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   Dear Editor,
This  letter  presents  an  intelligent  model  predictive  control  algo-

rithm  inspired  by  biological  regulatory  mechanism  and  operational
research. In terms of overall architecture, based on biological regula-
tory  system  and  operational  research  theory,  priority  factor  module
and central coordination module are innovatively added on the basis
structure of heuristic dynamic programming to carry out overall regu-
lation of the system. In internal structure, the neural network is inte-
grated with the biofeedback mechanism, and a new multi-level feed-
back  neural  network  that  can  obtain  more  feedback  information  is
proposed.  The network is  applied to  the  model  network,  action net-
work and critic network of the algorithm. The convergence speed is
greatly improved and the predictive control speed for nonlinear time-
varying systems is  improved on the premise of  ensuring the control
accuracy.  The  effectiveness  and  superiority  of  the  proposed  algo-
rithm in prediction and control are verified by experiment.

Related work: With the increasing nonlinearity and timely varia-
tion of the process control target, in order to meet the control require-
ments  of  complex  controlled  objects,  some  control  algorithms
inspired by computer technology have been developed. In 1978, Tes-
tud et al. [1] proposed the model predictive control algorithm (MPC)
and  established  the  concept  of  rolling  time  domain  optimization.
MPC have been widely used in various fields due to its good applica-
bility  and  robustness,  scholars  from  all  over  the  world  have  pro-
duced a variety of MPC. According to the structural model, MPC can
be  roughly  divided  into  non-parametric  model  prediction  [2],  [3],
predictive control based on adaptive control theory [4]−[6], and pre-
dictive control based on structural design [7]−[10]. With the develop-
ment of science, the increasingly complex controlled objects make it
difficult for traditional MPC to accurately control nonlinear and time-
varying  uncertain  system.  Zhang et  al. [11],  [12]  combined  MPC
with  other  structures,  such  as  neural  network  and  load  observer  to
improve  the  response  speed  and  robustness  of  the  algorithm.  How-
ever, these algorithms are still in the theoretical simulation stage and
need to be validated in practice. Yang et al. [13] used the distributed
MPC to regulate the Yellow River Basin, and the control effect is sta-
ble.  But,  the  model  needs  to  set  parameters  such  as  river  area  in
advance,  which  are  difficult  to  measure.  Islam  applied  the  MPC  to
the flood control of Ukai dam in India, and the algorithm could pre-
dict the flood and implement the corresponding control strategy [14].
Nevertheless,  the  system  model  was  fixed  and  was  not  suitable  for
time-varying systems. The relevant research on the MPC in the bio-
logical  regulatory  mechanism  and  operational  research  has  not
gained adequate attention, which is one of the current research moti-
vations. The algorithm proposed in this letter does not need to obtain
the  system’s  physical  parameters,  it  only  needs  the  data  of  the  con-

trolled  variables  and  related  variables,  and  over  time,  the  algorithm
can update the model to avoid model mismatch.

The  main  contributions  can  be  summarized  as  follows.  1)  A  new
intelligent  MPC,  called  a  biological-inspired  intelligent  heuristic
dynamic  programming  (Bio-int-HDP),  is  proposed  by  integrating
biological  regulatory  mechanisms  and  operational  decision.  2)  The
ultra-short  feedback mechanism of  the  endocrine system and opera-
tional decision is innovatively incorporated into a neural network and
algorithm’s new modules, its convergence speed and predictive con-
trol speed for nonlinear time-varying systems is increased by improv-
ing the structure of such neural network and algorithm’s modules. 3)
The Bio-int-HDP is applied to addressing a real-world challenge-reg-
ulating  a  multi-tributary  system.  Simulation  demonstrates  that  the
algorithm  can  successfully  achieve  high-precision,  real-time  flow
controls in the upper tributaries of the Murray River, which provides
an  effective  and  accurate  flood  warning  and  control  method  for  the
flood prone multi-tributary area.

Proposed model prediction control:
Overall structure of algorithm: Considering that the system is con-
trolled  by  multiple  variables,  based  on  the  heuristic  dynamic  pro-
gramming  (HDP),  the  priority  factor  module  is  introduced  to  opti-
mize  the  systems  control  process  based  on  the  operational  research
decision theory, and the priority factor is adjusted based on a biologi-
cal system’s regulation mechanism. At the same time, inspired by the
biological central nervous system, the central coordination module is
introduced to make real-time correction to each module according to
the deviation between the output value and the set value. The system
structure diagram of the Bio-int-HDP is shown in Fig. 1. The dotted
box  part  in Fig. 1 is  the  overall  structure  of  the  Bio-int-HDP.  The
model network module acts as the prediction model part of the con-
troller. The action network module and the priority factor module act
as  the  rolling optimization part  of  the  controller.  The critic  network
module acts as the feedback correction part of the controller.  At the
same  time,  the  central  coordination  module  coordinates  the  whole
system according to the ultra-short feedback mechanism, making the
predictive control more rapid, stable and accurate.
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Fig. 1. Structure diagram of the Bio-int-HDP predictive control system.
 

Structural  of  multi-level  feedback  neural  network: The  tradi-
tional neural network only adjusts the parameters through the devia-
tion between the output value and the real value. The feedback data is
less, the convergence speed and accuracy of the network is not satis-
factory.  The  ultra-short  feedback mechanism of  hormone regulation
refers  to  the  rapid  regulation  of  gland  hormone  concentration  on
gland secretion, which can regulate the secretion of hormone before
the regular feedback action.

Based on the ultra-short feedback regulation mechanism, the struc-
ture  of  a  BP  neural  network  is  improved.  The  structure  of  the
improved network is shown in Fig. 2. The improved neural network
adds feedback information within and between layers, which enables
the  network  to  quickly  perceive  the  internal  information  and
improves  the  convergence  speed  and  accuracy.  In  the  Bio-int-HDP,
the model network module, the action network module and the critic
network module all choose the improved biological neural network.

Calculation of the proposed algorithm:
ofModel  network module: The  forward  calculation  the  module  is

divided into five steps
 

Mm = [u(k), x(k)] (1)
 

mh1 =Wm1 × (Mm −αm1 × (1− e−Wm1×Mm/1+ e−Wm1×Mm )

−αm2 ×Wm2 × (1− e−Wm1×Mm/1+ e−Wm1×Mm )) (2)
 

x̂(k+1) =Wm2 × [(1− e−Wm1×Mm )/(1+ e−Wm1×Mm )] (3)
 

mh2 = (1− e−mh1 )/(1+ e−mh1 ) (4)
 

x(k+1) =Wm2 ×mh2 +ϑm × x̂(k+1) (5)
where Mm is the input variable, Wm1 is the weight matrix from input
layer to hidden layer, Wm2 is the weight matrix from hidden layer to
output layer, mh1 is the inactive value of hidden layer, mh2 is the acti-
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x̂(k+1)vated value of hidden layer,  and  is  the pre-output, x(k+1) is
the final output, αm1 and αm2 are the priority factors regulated by the
priority factor module, and ϑm is the optimization coefficient.

Gradient descent method is used to adjust the weight matrix of the
module. The error of the model network module is defined as
 

emp = xp(k+1)− x(k+1) (6)
 

Emp = (1/2)e2
mp = (1/2)[xp(k+1)− x(k+1)]2 (7)

where emp is the error between the real value and the predicted value,
and xp(k+1) is the real value of the system at the next moment. After
forward  calculation,  the  value  of  the  weight  matrix  is  adjusted
according to following formulas:
 

∆Wm1 = lmp ×−(∂Emp/∂Wm1) (8)
 

Wm1 =Wm1 +∆Wm1 (9)
 

∆Wm2 = lmp[−∂Emp/∂Wm2] (10)
 

Wm2 =Wm2 +∆Wm2 (11)
where lmp ∈ (0, 1) is the learning rate of the module. In the process of
system  operation, lmp will  be  regulated  in  real  time  by  the  central
coordination module according to different states of the system.
Action network module: The forward calculation of  the  module  is
divided into four steps
 

ah1 =Wa1 × (x(k)−αa1 × (1− e−Wa1×x(k)/1+ e−Wa1×x(k))

−αa2 ×Wa2 × (1− e−Wa1×x(k)/1+ e−Wa1×x(k))) (12)
 

ah2 = (1− e−ah1 )/(1+ e−ah1 ) (13)
 

û =Wa2 × [(1− e−Wa1×x(k))/(1+ e−Wa1×x(k))] (14)
 

u =Wa2 ×ah2 +ϑa × û (15)
where x(k) is the input of the module, Wa1 is the weight matrix from
input  layer  to  hidden  layer, Wa2 is  the  weight  matrix  from  hidden
layer to output layer, ah1 is the inactive value of the hidden layer, ah2
is the activated value of the hidden layer, û is the pre-output, u is the
final output, αa1 and αa2 are the priority factors regulated by the pri-
ority factor module, and ϑa is the optimization coefficient.

The  goal  of  the  module  is  to  minimize  the  system  performance
index Ĵ,  and  the  gradient  descent  method  is  used  to  adjust  the
weights.
 

∆Wa2 = lap × [−(∂Ĵ/∂Wa2)] = lap × [−(∂Ĵ/∂u)× (∂u/∂Wa2)]
(16)

 

Wa2 =Wa2 +∆Wa2 (17)
 

∆Wa1 = lap × [−(∂Ĵ/∂Wa1)] = lap × [−(∂J/∂u)× (∂u/∂Wa1)]
(18)

 

Wa1 =Wa1 +∆Wa1 (19)
lap ∈ (0,1)where  is the learning rate of the module. In the process of

system  operation, lap will  be  regulated  in  real  time  by  the  central
coordination module according to different states of the system.
Critic  network  module: The  forward  calculation  of  the  module  is
divided into three steps
 

ch1 =Wc1 × (x−αc ×Wc1) (20)
 

ch2 = (1− e−ch1 )/(1+ e−ch1 ) (21)
 

J =Wc2 × ch2 (22)
where x is the input, Wc1 is the weight matrix from the input layer to
the  hidden  layer, Wc2 is  the  weight  matrix  from the  hidden  layer  to
the output layer, ch1 is the inactivated value of the hidden layer, ch2 is
the  activated  value  of  the  hidden  layer, J is  the  performance  index

and αc is the feedback coefficient of the hidden layer.
The objective function is the error function as follow:

 

ec(k) = Ĵ(k)−U(k)− ξ× Ĵ(k+1). (23)
The goal of the module is to minimize the following formula:

 

Ec(k) = (1/2)ec(k)2. (24)
The gradient descent method is used to adjust the weights:

 

∆Wc1= lc ×−(∂Ec/∂Wc1)=
− lc × ec × [Wc2

′ × (1−mh2 ×mh2)]× x
(25)

 

Wc1 =Wc1 +∆Wc1 (26)
 

∆Wc2 = lc × [−(∂Ec/∂Wc2)] = −lc × ec × ch2 (27)
 

Wc2 =Wc2 +∆Wc2 (28)
where lc ∈ (0, 1) is the learning rate of the module. In the process of
system operation, lc will be real-time regulated by the central collab-
orative module according to different system states.
Priority factor module: Priority factor module adjusts  priority fac-
tors  according  to  the  importance  of  each  variable,  so  as  to  improve
the overall  control effect of the control system. Priority factor mod-
ule  firstly  obtains  the  average  value  of  each  input  variable  of  the
module as follow:
 

EX =
n∑

i=1

x(i)/n. (29)

Calculate the variance of each variable
 

DX =
n∑

i=1

(x(i)−EX)2/n. (30)

Calculate the covariance of variable and controlled variable
 

Cov(X,Y) = E(X−EX)(Y −EY) = EXY −EX×EY. (31)
Finally,  obtain  the  correlation  coefficient  between  each  variable

and the controlled variable
 

ρXY =Cov(X,Y)/(
√

DX×
√

DY). (32)
According to the ultra-short feedback regulation rule of biological

regulation mechanism, priority factors can be adjusted in real time.
 

(ρXiY ) =
{

fup(ρXiY ), 0 ≤ ρXiY ≤ 1
fdown(ρXiY ), −1 ≤ ρXiY < 0

(33)

that, 

fup(ρXiY ) = sign(ρXiY )× [|ρXiY |/(υ1 + |ρXiY |)] (34)
 

fdown(ρXiY ) = sign(ρXiY )× [υ2/(υ2 + |ρXiY |)] (35)
υ1 is constant when ρXᵢY ≥ 0, and υ2 is constant when ρXᵢY < 0.

The priority factors αm1, αm2, αa1, αa2 are real-time regulated along
with system control according to (29)−(35).
Central  coordination module: In  the traditional  HDP, the learning
rates are fixed values selected by experience. However, learning rate
has the corresponding optimal value according to the different state.
Based on the regulation mechanism of biological hormone secretion,
the central coordination module adjusts the learning rate according to
the control deviation of the control system, so as to improve the over-
all control effect.

The learning rate of model network module lm can be written as
 

lm = am × f (α)+βm (36)
where α is the difference between the output value of action network
module and the set value, βm is the basic learning rate of model net-
work  module  and am is  the  constant  coefficient  of  model  network
module learning rate. f(α) can be written as
 

f (α) =
{

fup(α), α ≥ 0
fdown(α), α < 0

(37)

so that,
 

fup(α) = sign(α)× [|α|/(δ1 + |α|)] (38)
 

fdown(α) = sign(α)× [1/(δ2 + |α|)] (39)
where δ1 is constant when α ≥ 0, and δ2 is constant when α < 0.

The learning rate of critic network module lc can be written as
 

lc = ac × f (α)+βc (40)
where f(α) is shown in (37), βc is the basic learning rate of the critic
network  module, αc is  the  constant  coefficient  of  the  critic  network
module learning rate.

The learning rate of action network module la can be written as 
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Fig. 2. Structure of a three-layer self-feedback BP neural network.
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la = aa × f (α)+βa (41)
where f(α) is shown in (37), βa is the basic learning rate of the action
network module, aa is the constant coefficient of the learning rate for
the action network module.

An illustrative example: In  order  to verify the predictive control
effect  of  the  Bio-int-HDP  in  a  nonlinear  time-varying  system,  the
upper tributaries of the Murray River as shown in Fig. 3 is selected as
the research objects.
 

Bringenbrong

Jingelic
Pinegrove

 
Fig. 3. Simplified diagram of relationship between rivers.
 

After  pretreatment  of  relevant  watershed  data,  six  groups  of  data
were  selected  as  input  based  on  correlation  coefficients:  the  flow
Bc(k−1)  and  level Bcl(k−1)  of  Bringenbrong,  the  flow Pc(k−1)  and
level Pcl(k−1)  of  Pinegrove,  the  flow Jc(k−1)  and  level Jcl(k−2)  of
Jingellic. The flow Jc(k) was selected as output. A total of 3000 sets
of  data  were  selected  as  training  data,  and  300  sets  of  data  were
selected  as  test  data.  The  flow  prediction  curve  is  shown  in Fig. 4,
and the comparison of flow prediction is shown in Table 1. It can be
seen that compared with the Bio-int-HDP, both self-feedback BP and
BP have  a  large  deviation  in  predicting  the  flow.  The  above  results
show that the prediction model in the algorithm can predict the future
flow well and meet the requirement of predictive control.
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Fig. 4. Comparison of prediction effect.
 
 

Table 1.  Comparison of Flow Prediction

Algorithm MAE (m3/s) MRE (%) RMSE (m3/s)
BP 1080.21 0.3727 1303.30

Self-feedback BP 604.95 0.1348 817.93
Bio-int-HDP 250.91 0.0491 396.77

 
 

In this letter, Bio-int-HDP is compared with internal model control
(IMC)  and  HDP.  The  results  are  shown  in Fig. 5.  The  end  of  the
algorithm  optimization  process  should  satisfy  one  of  the  following
termination  criteria.  1)  The  iteration  number  has  reached  the  maxi-
mum generation number. 2) The fitness value of global best solution
is  smaller  than  the  set  value,  which  is  called  iteration  convergence.
Based on the above termination criteria, the training time of the three
algorithms is statistically analyzed under the same termination crite-
ria. In order to eliminate the data contingency, the single point train-
ing time of three algorithms was carried out for 50 simulation experi-
ments, and the averaged results are shown in Table 2.

It can be seen that the Bio-int-HDP responds quickly to the predic-
tive  control  requirements  of  complex  time-varying  systems  and  is
regulated in a timely manner. Therefore, Bio-int-HDP is a new intel-
ligent algorithm superior to traditional MPC.

Conclusions: This letter proposed a model predictive control algo-
rithm  based  on  biological  regulatory  mechanism  and  operational
research  decision,  called  Bio-int-HDP.  The  structure  of  the  neural
network and HDP is improved by introducing a biological regulation
theory and operational research decision theory. Experimental results
show that the Bio-int-HDP can respond quickly to the predictive con-
trol requirements of complex time-varying systems and regulate in a
timely  manner.  The  algorithm  has  potential  in  flood  warning  and
control  since  Bio-int  HDP  has  higher  prediction  and  control  accu-
racy in multi-tributary watershed flow prediction and control. Due to

the complexity of the actual system and difficulty in obtaining data,
future  research  will  focus  on methods  to  reduce  the  amount  of  data
and  the  complexity  of  controlled  objects  while  ensuring  the  high
accuracy and applicability of the algorithm.
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Fig. 5. Comparison of control effect.
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