  for  KT [23]–[26],  which  have  achieved  great
success  in  many  areas,  such  as  recommender  systems  [27],
computer  vision  [28],  and  natural  language  processing  [29].
For example, Liu et al.  [30] propose a graph-based pre-train-
ing approach by considering question-question, question-con-
cept, and concept-concept relationships in a bipartite graph to
enhance the representations of questions. Nakagawa et al. [31]
propose  a  GNN-based  knowledge  tracing  method,  which
defines  the  knowledge  structure  as  a  graph  to  transform  the
KT task into a time-series node-level classification problem in
the  GNN.  Yang et  al.  [5]  propose  a  graph-based  interaction
model for knowledge tracing model by using GCN to incorpo-
rate  the  relationship  between  questions  and  concepts  while
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considering  the  historical  state  of  the  whole  exercise.  Tong
et al. [32] utilize multiple relations of knowledge structures to
explore the relationships between concepts and consider both
temporal  and  spatial  effects  to  achieve  modeling  transfer  of
knowledge.  However,  graph-based  approaches  only  consider
the  entity  relationships  between  questions  and  concepts,  or
between two concepts, and none of them investigates the rela-
tions  among  students,  questions,  and  concepts,  simultane-
ously.  

C.  Contrastive Learning-Based KT Methods
Contrastive  learning  is  a  type  of  self-supervised  learning

method that aims at learning more robust and accurate repre-
sentations by pulling similar  representations closer and push-
ing  away  dissimilar  representations.  Contrastive  learning  has
achieved significant improvements over traditional methods in
the  area  of  natural  language  processing  [33],  [34],  computer
vision  [35],  [36],  and  recommender  systems  [37],  [38].  For
example,  Hassani  and  Khasahmadi  [39]  introduce  a  self-
supervised approach by comparing two structural views of the
graph  to  learn  node  and  graph  level  representations.  Hafidi
et al. [40] propose a graph contrastive learning framework by
maximizing the similarity between the representations of two
mapping  methods  for  the  same  node  to  learn  node  embed-
dings.  Recently,  several  works  have  also  been  focused  on
developing  contrastive  learning-based  solutions  for  KT.  For
example,  Song et  al.  [41]  propose  a  contrastive  learning
framework  to  obtain  the  effective  representation  of  knowl-
edge states and improve the ability to predict learners’ perfor-
mance. Lee et al. [42] use multiple transformers to encode stu-
dents’ learning  history  and  design  bidirectional  encoders
within a contrastive learning framework to reflect useful self-
supervised signals of historical features. However, none of the
existing  methods  solves  KT  by  contrastive  learning  from  a
counterfactual learning view, and its effectiveness needs to be
further explored.  

D.  Methods Solving Data Sparsity in KT
We notice that there are some related works that have been

focused on solving the data sparsity issue in KT. For example,
Chen et al. [6] deal with the data sparsity problem by incorpo-
rating knowledge structure to obtain prerequisite relationships
between concepts. Pandey and Kargpis [3] identify the knowl-
edge  concepts  from  the  student’s  past  activities  by  a  self-
attention network. Wang et al. [4] solve the data sparsity prob-
lem  by  using  the  hierarchical  information  between  questions
and  concepts  and  only  obtaining  the  rich  relationships
between questions  and  concepts.  Yang et  al.  [5]  mitigate  the
data  sparsity  problem  by  defining  the  relationship  between
questions  and  concepts  on  the  graph  to  explore  the  higher-
order  information.  Lee et  al.  [42]  use  contrastive  learning  to
conduct  knowledge  tracing  and  propose  four  data  augmenta-
tion strategies (CL4KT) to model students’ knowledge states.
But their strategies are different from ours in the following aspects:
1) We conduct the counterfactual  augmentations on the basis
of  graphs,  while  CL4KT  only  deals  with  sequential  data,
where the connections among the entities  are ignored.  2)  We
devise a new augmentation strategy to generate positive sam-

ples,  that  is,  we  define  the  positive  samples  by  randomly
replacing the questions that are similar to existing ones. How-
ever, all the existing methods solve the data sparsity issue by
only  modeling  the  distributions  of  observational  data,  while
the unobserved counterfactual data is not leveraged. In light of
this,  in this work we propose to solve the data sparsity prob-
lem  by  modeling  the  counterfactual  data  distribution  from  a
counterfactual perspective rather than solely the observational
data distribution.  

E.  Heterogeneous Graph Neural Networks.
Heterogeneous  graph  neural  network  (HGNN)  is  a  kind  of

graph network that  models different types of nodes and links
[43],  [44].  Compared  with  traditional  graphs,  hierarchical
graphs are more capable of expressing complex and hierarchi-
cal  relationships.  Existing  studies  on  HGNN  are  mainly
focused on link prediction [45], [46], personalized recommen-
dation  [47],  [48],  and  node  classification  [49].  For  example,
Xu et al. [45] propose a topic-aware heterogeneous graph neu-
ral  network  (THGNN)  to  hierarchically  mine  topic-aware
semantics  for  learning  link  prediction  of  multifaceted  node
representations.  Shi et  al.  [47]  devise  a  heterogeneous  graph
neural  network  for  recommendation  (HGRec),  which  obtains
node  embeddings  by  aggregating  neighbors  based  on  multi-
hop meta-paths and adding attention mechanisms to fuse rich
semantics.  Zhao et  al.  [49]  develop  a  heterogeneous  graph
structure  learning  (HGSL)  framework,  which  jointly  learns
heterogeneous  graph  and  GNN  parameters  to  improve  node
classification performance. However, none of the above stud-
ies  pays  attention  to  its  power  of  modeling  students’ knowl-
edge  state.  Inspired  by  the  capability  of  HGNN  in  modeling
the relationships among different types of entities, we further
introduce  it  to  the  KT task  to  learn  modeling  students,  ques-
tions, concepts, and their corresponding relationships.  

F.  Counterfactual Learning
Counterfactuals  are  a  process  by  which  humans  substitute

unreal  conditions  or  possibilities.  A  typical  counterfactual
problem can be described as: “what... would be if...?”. In pre-
vious studies [7], [50]–[52], counterfactual learning is usually
exploited  to  address  the  problem  of  fairness  or  improve  the
robustness  of  their  models.  For  example,  Kusner et  al.  [51]
argue  that  it  is  critical  to  correctly  address  the  causality  of
fairness by describing the process of designing fairness algo-
rithms  with  causal  inference  techniques.  Zhang et  al.  [7]
model counterfactual data from item level and interest level to
learn  accurate  and  robust  user  representations.  Besides  the
above applications, counterfactual learning has also been used
to  address  the  data  sparsity  problem in  natural  language pro-
cessing  (NLP)  [53],  computer  vision  (CV)  [54],  and  cross-
modal (e.g., visual-verbal) [55]–[57] areas, where counterfac-
tual learning is utilized to provide the data augmentations for
modeling  training.  Abbasnejad et  al.  [55]  propose  a  counter-
factual  framework  to  enrich  the  data  by  generating  a  set  of
counterfactual  examples  for  addressing  the  problem  of  data
spurious  correlation.  Chen et  al.  [56]  propose  a  model-inde-
pendent  counterfactual  sample  synthesis  training  method,
which has generated a large number of counterfactual training
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samples by considering two different synthesis mechanisms of
masking  critical  objects  or  words.  Wang et  al.  [57]  propose
the  counterfactual  cycle-consistent  (CCC)  framework,  which
applies counterfactual learning to cross-tasks in order to learn
instruction following and generation simultaneously. The data
augmentation methods of graph structure are generally catego-
rized as  node dropping,  edge perturbation,  attribute  masking,
and  subgraph-based  methods  [58]–[60].  We  notice  that  there
are also studies conducting graph data augmentations by coun-
terfactual  learning.  For  example,  Zhao et  al.  [61]  develop  a
data  augmentation-based  link  prediction  method  that  creates
counterfactual links and learns representations from observed
and counterfactual  links.  But,  their  work is  proposed for  link
prediction,  and  the  advantage  of  counterfactual  graph  data
augmentation on KT modeling is still  unexplored. In our set-
ting, we follow the definition in [62] proposed by Imbens and
Rubin. Then, we can define our counterfactual transformation
as one of  the data  augmentation methods that  generate  coun-
terfactual  data  from the unobserved world following the data
transformation strategies, by which we can answer the “what...
if...”.  Moreover,  their  work  does  not  consider  the  robustness
of the learned representations, which is further investigated in
our proposed method by combing it with contrastive learning.  

III.  Methodologies

This  section  first  introduces  the  definitions  used  in  this
work,  then  overviews  our  proposed  KT  method,  and  finally
describes each of its components in detail.  

A.  Preliminaries

sN
q1 a1), . . . , (qN aN qi

ai ∈
qi ai

ai sN
qN+1

qN+1
p(aN+1 = 1|sN ,qN+1)

Definition  1: The  knowledge  tracing  task:  Suppose  we
know a student’s historical exercise interaction sequence  =
{( , , )}, where  is the i-th question that the stu-
dent has answered, and   {0,1} represents the correctness of
the student’s  answer to .  Let  = 1 if  the answer is  correct
and  =  0,  otherwise.  Given  the  sequence  of  interactions 
and  the  next  question ,  the  task  of  KT  is  to  predict  the
probability  that  the  student  will  correctly  answer ,  with
probability .

s1 s2, . . . , s j, . . . , sn q1,q2, . . . ,qh, . . . ,qm
c1 c2, . . . ,cl, . . . ,ck

Rs [rs
jh]n×m Rq [rq

hl]
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Definition  2: Student-question-concept  (SQC)  graph:  Let
S = { , }, Q = { } and C =
{ , }  be  the  sets  of  students,  questions  and
concepts,  where m, n and k denote the numbers of questions,
students  and  concepts,  respectively.  Regarding  the  relation-
ship between students and questions, we suppose that one stu-
dent can answer multiple questions, and a question can also be
answered  by  more  than  one  student.  For  questions  and  con-
cepts, we assume that one question contains one or more con-
cepts,  and one concept  is  covered by multiple  questions,  i.e.,
there  is  a  many-to-many  relationship  between  questions  and
concepts. As thus, we can conclude two kinds of interactions
between S, Q, and C, that is, student-question interactions and
question-concept interactions,  which are respectively denoted
by  =  and  = , where r = 1 indicates the
observed interactions and r = 0 denotes the unobserved ones.

∈ ∈

Definition  3: Counterfactual  learning:  Let X be  the  set  of
contexts, T be  the  set  of  treatments,  and Y be  the  set  of  out-
come  values.  For  a  context x  X and  a  treatment t  T,  we

Yt ∈denote  the  outcome of x under  the  treatment t by  (x)  Y.
Ideally,  we  would  need  all  possible  outcomes  of x under  all
treatments to learn the causal relationships. However, in real-
ity, only one treatment is applied and thus only one outcome is
obtained when a content x is given.  

B.  Overview of GraphCA
In  this  work,  we  tend  to  answer  the  following  counterfac-

tual question, “what the student representation would be if we
intervene on the observed answers”. As we know, conducting
counterfactual  learning  usually  has  to  explore  the  following
three factors: context, treatment, and outcome, where the con-
text  is  the  given  background  variable;  the  treatment  is  the
independent  variable,  which  is  randomized;  and  the  outcome
is the dependent variable, which is related to treatment. In our
method,  we  treat  the  student  node  as  the  context X,  whether
the  student’s  answering  records  have  been  intervened  as  the
treatment T, and the student’s representation as the outcome Y.
To  answer “what  the  student  representation  would  be”,  we
construct  the  augmentation views on the  basis  of  two factual
observations. Our counterfactual transformation strategies are
developed based on existing causal inference theory, and they
also follow the SUTVA [62] assumption. The overall architec-
ture of our GraphCA is shown in Fig. 3. Specifically, we first
find the questions (from unanswered questions) that are simi-
lar to the ones she has answered. Then, we disturb her histori-
cal answers by the following two strategies: 1) We randomly
replace the questions in her historical answer record with sim-
ilarly  unanswered  questions  to  generate  the  unobserved
answer  sequence.  As  we  replace  the  questions  with  similar
ones,  we deem the disturbed sequence is  similar  to the origi-
nal one. 2) Another way to obtain unobserved student answer
records  is  to  disrupt  the  answer  sequence  of  the  same  ques-
tion set. As the disturbed answer record has the same question
set, we also deem this answer sequence has a similar meaning
to  the  original  one.  After  that,  we  achieve  students’ counter-
factual  representations  by  performing  a  graph  convolution
layer on the transformed graph, where we treat the counterfac-
tual  representations  from  the  above  generated  answer
sequences as positive samples,  and their  representation trans-
formation forms as  negative samples (the details  can be seen
in  Section  III-E-3).  Then,  we  further  conduct  contrastive
learning  on  the  original  and  counterfactual  representations  to
model students more accurately and robustly.  

C.  SQC Graph Construction

rs

rq | s ∈ S q ∈ Q c ∈C

rs rq

To  consider  the  hierarchical  relationships  among  students,
questions,  and  concepts,  we  first  model  them  in  a  unified
graph (i.e., the SQC graph), which further serves as the foun-
dation of the counterfactual graph transformation and student
representation learning. Specifically, we define G = {(s, , q,

, c)  , , } as the constructed graph that mod-
els  the  relationship  among  students,  questions,  and  concepts,
where s, q, and c denote the student s, the question q, and the
concept c,  respectively.  and  indicate  the  relationships
between  the  student-question  and  the  question-concept,
respectively. In SQC, there are three types of nodes, i.e.,  stu-
dents,  questions,  and  concepts,  and  two  kinds  of  edges,  i.e.,
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the relationships between students and questions, and the rela-
tionships  between  questions  and  concepts.  For  student ,
question ,  there  is  a  connection  between  and  only  if
the  student  interacts  with  the  question.  For  question  and
concept , if  contains , we build a connection between 
and  to indicate their question-concept relation.  

D.  Graph Data Augmentation
To  alleviate  the  inherent  data  sparsity  issue  in  the  knowl-

edge tracing task, we resort to the modeling of the counterfac-
tual  world,  which  not  only  contains  observed  data  but  also
unobserved data. To provide data foundations for counterfac-
tual  learning,  we  further  conduct  graph  transformations  to
augment  the  observed  data  by  the  following  two transforma-
tion strategies.

1)  Counterfactual  Replacement  With  Similar  Questions: In
this  work,  for  each student  node (context),  the  observed data
contains  only  the  treatment  with  true  values,  and  the  corre-
sponding  outcome  of  the  fact.  To  answer “what  the  student
representation  would  be  if  we  intervene  on  the  observed
answers”, and obtain the outcome of each student node (con-
text)  under  different  treatments,  we  intervene  with  the  stu-
dents  by  the  question  replacement  operation  [63].  Moreover,
since the answers of each student to the unanswered questions
are unknown, we use the result of the nearest observed ques-
tion as a substitute. Here, the nearest neighbor question refers
to  the  nodes  with  common  concepts  in  the  SQC  graph.  To

qk
qi

construct  the  counterfactual  sub-graphs  denoting  students’
answer  sequences,  which  have  similar  potential  outcomes  as
the corresponding factual observations, we conduct graph aug-
mentations by the following replacement strategy: 1) We first
identify the unanswered questions that are similar to the ones
that have been answered by the students. 2) Then, we perform
graph augmentation on the original sub-graph sub-G for each
student  by  randomly  replacing  the  question  nodes  with  the
most  similar  questions  as  their  substitutes  (from  the  sets  of
unanswered questions).  We obtain  the  nearest  node  to  the
replaced question node  according to the following method:
 

qk = arg min
qi,qk∈Q

{d(qi,qk)} (1)

where d(·,·)  is  used  to  measure  the  distance  between  two
nodes.  We  use  cosine  similarity  to  calculate  the  similarity
between two questions, which can express the degree of pref-
erence  between  nodes  and  learn  the  degree  of  similarity
between nodes. Its definition is shown as follows:
 

simik =
qiqk

∥ qi ∥2∥ qk ∥2
(2)

qi qk qi qkwhere  and  are  the  embeddings  of  questions  and ,
respectively.  As  we  replace  the  questions  with  similar  ones,
we deem that the disturbed sequence is similar to the original
one and the student representations we obtained through GCN
are similar to the observed student representations. When per-
forming  counterfactual  replacement,  the  number  of  replaced

 

Representation learning on the SQC graph

Layer 0
Layer ...

Representation learning on the counterfactual transformed graph
Student-question 

relation
Question-concept 

relation

Student Question Concept

S1 S2 S3 S4

Q1 Q2 Q3 Q4 Q5

C2C1 C3

Counterfactual 
transformation

sub-G

Replace questions

Change the order of 
the Questions

Go
c

Gr
c

Answered Unanswered

Question node
Concept node

Contrastive student learning

Prediction

S1' S2' S3' S4'

S1 S2 S3 S4

Obs. Coun.

Positive 
examples

Obs. Oth.

Negative 
examples

Contrastive 
loss

Contrastive student learning

 
Fig. 3.     Overview of the architecture of GraphCA.
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questions M is set as a hyper-parameter and we fine-tune it in
Section VI-B. Note that, if the length of the answer sequence
is less than M, then we replace the question sequence with the
same number of answers.

2)  Counterfactual  Disruption: The  counterfactual  replace-
ment  strategy  tends  to  obtain  the  unobserved  student  answer
records  by  replacing  already  answered  questions.  But  this
method  also  introduces  some  unanswered  questions,  which
brings  uncertainty  to  our  approach.  To  overcome  this  chal-
lenge,  another  intuitive  way  is  to  disrupt  students’ answer
records by changing their answer orders, which have the same
question  set  before  and  after  the  disturbance.  Intuitively,  the
student’s knowledge state obtained from the same question set
should  also  be  similar.  More  formally,  we  answer  the “what
if...” question  by  finding  the  potential  outcome  of  each  stu-
dent node on the counterfactual fact that the student answered
these  questions  in  different  orders,  where  the  treatment  is
denoted  as  whether  we  have  changed  the  students’ answer
orders.  Then,  how  to  generate  the  counterfactual  data  by
changing the students’ answer orders is one of our main tasks.
That is,  we tend to change the order of student’s answers,  so
that we can obtain the outcome of the student node (context)
under different treatments.

Specifically,  we  conduct  the  following  disruption  strategy
on the sub-graph: for the same student node (context), we ran-
domly  select  two question  nodes  connected  with  it,  and  then
exchange  them  on  the  sub-graph  with  their  relationships
remaining  fixed.  That  is,  when  disrupting  the  sequence  of
answers  on  the  sub-G,  we  only  change  the  question  nodes,
their  relationships  with  concept  nodes  and  student  nodes  are
unchanged. As the disturbed answer record on the sub-G still
has the same question set, we can deem this answer sequence
has a similar meaning to the original one, and the student rep-
resentation  obtained  through  the  following  graph  convolu-
tional network is still similar to the observed student represen-
tations (the outcome of the context). In experiments, we treat
the  number  of  swap  question  pairs  as  a  hyper-parameter,
whose value is set as the half length of the answer sequence if
the  length  of  a  student’s  answer  sequence  is  less  than  twice
the number of swapped question pairs.  

E.   Inducing  Counterfactual  Representations  With  Contrastive
Graph Learning

In  this  work,  we leverage  the  graph convolutional  network
(GCN)  as  the  backbone  of  our  solution,  which  provides  us
with an efficient way to induce the high-dimensional student,
question, and concept features from students’ learning graphs.
Concretely,  two  kinds  of  student  representations  (i.e.,  out-
comes),  i.e.,  the  outcomes  before  and  after  the  treatment  is
changed, are learned by two GCNs (the workflow of the learn-
ing process is shown in Fig. 3).

rs rq

1)  Inferring  Representations  From  the  Original  Student
Learning  Graph: In  the  SQC  graph,  there  are  three  kinds  of
nodes, i.e., students, questions, and concepts, and two kinds of
edges,  i.e.,  the  relationships  between  students  and  questions,
and the relationships between questions and concepts. Let s, q,
and c be noted as student nodes, question nodes, and concept
nodes,  respectively.  and  indicate  the  relationships

between  the  student-question  and  the  question-concept,
respectively.

cm
cm
Nc

m
Nc

m cm

a) Concept representation learning: In this work, we repre-
sent concepts by the questions that they belong to. For a con-
cept, its representation is learned by aggregating the informa-
tion from itself and the question nodes connected with it. For-
mally,  we  denote  the  representation  of  concept  node  in
graph G as  and the question set  that  is  directly connected
with  it  as .  Then,  we define  the  message passed from the
question node set  to  in the l-th layer GCN as
 

messagel
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1
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where  represents  the  message  passed  from
 to ,  and  are the weights and biases to be learned,

respectively.  is  the  neighbor  set  number  of .  In  addi-
tion,  to  retain  the  information  about  the  concept  node  itself,
we  add  a  self-connection  to  it.  The  aggregation  strategy  is
shown as follows:
 

messagel
cm←cm =

1
|Nc

m|
wlcl−1

m + bl (4)

messagel
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where  represents the message passed from 
to .

After  aggregating  the  message  passed  from  the  concept
itself  and  the  question,  we  use  a ReLU activation  function.
The calculation formula of the l-th layer GCN can be defined
as
 

cl
m = ReLU(messagel

cm←cm +messagel
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m
). (5)

qh qh Nq,c
h Nq,s

h
qh

Nq,c
h qh

b)  Question  representation  learning: In  the  SQC  graph,
question  nodes  are  connected  with  concepts  that  are  con-
tained  in  the  question,  as  well  as  the  students  that  have
answered the current question. Then, for a question, its repre-
sentation is learned by aggregating the information from itself
and  the  concepts  and  students  connected  with  it.  In  addition,
the students’ answers also have an impact  on question repre-
sentation learning. Hence, we describe the representation of a
question by simultaneously considering its answer. We denote
the representation of the question  as . Let  and 
be  concept  set  and  student  set  that  are  connected  with ,
respectively.  Then,  we  can  define  the  message  passed  from
the concept nodes  to  as
 

messagel
qh←Nq,c

h
=

1
|Nq,c

h |
∑

k∈Nq,c
h

wlcl−1
k + bl (6)

messagel
qh←Nc

m
Nq,c

h qh |Nq,c
h |

qh Nq,s
h qh

where  represents  the  message  passed  from
 to .  is the number of neighbor concept nodes of

. The message passed from the student nodes  to  can
be similarly defined as
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h |
where  represents  the  message  passed  from

 to .  is  the number of  neighbor student  nodes of
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qh.  Similarly,  the  message  retained  by  the  question  itself  is
denoted as
 

messagel
qh←qh

=
1
|Nq

h |
wlql−1

h + bl (8)
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where  represents  the  message  passed  from 
to .

qh

Thereafter,  we  aggregate  the  messages  passed  from  the
question  itself,  the  concept,  and  the  student,  and  achieve  the
representation of question  in the l-th layer as
 

ql
h = ReLU(messagel

qh←qh
+messagel

qh←Nq,c
h

+messagel
qh←Nq,s

h
) (9)

where ReLU is the none-linear activation function.
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c)  Student  representation  learning: Due  to  students  being
only  connected  with  the  questions  that  he/she  has  answered,
the  representation  of  a  student  is  learned  by  aggregating  the
information from himself/herself and the corresponding ques-
tions. Let  be the representation of student node , and 
be the neighbor question set.  Then, we can define the passed
messages from the question nodes  to  in the l-th layer as
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where  represents the message passed from 
to .  is  the  number  of  neighbor  nodes  of .  The  mes-
sage retained by the student itself is denoted as
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where  represents the message passed from  to
.
Similarly  to  concepts  and  questions,  we  arrive  at  the  stu-

dent’s  final  representation  by  aggregating  the  messages  from
himself/herself and the corresponding questions
 

sl
j = ReLU(messagel

s j←s j
+messagel

s j←N s
j
) (12)

sl
j s jwhere  denotes the representation of the student  in the l-th

layer.
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2)  Representation  Learning  on  the  Transformed  Counter-
factual  Graph: As  described in  Section  III-D,  we obtain  two
augmented  sub-graphs  and  by  performing  counterfac-
tual  graph  transformations  to  achieve  the  outcomes  of  our
experiments when the treatment is changed. Correspondingly,
we  can  achieve  two  types  of  student  representations  by  the
same GCN encoder,  which are further treated as the counter-
factual outcomes of students’ learning states.

G1

s j

N s,r
j

a)  Student  representation  learning  with  counterfactual
replacement: As  in  the  transformed  counterfactual  graph ,
student nodes are only connected with the questions that have
been answered by the students, we can denote the representa-
tion of  by aggregating the messages from questions. We let

 be neighbor question set. The message is denoted as
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where  represents  the  message  passed  from
 to .  is  the  number  of  neighbor  nodes  of .  The

message from the student itself is denoted as
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where  represents the message passed from  to
.
By  integrating  the  above  messages,  we  can  define  the  stu-

dent representation as follows:
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b)  Student  representation  learning  with  counterfactual  dis-
ruption: Similarly  to  the  counterfactual  graph ,  the  mes-
sages that  are passed to student  are also from himself/her-
self and the questions that he/she has answered. The message
from the question nodes is defined as
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where  represents  the  message  passed  from

 to .  is  the number of neighbor nodes of .  The
message passed from himself/herself can be defined as
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where  represents the message passed from  to
.

so
jThen, the final representation of student  can be written as
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3)  Enhance  Student  Representation  by  Contrastive  Learn-
ing: To  enhance  the  learned  student  representations,  we  fur-
ther  incorporate  contrastive  learning  objectives.  As  we  have
described in Section III-D, the student representations induced
from  the  counterfactual  graphs  indicate  similar  students’
learning states both before and after the treatment is changed,
we treat both outcomes as positive representations of students.
To make a contrast, for both transformation views, we directly
generate  the  corresponding  negative  student  representations
by a destruction function . It is denoted as
 

s̃l
j = P(sl

j) (19)

sl
j

s̃l
j

sl
j

where  indicates the originally observed student representa-
tion, and  denotes the negative student representation, which
is obtained by corrupting the observed student representations

 with  row-wise  and  column-wise  shuffling.  Consistently
with  the  transformation  views,  we  also  have  two  contrastive
learning objects, which are shown as follows:

a) Contrast with the outcome of the counterfactual replace-
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ment: We  consider  the  outcome  of  the  first  counterfactual
transformation as the positive sample, and the destructed rep-
resentation  as  the  student’s  negative  sample.  Then,  to  mini-
mize the distance between the student’s representation and the
positive  sample,  and  maximize  its  distance  with  the  negative
samples,  we  use  InfoNCE [64]  with  a  standard  binary  cross-
entropy loss as our learning objective. By doing this, we effec-
tively  learn  a  more  accurate  and  robust  representation  of  the
student. Formally, we have
 

Lcr = −
n∑

j=1

(logσ( fD(sl
j, s

l,r
j ))+ logσ(1− fD(sl

j, s̃
l
j))) (20)

sl,r
j

fD(·)
where n denotes the numbers of students,  denotes student
representation  with  counterfactual  replacement.  is  the
discriminator function that takes two vectors as input and then
scores them for consistency. We use the dot product between
the two representations to achieve discrimination.

b)  Contrast  with  the  outcome of  the  counterfactual  disrup-
tion: In  this  counterfactual  disruption  view,  we also  treat  the
outcome of the counterfactual transformation as positive sam-
ples, and students’ destruction as negative samples.

By  performing  InfoNCE  loss,  we  can  get  the  second  con-
trastive learning objective function
 

Lco = −
n∑

j=1

(logσ( fD(sl
j, s

l,o
j ))+ logσ(1− fD(sl

j, s̃
l
j))) (21)

sl,o
jwhere  denotes  student  representation  with  counterfactual

disruption. We make this contrastive learning mainly because
contrasting  the  observed  with  the  positive  representation
allows  for  learning  a  more  accurate  student  representation,
and comparing the observed with the negative sample allows
for learning a more robust student representation.  

F.  Learning Objectives

qt qt
sN

1)  Recommendation Loss: To make predictions  for  the  tar-
get question , we first combine its representation  with the
student presentation ,  and then map them through a neural
network  to  a  low-dimensional  embedding,  so  as  to  calculate
the  probability  that  the  student  answers  the  target  question
correctly
 

pN+1 = σ(W3(ReLU(W2[sN ⊕ qN+1]+ b2))+ b3) (22)
W2 W3 b2 b3 σ(x)

⊕ pN+1

where , , ,  are  the  model  parameters,  is  the
sigmoid function,  is the concatenation operation and  is
the probability that the student answers the question correctly
at Step N + 1.

The cross-entropy loss is utilized to calculate the prediction
loss by the above recommender (i.e., (22))
 

Lq = −
N∑

t=1

(at log pt + (1−at) log(1− pt)). (23)

2) Objective Function: To further consider the accuracy and
robustness of students’ representations, we then train the rec-
ommendation loss and the contrastive losses,  jointly.  That  is,
we  achieve  our  final  objective  function  by  aggregating  (23),
(20), and (21) 

L =Lq+αLcr +βLco (24)

Lcr Lco

Lcr Lco

O(m2)

O(LH2m)

where α and β are hyper-parameters to control the magnitude
of the contrastive learning,  and  denote the contrastive
losses  of  counterfactual  replacement  and  counterfactual  dis-
ruption, respectively.  and  are interpreted as maximiz-
ing  the  mutual  information  between  the  student  representa-
tions  learned  in  the  two  counterfactual  transformation  strate-
gies.  To learn the parameters,  the gradient  descent  method is
exploited.  The  computational  complexity  of  our  method
mainly contains two parts. The first one is in finding the near-
est  neighbor  question  nodes,  which  needs  to  calculate  the
node-to-node distance to find the nearest neighbor node of the
question  node,  and  its  computational  cost  is .  The  sec-
ond  one  is  in  training  the  counterfactual  learning  model,
which costs  to train the GCN encoder. Here L is the
number of GCN layers, and H is the size of the node represen-
tation.  

IV.  Experimental Settings

In this section, we first introduce our research questions and
the three real-world datasets, and then describe the evaluation
protocols,  relevant  baselines,  and  implementation  details  of
our proposed approach.  

A.  Research Questions
We  evaluate  our  proposal  by  answering  the  following

research questions:
RQ1: How does  our  proposed  GraphCA approach  perform

compared with other state-of-the-art KT methods?
RQ2: How do the student representations benefit from mod-

eling the counterfactual world and contrastive learning?
RQ3: How do the hyper-parameters (i.e., M, N, and d) affect

the performance of GraphCA?
RQ4: What  are  the  training  efficiency  and  scalability  of

GraphCA when processing large-scale data?  

B.  Datasets and Evaluation Protocols
To  evaluate  the  performance  of  our  proposed  method,  we

use  the  following  three  real-world  datasets.  We  report  statis-
tics  for  the  ASSIST2009,  ASSIST2012,  and  Algebra2006
datasets in Table I.  For each dataset,  we use 80% of  the data
as the training set and 20% of the data as the test set [3], [5].

ASSIST2009: This  dataset  is  collected  from  the  ASSIST-
ments  online  education  platform  [65],  which  is  widely  used
for  KT.  The  education  system  can  help  students  solve  prob-
lems and improve their learning abilities. For this dataset, we
remove  records  without  concepts.  This  dataset  has  3241  stu-
dents, 17 709 questions, 124 concepts, and 278 868 records.

ASSIST2012: This  dataset  is  collected  from  the  same  plat-
form as ASSIST2009. The processing of the dataset is also in
the  same  way  as  ASSIST2009.  This  dataset  has  29  018  stu-
dents, 53 086 questions, 265 concepts, and 2 711 602 records.

Bridge  Algrbra2006: Bridge  to  Algebra  2006−2007  stems
from the KDD Cup 2010 EDM Challenge [66]. This dataset is
based  on  an  algebra  course  on  the  Cognitive  Algebra  Tutor
System.  This  dataset  has  1130  students,  129  263  questions,
550 concepts, and 1 817 393 records.

We  adopt  two  commonly  used  evaluation  metrics,  area
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under the curve (AUC) [31] and accuracy (ACC) [67], to mea-
sure the performance of the GraphCA. AUC is the area under
the receiver operating characteristic (ROC) curve. ACC repre-
sents the error between the true value and the predicted value.
When  the  value  of  AUC  or  ACC  is  0.5,  it  indicates  that  the
model performs as well as the random guess. A larger value of
AUC or ACC indicates a better predictive performance of the
model.  

C.  Baseline Methods
To validate the effectiveness of our model, we compare our

GraphCA with the following baseline methods.
BKT  [12]: This  is  a  knowledge  tracing  model  based  on  a

Bayesian  network,  which  exploits  HMM  to  model  students’
knowledge state as a set of binary variables.

DKT [18]: This is the first knowledge tracing model based
on  a  deep  neural  network,  which  uses  RNN  to  model  the
learning situation of students. The input of DKT is the one-hot
encoding  of  the  student’s  knowledge  representation  and  the
output  is  a  vector  representing  the  degree  of  learner  knowl-
edge mastery.

DKVMN  [19]: This  typical  model  utilizes  the  idea  of  the
memory-enhanced  neural  network,  by  using  a  static  matrix
key  to  store  all  knowledge  concepts  and  a  dynamic  matrix
value to store and update the student’s knowledge state.

GKT [31]: This  is  a  GNN-based  knowledge  tracing  model
which  converts  knowledge  states  into  graphs  for  the  predic-
tion of student situations. At each time step, GKT updates the
new state by aggregating the states of neighbors, and the states
of neighbors are also updated.

SAKT [3]: This is a knowledge tracing model based on self-
attention.  SAKT  accomplishes  the  prediction  task  by  select-
ing more relevant KCs from the student’s past activities.

AKT  [68]: This  is  an  attention-based  network  for  knowl-
edge  tracing,  and  models  learners’ past  performance  by  con-
structing  context-aware  representations  for  questions  and
responses.

GIKT [5]: This is a graph-based knowledge tracing interac-
tion model that utilizes GCN to capture the rich relationships
between questions and concepts. GIKT takes into account the
interaction  between  the  student’s  current  state,  the  student’s
history states, the target question, and relevant concepts.

CL4KT  [42]: This  is  a  knowledge  tracing  model  based  on
contrastive  learning,  which  proposes  four  data  augmentation
methods thus capturing an effective knowledge state represen-
tation.

To better illustrate the characteristics and hierarchy of these
models, we compare the different models in Tables II and III.

Among  them,  only  the  GIKT  and  our  GraphCA  model  con-
sider  both direct  and indirect  relationships between concepts.
For graph-based KT models GKT, GIKT, and GraphCA, GKT
contains only concept nodes, i.e., the model considers only the
relationship  between  concepts;  GIKT  contains  both  question
and  concept  nodes,  i.e.,  the  model  considers  the  relationship
between  questions  and  concepts  and  between  concepts;  in
addition to the above two types of relationships, the GraphCA
model takes into account the student-question relationship by
introducing  unified  graphs  involving  students,  questions,  and
concepts as multi-entities.
 

TABLE II 

Characteristics of the Comparison Methods

Modeling concept relations Directed Undirected

BKT × × ×

DKT × × ×

DKVMN √ × ×

GKT √ √ ×

SAKT √ √ ×

AKT √ √ ×

GIKT √ √ √

CL4KT √ √ ×

GraphCA √ √ √

 
 
 

TABLE III 

The Considered Entity Relationships

Concept-concept
relations

Question-concept
relations

Student-question
relations

GKT √ × ×

GIKT √ √ ×

GraphCA √ √ √
  

D.  Implementation Details
We implement  GraphCA using the TensorFlow framework

accelerated  by  NVIDIA  RTX 2080 Ti  GPU.  By  conducting
extensive  experiments,  we  obtain  the  optimal  parameters  for
GraphCA. During the training process, we use the Adam algo-
rithm [69] to optimize the parameters of our model, the learn-
ing  rate  is  0.001,  and  the  mini-batch  size  is  64.  For  hyper-
parameters,  the  number  of  replacement  questions M is  5;  the
number of pairs of swap questions N is 5; the embedding sizes
of students, questions, concepts, and answers are all set to d =
100. The details of tuning the hyper-parameters are shown in
Section  VI-B.  We  also  use  dropout  [70]  with  the  probability
of 0.8 to prevent overfitting.  

V.  Experimental Results (RQ1)

We compare the proposed GraphCA with existing methods
on  different  datasets.  We  evaluate  the  performance  of  each
model by measuring the AUC and ACC. As shown in Table IV,
we  report  the  results  between  baseline  models  and  our
GraphCA  for  the  two  classification  metrics  on  the  three
datasets.  In  our  evaluation  phase,  we  run  all  the  experiments
ten  times  with  the  same  parameter  settings  and  report  their

 

TABLE I 

Statistics of the Datasets

Statistics
Datasets

ASSIST2009 ASSIST2012 Algebra2006

#Students 3241 29 018 1130

#Questions 17 709 53 086 129 263

#Concepts 124 265 550

#Records 278 868 2 711 602 1 817 393
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average  values.  To  clearly  show  the  significance  of  our
improvements,  all  the  comparison  results  also  include  their
standard  deviations.  The  best  results  for  AUC  and  ACC  on
different datasets are shown in bold. As can be seen from the
results, our model achieves high performance in most metrics
on  the  three  datasets.  On  the  ASSIST2009  dataset,  the  AUC
value of the GraphCA model is 79.0%, the AUC value of the
GIKT model is 77.9%, and the AUC value of the AKT model
is 78.3%.  On the ASSIST2012 dataset, the AUC value of the
GraphCA  model  is  77.8%,  which  is  slightly  better  than  the
AKT  and  GIKT  models.  On  the  Algebra2006  dataset,  the
AUC value of the GraphCA model is  78.6%,  the AUC value
of  the  GIKT model  is  77.8%,  the  AUC value  of  the  CL4KT
model  is  77.3%,  and  the  AUC  value  of  the  GKT  model  is
74.8%.

In all the baselines, the deep learning-based model has bet-
ter  performance  than  the  traditional  BKT  model,  which
demonstrates  the  effectiveness  of  deep  learning  methods  for
predicting  student  performance.  The  SAKT  model  performs
better  than  the  DKT and  DKVMN,  which  indicates  that  it  is
important to consider the relevance between the next question
and  the  student’s  past  activities.  In  addition,  both  models,
GKT  and  GIKT,  use  the  existing  knowledge  structure  to
obtain more additional useful information. From Table IV, we
can find that the prediction results of GKT and GIKT are rela-
tively better compared with other baselines. Furthermore, our
model  not  only  considers  the  relationship  between  questions
and  concepts  but  also  includes  the  relationship  between  stu-
dents  and  questions,  which  suggests  that  modeling  multiple
entities facilitate the predictive performance of the model.  

VI.  Model Analysis
  

A.  Ablation Study (RQ2)
To better understand the role of the different building blocks

in the GraphCA, we conduct ablation experiments to illustrate
the effect of each part of our model on the prediction results.
We build the GraphCA-RCRO (Remove counterfactual trans-
formation  module  for  both  views),  GraphCA-RCR  (Remove
graph transformation module for counterfactual replacement),
GraphCA-RCO  (Remove  graph  transformation  module  for
counterfactual  disruption),  and GraphCA-RCL (Remove con-

trastive  learning)  architectures  by  removing  the  counterfac-
tual  transformation  module  and  contrastive  learning  module.
The  results  of  the  four  architectures  on  the  ASSIST2009
dataset,  ASSIST2012  dataset,  and  Algebra2006  dataset  are
shown in Table V.
 

TABLE V 

Ablation Studies by Constructing
Different Architectures

Method
ASSIST2009 ASSIST2012 Algebra2006

AUC ACC AUC ACC AUC ACC

GraphCA-RCRO 0.770 0.731 0.765 0.743 0.767 0.831

GraphCA-RCR 0.779 0.734 0.770 0.739 0.769 0.830

GraphCA-RCO 0.780 0.735 0.771 0.741 0.776 0.830

GraphCA-RCL 0.784 0.739 0.770 0.747 0.777 0.835

GraphCA 0.790 0.741 0.778 0.748 0.786 0.835

 
 

GraphCA-RCRO: This  suggests  that  neither  counterfactual
replacement  of  graph  transformations  nor  counterfactual  dis-
ruption of graph transformations are considered.

GraphCA-RCR: This suggests that the graph transformation
process of counterfactual replacement is not considered.

GraphCA-RCO: This  suggests  that  the  graph  transforma-
tion process of counterfactual disruption is not considered.

GraphCA-RCL: This suggests that the contrast between the
observed  and  the  counterfactual  student  representation  is  not
considered.

The  experimental  results  are  shown  in Table V,  where  the
GraphCA  model  achieves  the  best  performance  when  per-
forming graph transformation from two views simultaneously.
That is, GraphCA has a significant facilitation effect by com-
bining  two  counterfactual  transformation  strategies.  The
above  suggests  that  it  is  also  critical  to  consider  unobserved
data  when  we  track  students’ learning  processes.  From  the
results  of  GraphCA-RCR  and  GraphCA-RCO,  we  see  that
modeling counterfactual data from two views can improve the
performance of the model. In addition, the better performance
of  GraphCA  compared  to  GraphCA-RCL  indicates  that  the
presence  of  contrastive  learning  can  learn  more  accurate  and
robust  student  representations.  The  prediction  results  of  each

 

TABLE IV 

Comparison Results on All Three Datasets in Terms of AUC and ACC

Method
ASSIST2009 ASSIST2012 Algebra2006

AUC ACC AUC ACC AUC ACC

BKT 0.651 ± 0.001 0.594 ± 0.001 0.623 ± 0.003 0.602 ± 0.003 0.642 ± 0.001 0.656 ± 0.001

DKT 0.724 ± 0.004 0.716 ± 0.003 0.711 ± 0.001 0.697 ± 0.002 0.737 ± 0.005 0.834 ± 0.002

DKVMN 0.738 ± 0.004 0.718 ± 0.001 0.723 ± 0.001 0.733 ± 0.001 0.781 ± 0.001 0.833 ± 0.001

GKT 0.743 ± 0.002 0.704 ± 0.002 0.727 ± 0.003 0.710 ± 0.001 0.748 ± 0.001 0.835 ± 0.001

SAKT 0.750 ± 0.004 0.725 ± 0.002 0.745 ± 0.002 0.738 ± 0.001 0.767 ± 0.003 0.832 ± 0.002

AKT 0.783 ± 0.005 0.737 ± 0.002 0.772 ± 0.002 0.752 ± 0.002 0.737 ± 0.004 0.830 ± 0.001

GIKT 0.779 ± 0.004 0.734 ± 0.003 0.771 ± 0.002 0.746 ± 0.002 0.778 ± 0.002 0.834 ± 0.002

CL4KT 0.764 ± 0.003 0.722 ± 0.004 0.732 ± 0.006 0.731 ± 0.002 0.773 ± 0.003 0.798 ± 0.007

GraphCA 0.790 ± 0.003 0.741 ± 0.002 0.778 ± 0.001 0.748 ± 0.002 0.786 ± 0.003 0.835 ± 0.001
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module answer RQ2 while demonstrating the effectiveness of
our GraphCA.

To evaluate the performance of our method on sparse data,
we further evaluate GraphCA by splitting the dataset into dif-
ferent  sub-collections  from  20% to  100%,  and  report  the
experimental results in Fig. 4, from which we can observe that
our  GraphCA  method  can  perform  better  than  the  GIKT
method (the  most  competitive  baseline)  on  all  three  datasets.
This  result  demonstrates  the  effectiveness  of  our  counterfac-
tual  graph  and  the  contrastive  learning  method  in  alleviating
the data sparsity issue.  

B.  Hyper-Parameter Analysis (RQ3)
Our  GraphCA  model  has  three  highly  important  hyper-

parameters:  the  first  is  the  number  of  replacement  questions
when  performing  the  counterfactual  transformation,  the  sec-
ond is the number of pairs of swap questions when generating
counterfactual  data,  and the last  is  the size  of  the embedding
dimension. In this subsection, we will investigate the effect of
different values of these three hyper-parameters on GraphCA.

1)  Impact  of  M  and  N: We  denote  the  number  of  replace-
ment  questions  as M and  the  number  of  pairs  of  swap  ques-
tions  as N.  We  conduct  experiments  on  different M and N,
where M and N are  chosen  from  {1,  5,  10},  to  illustrate  the
impact  of  hyper-parameters  on  the  prediction  performance.
From Table VI, we can find that the performance of GraphCA
varies smoothly around the peak region, which is because the
generated counterfactual data are positive samples and we do
not  change  the  semantic  representation  of  the  observed  stu-
dent to a great extent. Also, increasing the number of replace-
ment  questions  and  the  number  of  pairs  of  swap  questions
may introduce noise because the selection of questions is ran-
domly  sampled.  Although  the  performance  of  our  model
changes  smoothly,  we  can  still  observe  that  the  model  per-
forms relatively well when both M and N are 5.

2) Impact of d: We set the embedding dimensions d of stu-
dent, question, and concept to be the same. The change in the
performance of the model by changing the embedding dimen-
sion is illustrated in Fig. 5. We set d to {20, 40, 60, 80,100} to
illustrate  the  effect  of  this  hyper-parameter  on  the  prediction
performance. From Fig. 5, we can find that the prediction per-
formance  of  our  GraphCA  becomes  better  and  better  as  the
embedding dimension increases. However, the values of AUC
and ACC change very little when the dimensions reach a cer-

tain number. In our experiments, we set d = 100.  

C.  Training Efficiency and Scalability (RQ4)
To investigate  the training efficiency and scalability  of  our

GraphCA, we measure the time required for different propor-
tions  of  training  data  on  three  real-world  datasets.  Specifi-
cally,  we vary the ratio of training data in {0.2,  0.4,  0.6,  0.8,
1.0}, and the detailed training time is shown in Fig. 6. Further-
more,  we  also  include  the  linear  training  time  related  to  the
number of  training samples  to  make our  experimental  results
more  comparable.  The  linear  training  time  is  calculated
according to the linear relationship between the first two train-
ing  times  with  linearly  increasing  the  dataset  split  ratio  from
20% to  100%.  We  term  this  time  as  the  linear  time  as  we
thought  the  linear  scalability  of  our  method  should  increase
linearly with the increase of the dataset ratio. From the experi-
mental results in Fig. 6, we can observe that as the proportion
of training data increases gradually from 0.2 to 1.0, the train-
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Fig. 4.     The performance of GraphCA compared to the baseline under different sparsity degrees.
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Fig. 5.     Impact of parameter d.
 

 

TABLE VI 

Impact of Parameters M and N

Number
ASSIST2009 ASSIST2012 Algebra2006

AUC ACC AUC ACC AUC ACC

M = 1, N = 1 0.7868 0.7385 0.7778 0.7484 0.7768 0.8332

M = 1, N = 5 0.7871 0.7393 0.7774 0.7483 0.7820 0.8300

M = 5, N = 5 0.7902 0.7413 0.7783 0.7481 0.7867 0.8351

M = 5, N = 1 0.7874 0.7410 0.7777 0.7485 0.7773 0.8333

M = 1, N = 10 0.7869 0.7383 0.7767 0.7487 0.7827 0.8334

M = 10, N = 1 0.7878 0.7393 0.7770 0.7481 0.7835 0.8349

M = 5, N = 10 0.7879 0.7399 0.7780 0.7466 0.7835 0.8338

M = 10, N = 5 0.7886 0.7402 0.7778 0.7483 0.7821 0.8323
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ing  time  cost  of  our  GraphCA  grows  from  0.158×  to
0.604×  on  the  ASSIST2009  dataset,  from  1.507×  to
6.174×  on the ASSIST2012 dataset, and from 0.419×  to
2.124×  on  the  Algebra2006  dataset.  In  addition,  we  can
also observe that the actual training time of the model on the
ASSIST2009 dataset and ASSIST2012 dataset is less than the
linear training time, which demonstrates that the training time
of the model is better than we expected. The overall trend on
these  three  datasets  indicates  that  the  dependency  of  times
cost for training GraphCA on the data scale is approximately
linear.  We further compare our method with GIKT (the most
competitive  method)  on all  three  datasets  on the  basis  of  our
previous  scalability  experiments.  From  the  experimental
results,  we  can  find  that  though  our  method  can  scale  well
with  the  increase  of  the  training  data  ratio,  it  has  no  advan-
tage  over  the  baseline  method,  due  to  its  additional  counter-
factual learning cost.  

D.  Case Study
To  make  the  counterfactual  data  modeling  process  of  our

model  more  intuitive  and  understandable,  we  provide  a  case
study based  on  the  ASSIST2009 dataset.  In Fig. 7,  we  select
an answer sequence with a student sequence length of 19. The
first  row is  the student’s  observed answer records.  The ques-
tion  IDs  of  the  observed  answer  records  are  {15687, 15711,
15704, 15723, 15724, 15719, 15727, 13725, 14498, 13690,
17877, 17864, 14625, 14893, 14882, 14278, 14864, 14258,
14261}.  We  obtain  the  second  and  third  rows  of  records  by
counterfactual  transformation  strategies.  For  the  replacement
question  operation,  we  randomly  select  5  questions  from the
observed answer records for  replacement.  The indexes of  the
replaced  questions  are  {10,  6,  5,  4,  16}.  By  the  similarity
between  the  questions,  we  find  the  nearest  neighbor  to  the
replaced  question  among  the  unanswered  questions.  The  IDs
of the nearest neighboring questions are {1970, 3530, 16899,
1403, 3493}.  For  the  third  row,  we only  change the  order  of
the  questions,  without  changing  the  content  of  the  answers.
That  is,  the  second  and  third  rows  do  not  fundamentally
change  the  original  student  semantic  representation,  which
suggests  that  the  counterfactual  transformation  strategy  men-
tioned  in  our  model  is  reasonable. Fig. 8 depicts  an  example
of a student’s mastery of five knowledge concepts. From Fig. 8
we can find that  the student’s  proficiency in the pythagorean
theorem  concept,  median  concept,  and  rounding  concept

increased,  while  proficiency  in  the  circle  graph  concept
decreased.  After  answering  19  questions,  students  mastered
the pythagorean theorem concept, the median concept, and the
rounding concept, but not the circle graph concept.

Additionally, we find that our method cannot do well for the
students with only a few learning interactions. This is mainly
because we represent students by their interacted questions in
the graph, and when there are only a few records, these ques-
tions are not enough to accurately express a student’s knowl-
edge  state.  To  show  the  limitation  of  our  method,  we  ran-
domly select a student with only 8 answering records (i.e., the
length of the answer sequence is 8), and perform two counter-
factual  transformation  strategies  as  shown  in  Section  III-D.
The student’s knowledge state showing his mastery of knowl-
edge  concepts  is  presented  in Fig. 9,  from  which  we  can
observe that by answering fewer questions, we cannot capture
the significant change in his/her mastery of the concepts.  

VII.  Conclusions and Future Work

In this paper, we propose a knowledge tracing method based
on GCN. We learn question representations and student repre-
sentations by constructing the SQC graph. In addition, we per-
form  counterfactual  graph  transformations  from  two  views
based  on  two  factual  observations.  Then  we  design  con-
trastive  learning  objectives  to  learn  accurate  and  robust  stu-
dent  representations.  We  conduct  experiments  on  three  real-
world datasets, and the experimental results show that our pro-
posed GraphCA model has better performance.

In the future, we would like to consider different strategies
for  counterfactual  transformation  (e.g.,  changing  the  number
of original student answers) to implement the operations from
multiple  levels.  Otherwise,  there  might  be  some  more  effi-
cient way to obtain negative samples in the contrastive learn-
ing process.  We also notice that  some theories (e.g.,  learning
ability) may affect the results of the KT.
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Fig. 6.     The training time of GraphCA with different data ratios.
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Fig. 7.     A case study based on the ASSIST2009 dataset. In the first row, we
show the observed student answer records, and the second and third rows are
the records obtained by the counterfactual transformation of the two views.
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