Machine Intelligence Research 20(5), October 2023, 640-655

www.mi-research.net DOI: 10.1007/s11633-022-1396-2

Machine Learning Methods in Solving the Boolean
Satisfiability Problem

Hui-Ling Zhen? Xijun Li2 Wangian Luo?
Yaohui Jin! Junchi Yan!

I MoE Key Laboratory of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai 200240, China

Wenxuan Guo!

Mingxuan Yuan?

2Noah’s Ark Laboratory, Huawei Ltd., Shenzhen 518129, China

Abstract: This paper reviews the recent literature on solving the Boolean satisfiability problem (SAT), an archetypal N P-complete
problem, with the aid of machine learning (ML) techniques. Over the last decade, the machine learning society advances rapidly and sur-
passes human performance on several tasks. This trend also inspires a number of works that apply machine learning methods for SAT
solving. In this survey, we examine the evolving ML SAT solvers from naive classifiers with handcrafted features to emerging end-to-end
SAT solvers, as well as recent progress on combinations of existing conflict-driven clause learning (CDCL) and local search solvers with
machine learning methods. Overall, solving SAT with machine learning is a promising yet challenging research topic. We conclude the
limitations of current works and suggest possible future directions. The collected paper list is available at https://github.com/Thinklab-

SJTU/awesome-mldco.

Keywords: Machine learning (ML), Boolean satisfiability (SAT), deep learning, graph neural networks (GNNs), combinatorial

optimization.

Citation: W. Guo, H. L. Zhen, X. Li, W. Luo, M. Yuan, Y. Jin, J. Yan. Machine learning methods in solving the Boolean satisfiability
problem. Machine Intelligence Research, vol.20, no.5, pp.640-655, 2023. http://doi.org/10.1007/s11633-022-1396-2

1 Introduction

The Boolean satisfiability problem, often referred to as
SAT, is the first proven N'P-complete probleml!l in the
field of computational complexity. This hard combinatori-
al problem consistently attracts researchers’ attention for
its wide application and for the variety of problems that
can be reduced to SAT. For theoretical interests, numer-
ous combinatorial problems can be expressed in proposi-
tional formulae and solved by running a SAT solverl?,
e.g., graph coloringl®l, vertex cover and clique detec-
tionll. It also serves as a useful tool for automated theor-
em proving, one typical case of which is the resolution of
Keller's conjecturel®l. Moreover, there are plenty of indus-
trial applications of SAT solving, such as bounded model
checking, configuration management, and equivalence
checking in circuit design. It is a major component in lo-
gic synthesis, and many SAT solvers are designed spe-
cially for this task[”. Hence, SAT solving not only pro-
motes research progress but also enables a more econom-
ical workflow.

Review

Manuscript received on July 1, 2022; accepted on November 23,
2022; published online on June 1, 2023

Recommended by Associate Editor Li-Wei Wang

Colored figures are available in the online version at https://link.
springer.com/journal/11633

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag GmbH Germany, part of Springer Nature 2023

@ Springer

Since the P versus NP problem remains unsettled, re-
searchers respect the difficulty of the SAT problem and
struggle to design efficient SAT solvers. Meanwhile, ma-
chine learning (ML), especially the surging deep learning
techniques has advanced into the combinatorial optimiza-
tion field and yielded a number of promising new aven-
ues of researchl. Different areas such as graph match-
ingl®) and mixture integer programming/l%, have been well
studied in recent years, and the SAT community is no ex-
ception. As one of the most frontier events for SAT solv-
ers, the past SAT competition has also witnessed several
winning solvers featuring machine learning techniques, in-
cluding Kissat MABI!1 12 (ranked first in SAT competi-
tion 2021) and MapleCOMSPS[!¥ (ranked first in SAT
competition 2016). In addition to the traditional solvers
enhanced with machine learning components, end-to-end
frameworks such as NeuroSAT[! seek integration of ma-
chine learning and SAT solving, which enables automatic
and organic deduction and saves human labor.

We note a few previous surveys related to machine
learning techniques in solving SAT and other hard prob-
lemsl!5: 161, Specifically, Popescu et al.ll3l focused on a
broader scope of constraint-solving problems. Another
surveyl!6l is the closest to ours, where the author re-
viewed machine learning methods in solving SAT and
quantified SAT (QSAT), especially for automated theor-
em proving. The reviewed methods in [16] were categor-

https://github.com/Thinklab-SJTU/awesome-ml4co
https://github.com/Thinklab-SJTU/awesome-ml4co
https://doi.org/10.1007/s11633-022-1396-2
https://link.springer.com/journal/11633
https://link.springer.com/journal/11633

W. Guo et al. / Machine Learning Methods in Solving the Boolean Satisfiability Problem 641

ML SAT solvers

Conjunctive normal form (CNF)

formulae encoding

Feature extraction

Optimization signals

Outputs

Literal-clause graph (LGC)
Variable-clause graph (VGC)
Literal-incidence graph (LIG)
Variable-incidence graph (VIG)

Handcrafted feature set

Representation learning with GNN

Binary satisfiability labels
Supervised | Unsatisfiable cores
Solver statistics
Formula evaluation

Unsupervised
Clause metrics (LBD)

Variable assignment

Satisfiability
4(Unsatisﬁable cores

Variable/Clause scores

Solver types

Standalone solvers

CDCL solvers

Fig. 1

ized by the way of integration of machine learning into
SAT solving. Based on its taxonomy, this survey dis-
cusses three primary patterns for this combination for
SAT solving: 1) Standalone SAT solvers with pure ma-
chine learning methods; 2) Replacing some key compon-
ents of existing conflict-driven clause learning (CDCL)
solvers with learning-directed heuristics; 3) Modifying the
local search solvers with learning-aided modules. In addi-
tion to solving the SAT problem itself with machine
learning methods, we also provide a survey of instance
generation for SAT with machine learning, which is an
emerging yet promising topic in this field. Compared to
[16], our survey focuses on more recent advancements and
unfolds in a more compact and succinct way so that read-
ers can be quickly informed of this rising area.

This survey encompasses directly optimizing SAT
solving with the aid of machine learning techniques, e.g.,
multi-layer perceptron (MLP), naive Bayes, and neural
networks, in the aforementioned three ways. Portfolio
solvers and algorithm runtime prediction are not in-
volved in this paper since it is a general technique applic-
able to other problems as well (see [17] for a survey). The
extensions of SAT, e.g., maximum satisfiability problem
(MAX-SAT), satisfiability modulo theories (SMT), and
quantified Boolean formula problem (QBF), are also bey-
ond the scope of this survey.

Stochastic local search (SLS) solvers

Challenges

Computational cost

Instance scaling

Unsatisfiability proofs

Instance generation

Overview of SAT solvers with ML techniques

The rest of the paper is organized as follows. After
giving some preliminaries in Section 2, we review three
patterns of machine-learning-based SAT solving: Section 3.1
reviews standalone ML-SAT solvers, Section 3.2 dis-
cusses CDCL solvers enhanced with ML components, and
Section 3.3 discusses learning-aided local search SAT
solvers. In Section 4, machine learning methods for SAT
instance generation are reviewed. Finally, we conclude in
Section 5. An overview of this survey is illustrated in
Fig. 1.

2 Preliminaries

This section first introduces basic definitions of the
SAT problem and some classic learning-free SAT solvers
that serve as paradigms for creating new solvers, with the
key heuristics suitable for ML-based modification high-
lighted. It also provides some background to machine
learning necessary for this survey.

2.1 Boolean satisfiability problem

In propositional logic, a Boolean formula is built from
Boolean variables (only allowed to take value True or
False) and three logic operators: conjunction (A), disjunc-
tion (V) and negation (—). The Boolean satisfiability

@ Springer

642

problem aims to determine whether there exists a way of
variable assignment so that a given Boolean formula eval-
uates to True. In the positive case, the formula is satis-
fiable, as opposed to unsatisfiable ones. If a SAT in-
stance is satisfiable, it only takes polynomial time to veri-
fy an assignment. Otherwise, its unsatisfiability can be
verified by a proof, such as clausal proofs.

Since every propositional formula can be transformed
into an equivalent formula in conjunctive normal form
(CNF), we only consider this form in the following discus-
sion. A formula in CNF consists of a conjunction of
clauses, where each clause is a disjunction of literals (a
variable or its negation).

The complexity of SAT was proved by the Cook—Levin
theoreml!l, stating that SAT is NP-complete. In other
words, if there exists a deterministic polynomial al-
gorithm for SAT, then every NP problem can be solved
by a deterministic polynomial algorithm. Currently, SAT
instances are mostly solved by optimized searching-based
methods, with the exponential worst-case complexity.

2.2 Classic SAT solvers

Formally, a solver is a procedure aiming to solve the
SAT problem: Given an input Boolean formula, a solver
is supposed to yield the judgment of its satisfiability and
provide a valid assignment if it is satisfiable. A complete
solver is able to deduce that a SAT instance is unsatis-
fiable with a proof, as opposed to incomplete algorithms
(see [18] for more details on unsatisfiability proofs).
Algorithm 1. Typical CDCL algorithm (adapted from
Algorithm 4.1 in [19])

Input: A CNF formula ¢
Function CDCL(y)

v =0 /* current assignment */

if UnitPropagation (¢, y) = = CONFLICT return
UNSAT;

dl < 0; /* decision level */

while not AllVariablesAssigned (¢, v) do
(z, v) = PickBranchingVariable(yp, v);
dl < dl + 1;
v+ vU{(z,v)k
if UnitPropagation (p, y) = = CONFLICT
B=ConflictAnalysis (¢, v);
if B < 0 return UNSAT;
else
Backtrack(y, v, 8);
dl < 3;
return SAT;
2.2.1 CDCL solvers
The CDCL algorithm, first proposed in the solver
GRASP[2V, is a popular complete SAT algorithm. As an
improvement of the davis-putnam-logemann-loveland
(DPLL) algorithm[!, its backbone is a backtracking-
based search algorithm that selects a variable at a time
for tentative assignment and backtracks chronologically

@ Springer

Machine Intelligence Research 20(5), October 2023

once the reduced formula contains an empty clause. The
primary feature of the CDCL algorithm, as suggested by
its name, is that it learns new clauses from conflicts (in-
valid partial assignments which lead to unsatisfiability)
and adds them to the original formula. The standard or-
ganization of a CDCL SAT solver is described in Al-
gorithm 1, where we pay special attention to the follow-
ing two concepts.
Variable selection
Variable selection heuristics, or branching heuristics,
find the most “promising” unassigned variable to branch
on. Popular heuristics include the VSIDS heuristicl??l and
its variants23 (e.g., EVSIDS[24). Basically, a score is re-
corded for each variable, and each time the variable with
the greatest score is selected. When a clause is learned by
a CDCL solver, the score of the involved variables is in-
creased by some amount. At regular intervals, a proced-
ure called decaying is executed. For example, all scores
are divided by some constants. In this way, variables in
more recent conflicts are preferred. Other effective scor-
ing heuristics were proposed and used in practice[2® 26],
Algorithm 2. WalkSAT algorithm?l (adapted from
Algorithm 6.2 in [19])
Input: A CNF formula ¢
Parameters: Integers MaxTries, MaxFlips; noise para-
meter p € [0, 1]
Function WalkSAT (¢)
for i <+ 1 to MazTries do
o < a random truth assignment for ¢;
for j + 1 to MaxFlips do
if o satisfies ¢ return o;
C <+ a random unsatisfied clause of y;
if 3 variable x € C with break-count = 0
vV T
else
With probability p:
v < a random variable in C}
With probability 1 — p:
v <— a variable in C with the smallest break-
count;
Flip v in o;
return FAIL;
Literal block distance and glue clauses
CDCL solvers benefit from learning from conflicts.
However, this convenience might consume a huge amount
of memory space since the number of learned clauses
grows exponentially. Therefore, it must perform clause
deletion regularly. Literal block distance (LBD) is a met-
ric proposed by [28], defined as the number of distinct de-
cision levels of the variables in a clause. LBD can meas-
ure the quality of clauses due to the empirical observa-
tion that decision levels regularly decrease during
search(28l. Tt also points out that clauses with an LBD of 2
are of vital importance and are thus termed “glue
clauses”.

W. Guo et al. / Machine Learning Methods in Solving the Boolean Satisfiability Problem 643

2.2.2 Stochastic local search (SLS) solvers

The SLS algorithms are effective for solving random
and hard combinatorial instances, a typical example of
which is WalkSATR7, as shown in Algorithm 2. As an in-
complete solver, it starts from an initial variable assign-
ment and flips the value of a selected variable at each it-
eration, until a legal assignment is found or the time lim-
it is exceeded. To avoid getting trapped in the local min-
ima, stochastic restarts are performed during the search if
the restart criterion is met. The key heuristics involved in
an SLS solver are the restart policy, initialization scheme,
and variable selection for flipping. For example, GSAT(29
chooses the variable that minimizes the number of unsat-
isfied clauses after flipping. Modern examples of SLS solv-
ers include SparrowB3, ProbSATBY, CCAnrB2, Yal-
SATER3. In addition to pure SLS solvers, there has been
an increasing interest in combining CDCL and SLS solv-
ers to create a hybrid solver. A typical example of this
hybridization is [34]. Moreover, Section 3.3 discusses how
to create new heuristics for SLS solvers with machine
learning techniques.

2.3 SAT benchmarks

The international SAT competition (SATCOMP)! is
held annually to encourage new SAT solving techniques
and benchmarks. Solvers submitted to the main track are
evaluated on hundreds of instances within 5000s. Parti-
cipants are required to contribute new benchmark in-
stances, ranging from industrial instances to combinatori-
al problems. The SATCOMP benchmarks have been
widely used in the literature for experimental evaluation.

SATLIB? consists of a benchmark suite of SAT in-
stances and a collection of SAT solvers35. There are dif-
ferent types of instances in SATLIB, including uniform
random 3-SAT, graph coloring, and planning instances.

2.4 Graph representation of Boolean for-
mulae

SAT instances have been extensively analyzed in the
form of graphs for their structural features and
measures36l. There are four straightforward graph repres-
entations of a CNF formula: 1) literal-clause graph
(LCG), 2) literal-incidence graph (LIG), 3) variable-
clause graph (VCG), and 4) variable-incidence graph
(VIG). LCG is a bipartite graph with literals on one side
and clauses on the other side, with edges connecting liter-
als to the clauses where they occur. LIG consists only of
literal nodes and two literals have an edge if they co-oc-
cur in a clause. VCG and VIG are defined similarly by
merging the positive and negative literals of the same
variables. An illustration of the above four graph repres-

1 https://satcompetition.github.io/
2 https://www.cs.ubc.ca/~hoos/SATLIB /benchm.html

entations is shown in Fig. 2. The decreasing complexity of
the four graphs suggests an increasing level of informa-
tion compression: one can recover the original CNF for-
mula from an LCG without any information loss, but
barely characterize the formula given a VIG. Therefore,
LCG and LIG are preferred in practice.

2.5 Machine learning

Machine learning is a long-standing discipline that fo-
cuses on building parameterized systems and improving
their performance through experience. Many machine
learning algorithms are intended to approximate a func-
tion, and the learning problem is to improve the accur-
acy of that functionB7. Specifically, when the function
output is discrete, the task is called classification. Other-
wise, the task of predicting continuous values is called re-
gression. For many learning algorithms, the information
in input problems is transformed and condensed through
feature extraction, either manually or by components in
the learning system.

2.5.1 Major paradigms of machine learning

Machine learning can be further categorized accord-
ing to the way of guidance from experience. When the
learning process is guided by samples of known input-out-
put pairs of the function, it is called supervised learning.
This is the most widely used form of machine learning
and various methods have been developed, including de-
cision trees, decision forests, logistic regression, support
vector machines, neural networks plus a number of other.
Conversely, unsupervised learning refers to learning with
only unlabelled data.

Another popular field of machine learning in recent
years is reinforcement learning (RL), where an agent is
trained to interact with a dynamic environment in an op-
timal way. Specifically, the goal of an agent is to maxim-
ize the rewards it receives from the environment. Rein-
forcement learning methods are popular in recent at-
tempts of solving combinatorial optimization problems
because reinforcement learning is suitable for the discrete-
ness of these hard problems. Representative RL al-
gorithms include actor-critic38 and Q-learning/39.

Over the past decade, deep learning0l has emerged as
a growing area of machine learning due to the rapid de-
velopment of computing power. One prominent feature of
deep learning models is the exponential increase in the
number of parameters. With the help of gradient-based
optimization algorithms, deep learning leads to a perform-
ance leap in various tasks.

2.5.2 Machine learning models for SAT solving

This section introduces some machine learning mod-
els and techniques that are involved in this survey, as
well as how they relate to SAT solving.

Multilayer perceptrons (MLPs)

A multilayer perceptron is a fully connected neural
network with multiple layers. It is a basic machine learn-

@ Springer

https://satcompetition.github.io/
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

644

X1
Rl (ST ¢

X2
c, X, c,

X,
X3 G X3 C3

-,

(a) LCG (b) VCG

Machine Intelligence Research 20(5), October 2023

X

X, X5

(d) VIG

Fig.2 Four graph representations of the propositional formula (z1 V z2) A (mz2 V 23) A (—z1 V 22 V —23). The dashed lines denote the
common connections between complementary literals in GNNs for message passing.

ing model that can provide a nonlinear mapping from in-
put to output. Usually, the parameters of MLPs are up-
dated through an algorithm called backpropagation.

Graph neural networks (GNNs)

Graph neural networks are neural networks that are
specialized for graph data. Inspired by convolutional
neural networks, graph neural networks extend deep
neural models to non-Euclidean domains4ll. The key
design of graph neural networks is the way of message
passing among nodes. Generally, each node aggregates in-
formation from its neighbors so it captures both node-
level features and structure information. GNN models are
closely related to ML-SAT solvers as introduced in Sec-
tion 2.4. Graph convolutional networks (GCNs) are a
type of GNNs first introduced in [42]. A GCN layer
defines a first-order approximation of a localized spectral
filter on graphs.

GNNs have been popular for modeling and solving
graph tasks from direct node/graph-level classification/*
and edge prediction3l to combinatorial tasks on
graphs(44. GNNs have also been recently applied in elec-
tronic design automation4s especially for placement/46]
and routingl4”. They are extensively used in ML-based
SAT solving due to the natural graph representations of
SAT instances.

Recurrent neural networks (RNNs)

Recurrent neural networks are models with recurrent
connections and previously input data can affect sub-
sequent output. Thus, they can model input and/or out-
put consisting of sequences of elements that are not inde-
pendent(48l. Therefore, RNNs are widely applicable to
time series data, machine translation, and music genera-
tion. Many combinatorial optimization tasks can be for-
mulated as sequential problems and solved by RNNsl49,

Generative adversarial networks (GANs)

Generative adversarial networks are deep generative
models that can be trained with little or no supervision.
As first proposed in [50], a GAN consists of a generator
and a discriminator, where the generator is trained to
produce synthetic data, and the task of the discriminator
is to distinguish between real samples and synthetic ones.
Ideally, the generator learns to generate data with the
same distribution of real samples and “fool” the discrim-
inator. GAN has been used for SAT instance generation
as discussed in Section 4.

@ Springer

3 Towards machine learning of SAT
solving

In this section, we first discuss standalone ML-SAT
solvers, which are built in a pure machine learning frame-
work. We then review the ML components in CDCL and
SLS solvers for performance boosts.

3.1 Standalone ML-SAT solvers

If we treat the SAT problem as a classification task,
many machine learning models can serve as the classifier
as long as we first extract features from input formulae,
which was tried over a decade ago. Deep learning, on the
other hand, changes the way of feature extraction and fa-
cilitates end-to-end frameworks to predict satisfiability.
This section starts with the classifiers with a handcrafted
feature set, followed by deep learning models for feature
extraction and end-to-end learning.

3.1.1 Classifiers with handcrafted features

The successful portfolio SAT solver SATzillal5l con-
structed a feature set and used ridge regression to fit a
runtime prediction function for further algorithm selec-
tion. This feature set was manually designed to describe
the property of an instance, and it consists of 48 features
in 9 categories: problem size features; variable-clause
graph features; variable graph features; balance features;
proximity to Horn formula; DPLL probing features; and
local search probing features. Despite the limitations of
human intervention, primitive statistical methods were
inspired to utilize this feature set along with basic ma-
chine learning models (e.g., MLP, decision tree, naive
Bayes, etc.) to classify SAT instances into binary categor-
ies for satisfiability prediction?5%, as summarized in
Table 1. Devlin and O’'Sullivanl?! trained and evaluated a
variety of machine learning models on crafted, industrial,
and random instances from the SAT competition and
SATLIB, achieving accuracy above 90% on most bench-
marks. Xu et al.53 focused on 3-SAT instances at the
phase transition and used decision forests with 61 fea-
tures to predict satisfiability. Danisovszky et al.[34 built
another 48-dimensional feature set with an emphasis on
special problems and clause properties. The authors ex-
perimented with different structures of neural networks as
well as basic machine learning classifiers and achieved the

W. Guo et al. / Machine Learning Methods in Solving the Boolean Satisfiability Problem 645

Table 1 Research on ML-SAT classifiers with handcrafted features

Reference ML methods

Features

Instance type Benchmark/Generator

Random forest
Best-first decision tree
[52] MLP
1-nearest neighbor with generation
Naive Bayes

SATzillal>!]

SATCOMP, Miroslav
Velev's SAT benchmark
suite®l56), SATLIB

Crafted, industrial, random
3-SAT, random

Decision forest
Decision tree

SATzilla2009[57]

Random 3-SAT [58]

MLP
Naive Bayes
[54] Support vector machine
Decision tree
Random forest

CNFStatst

- SATLIB

Linear classifier
Dense neural network
Decision tree

[55] Random forest
Gaussian Naive Bayes
Bernoulli Naive Bayes
Multinomial Naive Bayes

SATzillal>!]

Random 3-SAT SATLIB

thttp://fmv.ektf.hu/files/CnfStats.java
®http://www.miroslav-velev.com/sat benchmarks.html

best result of approximately 99% accuracy. Atkari et
al.%9] selected 23 features, including generic features and
graph properties, to predict the satisfiability of random 3-
SAT instances from SATLIB.

Although this line of work achieved high accuracy on
different benchmarks, a major drawback occurs in the
feature extraction part. The SATzilla-style feature set in-
cludes DPLL and local-search probing features, and thus
an instance is tried to be solved by different solvers be-
fore the classification. Moreover, the time for feature ex-
traction of [52] can be as high as thousands of seconds for
one instance, comparable to the runtime of a complete
solving routine. It is also a concern that handcrafted fea-
tures require expert knowledge and considerable over-
head for trial and error to devise effective features.

Deep learning, on the other hand, offers various ap-
proaches to automatically extract valuable features. Due
to the powerful fitting ability of these models, they are
capable of mining complex and underlying features that
can hardly be recognized by humans. The dimension of
the feature set is also controllable and flexible so that in-
formation is compressed to match computing resources
even when they are limited. Section 3.1.2 discusses vari-
ous deep learning models for feature extraction and SAT
solving.

3.1.2 End-to-end neural SAT solvers

As introduced in Section 2.4, CNF formulae can be
easily expressed in the form of graphs, so it is natural to
apply GNNs to graph representations of SAT instances.

Biinz and Lamm[®¥ made an early attempt from the
aspect of natural language processing: It treated the CNF
formulae as sentences in natural language with RNNs,
but it led to failure. In another trial, it used LIG repres-
entation for GNN and one-hot edge features to differenti-

ate clauses apart. Since the difficulty of random 3-SAT
instances is sensitive to the clause-to-atom ratio, it was
tested in three settings and achieved an accuracy of ap-
proximately 65%, quite above a random baseline and in-
dicating a promising direction.

The seminal work NeuroSATI (shown in Fig.3) im-
proved the above results and presented an end-to-end
framework to predict satisfiability on random instances
by a message passing neural network (MPNN). Different
from sentences in natural language, Boolean formulae
have unique properties of permutation invariance and
negation invariance3. This feature was preserved in
NeuroSAT by symmetric edge connection and message
passing. Specifically, the CNF formulae are encoded as
LCGs, and node embedding is iteratively updated in a
two-stage fashion for clauses and literals. First, each
clause updates the embedding by receiving messages from
neighboring literals. Next, each literal receives messages
from neighboring clauses and the complementary literal.
At the final layer, a scalar vote is computed for each lit-
eral that represents its confidence in predicting the for-
mula to be satisfiable, and the mean vote value decides
the final output. The network parameters are updated by
the cross-entropy loss of the label of instance and model
output using the ADAM optimizer09. Algorithm 3
demonstrates the training process of NeuroSAT. To train
and evaluate NeuroSAT with enough samples, Selsam et
al.l" proposed a distribution SR(n) (10 < n < 40), which
consists of pairs of random SAT instances on n variables
such that one element of the pair is satisfiable, the other

3The satisfiability of a formula is not affected by permuting the
variables, the clauses or the literals within a clause. It is also not
affected by negating every literal corresponding to a given

variablel14].

@ Springer

646

(X, V) A (= x,Vxy)
AN=x, VX, V=—x3)

0o 0O OO0 OO oo

g
CNF formulae

Node embeddings

Machine Intelligence Research 20(5), October 2023

Minimize cross-entropy

XX
Satisfiable
Solution = {0,1,0}
L. (a) Judgement & Solutions

Fig. 3 Pipeline of the end-to-end SAT solver NeuroSAT[4l. Input CNF formulae are transformed into LCGs, and each literal and
clause updates their embeddings from neighbors and complements. Lyote computes a vote scalar for each literal, which are aggregated to
yield the final classification. Darker red of literals indicates a higher score in voting satisfiable, and the solution is yielded from clustering

results of literal embeddings.

is unsatisfiable, and they differ by negating one literal oc-
currence in a single clause. Although the networks were
trained in a supervised way only with the label of satis-
fiability, NeuroSAT attempted to yield a solution for in-
stances with positive prediction. On SR(40), NeuroSAT
reached an accuracy of 85% and solved 70% of SAT in-
stances.
Algorithm 3. Training process of NeuroSAT[4]
Model parameters: Vector (Linit, Cinit), MLP(Lmsg,
Chsg; Lvote), LSTM(Ly, Chy)
for (instance ¢, label ¢) in training dateset do
G + LCG of p;
M € ZZ™™ « adjacency matrix of G;
C9 « Tile (Cinit,m); /*clause node embeddings */
L© « Tile (Lini;, 2n); /*literal node embeddings */
LW 0,0 «~0; /* hidden states */
fort+ 0toT —1do
(O, G = Cu((C), MY Lunsg (L))
(LD LY o Ly (L, Flip(L®), MCrusg
()
LiT) — Lvote(L(T));
y(T)
loss = cross-entropy (y™, ¢);
(Linit7Cinit7Lmsg,cmsg,Lvote,Lu7Cu) <_ADANI(lOSS);

— mean(LﬁT));

Another end-to-end model that predicts satisfiability
is [61]. To better capture the invariances of SAT in-
stances (as defined in [14]), it proposed encoding CNF as
permutation-invariant sparse matrices and used an ex-
changeable matrix architecturel®? for satisfiability predic-
tion. Different from most GNN-based models, a SAT in-
stance with n clauses and m variable is represented as a
sparse binary tensor of shape n x m x 2. The input is
then mapped to a d-dim embedding by a series of ex-
changeable matrix layers. Finally, the embedding is
pooled to produce a scalar as the satisfiability prediction
of the instance, and the network is supervised similarly to
[14]. In the experiments, Cameron et al.01l paid special
attention to the generality across varying problem sizes of
random 3-SAT as studied in [53]. After about 40 hours of
training time, the exchangeable network managed to
reach an accuracy above 80% for random SAT instances

@ Springer

with 600 variables.

Despite NeuroSAT’s impressive performance on ran-
dom instances, its training paradigm bears limitations.
First, it demands millions of training samples, which is
inefficient and inconsistent with small instances it can
solve (typically at most 40 variables). Second, satisfiabil-
ity of instances is required beforehand and must be com-
puted by other solvers, compromising the meaning of
training a new solver for elementary instances. Hence,
subsequent works prefer an unsupervised way and chal-
lenge more complex benchmarks.

QuerySATI63] developed a recurrent neural SAT solv-
er that was trained in an unsupervised fashion. By relax-
ing the variables to continuous values [0, 1], the unsuper-
vised loss L4 (z) for a formula ¢ is defined as

Ve(@) = 1= [T @ =) [20 Lo(e) =[] Velw) (1)

icct i€c™ ced

where z; is the value of the i-th variable and ¢ gives the
set of variables that occur in clause c in the positive form
and ¢~ in the negated form. The authors proved that this
loss function is sufficient to uniquely identify the SAT
formula ¢. Different from [14], this loss is not only used
at the final layer but also calculated for each query: at
every time step, QuerySAT produces a query and
evaluates a loss along with its gradient w.r.t. the query,
which are then used for updating state vectors. The
model was optimized to minimize the sum of all losses
and generate a variable assignment. For empirical valida-
tion, QuerySAT used multiple benchmarks including k-
SAT, 3-SAT, and other combinatorial problems, achie-
ving an accuracy of over 90%.

In a similar vein, DG-DAGRNNI®4 concentrated on
the circuit satisfiability problem (Circuit-SAT), a special
form of SAT, by unsupervised learning. This study pro-
posed a neural Circuit-SAT solver which can harness
structural information of the input circuits. The frame-
work consists of a neural functional Fy which contains an
embedding function, an aggregation function, and a clas-
sification function. To implement a fully differentiable
training strategy, they proposed an explore-exploit mech-

W. Guo et al. / Machine Learning Methods in Solving the Boolean Satisfiability Problem

Table 2 Summary of reviewed SAT solvers built with neural networks

647

Reference Networks Learning Solver type Instance type Benchmark/Generator
[59] GNN Supervised Standalone Random 3-SAT -
NeuroSATIH] GNN & LSTM Supervised Standalone SR(n) -
[61] Exchangeable Supervised Standalone Random 3-SAT [89]
networks
QuerySATI®] GNN & Recurrent Unsupervised Standalone SR(n), combinatorial [14], SATRACE 2019
DG- DG-DAGRANN Unsupervised Standalone SR(n), k-coloring [14]
DAGRNNI64) P
NeuroCorel65] GNN Supervised CDCL - SATCOMP 2018

[66] GNN & Attention Supervised DPLL & CDCL
Graph-Q- .
SATI6N GNN Reinforcement CDCL
NeuroGluelos] GNN Sl{perwsed & CDCL
Reinforcement
GVEI®9] GNN Reinforcement CDCL
NeuroCuberl70] GNN Supervised Cube-and-
conquer
NeuroCombl71] GNN Supervised CDCL
[78] GNN Reinforcement SLS
NLocalSATIBI GGCN Supervised SLS

SR(n)

Random 3-SAT

Combinatorial

Random 3-SAT,
combinatorial

Random

(14]
SATLIBB

SATCOMP 2018,
SATRACE 2019

SATCOMP 2003-2019

SATCOMP 2020

SATCOMP 2018

anism as in reinforcement learning. Specifically, they used
the smooth min and max functions instead of hard ones
in min-max circuits to allow the gradients to flow
through all paths in the input circuit. Finally, they
defined a satisfiability function to check if the resulting
assignment satisfies the circuit. Following the settings in
[14], DG-DAGRANN could
NeuroSAT, and the performance of NeuroSAT declines
faster than DG-DAGRNN as the number of variables in-
creases. In the graph k-coloring decision problem, DG-
DAGRNN could solve 48% and 27% of the SAT in-
stances in two generated datasets, respectively, while

converge faster than

NeuroSAT failed to solve any of them, even when the
number of iterations is large enough (e.g., 128 propaga-

tion iterations).
3.2 Learning-aided CDCL solvers

The full-stack SAT solvers with machine learning dis-
cussed in Section 3.1 are more of methodological than
practical interests: They are trained with millions of
samples and tested only on small random or combinatori-
al benchmarks with no guarantee of correctness, and thus
fail to function for industrial purposes. Therefore, a more
pragmatic way to boost solving large industrial instances
is to modify existing CDCL solvers and replace the bot-
tleneck components with machine learning modules. In
practice, there are few suitable candidates for such a
modification if we take into account the considerable
computation time for neural networks. The most popular

direction is the branching heuristicsl65-71, plus some
works on optimizing initialization[™], restart policyl7l, and
clause deletion[™],

3.2.1 Branching heuristics

Multi-armed bandit (MAB) is a classic model in rein-
forcement learning, which models an online learning
scheme. MapleCOMSPS[3] proposed the learning rate
branching (LRB) heuristic, with the core concept of
learning rate to measure how fast each variable learns
clauses. The branched variable is chosen using the expo-
nential recency weighted average algorithm for MAB,
where the reward for each variable is set to its learning
rate. Kissat MABIL 12] leverages MAB in a different fash-
ion: The solver switches between two basic branching
heuristics (variable state independent decaying sum
(VSIDS) and conflict history-based branching heuristic
(CHB)I™3) using the upper confidence bound (UCB)
policy, with a reward function to estimate the quality of
conflicts. Both solvers ranked top in the SAT competi-
tion and inspired subsequent works.

More academic attention is given to the deep learning
paradigm. After the standalone neural network SAT solv-
er NeuroSAT, the follow-up work, a more economical
model NeuroCorel®®, proposed to incorporate NeuroSAT
into Minisat, a CDCL solver that implements the
EVSIDS heuristic (a variant of VSIDS) and keeps an
activity score for each variable. NeuroCore integrated the
satisfiability prediction in NeuroSAT by periodically re-
placing the activity scores with the output from neural
networks, termed periodic refocusing. The model of

@ Springer

648

NeuroCore is made up of three MLPs, one for updating
the clause embedding based on the literals in it, one for
updating the literal embedding based on the clauses it is
in, and one for computing the scores for each variable as
the output of NeuroCore. Different from the original
NeuroSAT, the networks were trained with a focus on the
unsatisfiable core. The logic behind this is that variables
in the unsatisfiable core are prone to lead to conflicts,
and thus are valuable for branching. Selgam and
Bjorner(65] generated a dataset mapping unsatisfiable
problems to the variables which are in the unsatisfiable
cores. The hybrid solver neuro-minisat solved 10% more
problems than Minisat on SATCOMP-2018 within the
standard timeout of 5000s, and a similar improvement
was observed on Glucose.

Other works inspired by the NeuroSAT framework
combine the GNN module with CDCL solvers to determ-
ine the variable to branch on. For example, Jaszczur et
al.l66 used a similar network architecture as NeuroSAT
and predicted satisfiability for each literal as well as the
whole formula. Instead of two-stage update iterations, the
node embeddings for clauses and variables were updated
simultaneously by aggregating received messages. The au-
thors explored two ways of aggregation: a simple average
function and a modified attention mechanism. In the lat-
ter, the receiver node accepts or rejects each message ac-
cording to the key and query vectors.

Graph-Q-SATI7 utilized reinforcement learning in-
stead of supervised learning for label efficiency. In the RL
setting, each state contains unassigned variables and un-
satisfied clauses containing these variables. At each step,
the GNN-based agent chooses the next variable and the
value to assign. This is implemented by formulating CNF
formulae as VCGs and indicating the polarity of literals
by edge vectors. After multiple iterations, each variable
node produces two scores, representing the value of as-
signing it as true or false. A straightforward policy is
taken by selecting the truth value corresponding to the
maximal score. For evaluation, Graph-Q-SAT was com-
pared to Minisat using the VSIDS heuristic, and the RL
method used fewer steps to solve random 3-SAT in-
stances.

Besides direct supervision of satisfiability and crafted
unsupervised loss, another approach is to use statistics
produced by solvers as supervision, such as the LBD and
glue variables (those that are likely to occur in glue
clauses). NeuroGluel®8l trained a neural network to pre-
dict the glue variables. The authors followed Neuro-
Corel®® and applied the periodic refocusing technique on
the state-of-the-art SAT solver, CaDiCaLl[™ by replacing
the exponential variable state independent decaying sum
(EVSIDS) activity scores with network outputs. The
training data were generated by running CaDiCal. and
counting the number of times each variable appears in
glue clauses, used as supervision for glue variable predic-

@ Springer

Machine Intelligence Research 20(5), October 2023

tion. There is also a reinforcement learning module that
selects variables sequentially in an episode. The reward
favors small glue levels. Glue variables elimination
(GVE)[®) used two separate modules to determine
branching variables and their values. There is a GNN-
based glue variable selector by RL similar to [68] and an-
other long short-term memory (LSTM) module that pre-
dicts the value of variables. Finally, the simplified CNF
formulae are sent to a deterministic solver. Both Neuro-
Glue and GVE were tested on industrial benchmarks.
NeuroGlue improves the PAR-2 score of CaDiCal., while
the complex architecture of GVE significantly increases
running time.

In addition to the conflict-driven pattern, there is also
a variable selection heuristic in the cube-and-conquer
paradigm(7. This technique aims to reduce the complex-
ity of the SAT solver by partitioning a SAT instance in-
to subproblems (cubes), which are then solved
(conquered) by CDCL solvers in parallel, and there is a
variable selection heuristic for cubing. Each selection adds
two new leaves to the search tree that correspond to dif-
ferent assignments of the variable. Then the cutoff heur-
istic is used to check the new formulae and freeze some
leaves if they are easy for CDCL. NeuroCuber![" applied
the network architectures of NeuroCore to the cube-and-
conquer framework with an emphasis on delete resolu-
tion asymmetric tautologies (DRAT) proof occurrence
counts. Besides the variable scoring head and the clause
scoring head in NeuroSAT, NeuroCuber used another
variable scoring head to predict occurrence counts of vari-
ables in DRAT proofs, which can be roughly thought of
as a compressed representation of resolution trees. In [70],
it was assumed that if a variable occurred frequently in a
resolution tree, branching on it would minimize the aver-
age size of the resolution trees (and proportionally the
solving times) for the leaves. Through experiments on
datasets of unsatisfiable problems, they showed that mod-
els trained to predict DRAT variable counts usually out-
perform those trained to predict the occurrence of a vari-
able in an unsatisfiable core.

Most of the above works fall short either in terms of
applicability to industrial problems or computational effi-
ciency. NeuroCombl™ proposed embedding GNN predic-
tion into CDCL solvers in a more balanced way. To re-
duce the cost of periodic refocusing in NeuroCore, it ad-
opted offline predictions computed before launching the
CDCL solver. During the searching process, the dynamic
branching heuristic (e.g., VSIDS) is periodically interrup-
ted by this static information for a short time, so that the
heuristic is under a constant but slow influence of GNN
predictions.

3.2.2 Variable initialization

In search-based CDCL algorithms, the variables
branched on are assigned a binary value of True or False
based on some initialization scheme. The most basic ini-

W. Guo et al. / Machine Learning Methods in Solving the Boolean Satisfiability Problem 649

tialization is by random. The work[™ assumed that an
initial value close to solutions could provide considerable
speedup for solving the problem, and it proposed to train
a logistic regression module to predict the satisfiability of
3-SAT formulae with 10 predefined features as input. The
preferred initialization value for each variable is determ-
ined by a series of Monte Carlo trials with satisfiability
prediction from the trained predictor. The author repor-
ted a decrease of 23% in runtime for satisfiable instances
if preprocessing time is not considered, which even out-
weighs the decrease in runtime. The essence of this meth-
od is very similar to classifiers in Section 3.1.1, and the
logistic regression predictor can be replaced by peer
methods.
3.2.3 Restart policy

Restarts are not only useful for SLS solvers but also
effective for CDCL solvers. During the search process, a
restart occurs when a certain number of conflicts are met
and the solver discards the current partial assignment but
keeps the learned clauses and searches from the start
again. Liang et al.["3 designed a new restart policy called
machine learning-based restart (MLR) that triggers a re-
start when the predicted LBD of the next learned clause
is above a certain threshold. The MLB heuristic uses the
LBDs of the last three learned clauses and their products
as features to fit a linear function that predicts the LBD
of the next learned clause. The MLR restart policy per-
forms better than Luby but worse than Glucose, as
demonstrated on SATCOMP benchmarks.
3.2.4 Clause deletion

Another entry point where learning can aid the CD-
CL solver is the clause deletion heuristic, which stands
for the selection of useless clauses to be deleted learned
from conflicts due to memory constraints. Vaezipoor et
al.[™ formulated this task as a reinforcement learning
problem and implemented an OpenAl Gym-compatible
environment, SAT-Gym. Since the ultimate goal is to re-
duce the running time of the SAT solver, the reward is
related to the number of logical operations performed by
the solver until an instance is solved. Similar to restart-
ing, the clause deletion heuristic also relies on the LBD
metric to evaluate clause quality. Vaezipoor et al.[4 op-
timized a policy that outputs an LBD threshold as ac-
tion by policy gradient so that all clauses with LBD val-
ues above the threshold are deleted.

3.3 Learning-aided SLS solvers

Due to the straightforward framework of SLS solvers,
the available heuristics for machine learning extension are
fewer and simpler than CDCL solvers. For example, the
variable selection does not need to predict the value of
the variable, since the only operation is flipping. The fol-
lowing works focus on variable selection and initializa-
tion in SLS solvers.

3.3.1 Variable selection

The work[™8] proposed a variable selection heuristic for
SLS solvers, which is computed by a graph neural net-
work through deep reinforcement learning with a cur-
riculum. The policy network, a GNN, takes as input a
CNF formula in VCG form along with the current assign-
ment and outputs a probability over variables, corres-
ponding to their chances to be flipped in the next itera-
tion. From the aspect of reinforcement learning, the re-
ward is defined as whether the assignment satisfies the
formula. The authors employed the REINFORCE al-
gorithm!™! to optimize the policy network. For faster con-
vergence, they opted for curriculum learningl8? and
gradually increased the problem size. The empirical res-
ults of the learned heuristics are comparable to Walk-
SAT on small combinatorial instances, but it suffers con-
siderable overhead since variable selection is required in

every iteration.
3.3.2 Variable initialization

A possible solution to decrease computational cost is
using off-line training and focusing on less frequent opera-
tions, such as initialization, which only occurs after re-
starts. NLocalSAT[E! followed this direction and boosted
the performance of SLS solvers by guiding initialization
assignments with a neural network. NLocalSAT feeds the
CNF formula in LCG form into a gated graph convolu-
tional network (GGCN) for feature extraction, whose out-
put is a predicted solution. The actual initialization pro-
cess accepts the prediction for a high probability and pre-
serves the ability for exploration. Compared to [78], the
neural network is called only once for each instance.
Within a given time limit, NLocalSAT can solve more in-
stances on multiple benchmarks, and this modification
proves to be useful for various solvers.

4 Machine learning for SAT instance
generation

In addition to solving the SAT problem itself, there
have been some attempts to generate SAT instances with
the help of machine learning techniques, especially in in-
dustrial scenarios. Different from random instances which
can be easily generated according to explicit rules, indus-
trial instances encode real-world problems and follow cer-
tain structural characteristics. The task of pseudo-indus-
trial instance generation was nominated as one of the ten
challenges in propositional reasoning and search early in
[82].

An intriguing fact about real-world instances is that
many of them can be effectively yet unexplainably solved
by CDCL solvers. Meanwhile, SAT instances in certain
scenarios (e.g., logic equivalence checking) tend to be un-
solvable for the same type of solvers. Therefore, research-
ers have defined and studied various measuresB®l to dis-

@ Springer

650

tinguish these instances, hoping to unravel why or why
not solvers work on them. This understanding of in-
stances conversely promotes new heuristics in SAT solv-
ers.

Another motivation for SAT instance generation de-
rives from the training process of machine learning, which
requires a large number of instances while keeping a bal-
ance between classes in the dataset. Therefore, an effect-
ive tool for instance generation helps with data augment-
ation and improves training.

Non-ML research on pseudo-industrial SAT instance
generation is mainly based on structural measures and
probabilistic methods. For example Girdldez-Cru and
Levg® proposed the community attachment (CA) mod-
el to generate new instances of given modularity Giraldez-
Cru and Levg84 leveraged the notions of locality and
popularity to portray the scale-free structure of real-world
instances in their popularity-similarity (PS) model.

Recently, deep generative models have been adopted
for this task, including [85-87]. SATGEN[is a generat-
ive model trained in an unsupervised way. Different from
previous models that parameterize certain graph meas-
ures, it uses a GAN to implicitly capture graph-based fea-
tures of SAT instances. Specifically, real formulae are
transformed into LIG as input to GAN for training. The
learned model then generates new LIGs which are re-
covered to CNF formulae by a greedy hill-climbing ap-
proach. For evaluation, SATGEN was compared with the
aforementioned CA and PS models for the statistics of
generated graphs, e.g., clustering coefficients, modularit-
ies, and clause degrees. The results show that SATGEN
has a satisfactory performance. An obvious disadvantage
of SATGEN is that an LIG does not uniquely map to a
SAT formula; thus, the model cannot differentiate
between different instances with the same LIG represent-
ation. This information loss also leads to extra post-pro-
cessing and imposed constraints in the recovering stage.

The subsequent work G2SATI[E6 improves SATGEN
and focuses on bipartite LCG representation. It proposed
a novel node-merging (node-splitting) algorithm to gener-
ate bipartite graphs from (to) a forest. The key compon-
ent of G2SAT is a GCN-based classifier that decides node
pairs for merging. Specifically, G2SAT adopted Graph-
SAGEBS] where node embeddings are updated by previ-
ous embeddings of itself and neighbors. To construct the
training dataset, the node splitting operation is applied to
real-world SAT instances, and the inverse sequences of
node splitting are used for supervision. G2SAT conduc-
ted a similar evaluation as SATGEN and achieved better
results. Additionally, the authors attempted to develop
better SAT solvers by tuning with synthetic instances,
and G2SAT achieved a performance gain of 18%.

Garzén et al.B7l modified the G2SAT framework and
explored different methods of graph representations and

@ Springer

Machine Intelligence Research 20(5), October 2023

node embedding. Overall, there are three variants of
G2SAT, namely GCN2S, EGNN2S, and ECC2S. First,
GCN2S replaced GraphSAGE with graph convolution in
[42] for node embedding. On top of GCN2S, the most dis-
tinguishing modification of [87] is that it takes edge fea-
tures into consideration. Instead of using LCGs, EGNN2S
and ECC2S encode CNF formulae as signed VCGs, so
that the edges between variables and clauses indicate
whether the literal is positive or negative. During mes-
sage passing, node embeddings incorporate edge features
based on dynamic edge filters. Garzéon et al.’7 also
provided an extensive experimental evaluation of G2SAT
and three variants. With 41 instances used for training,
no model consistently leads in the performance of com-
munity structure and the clustering coefficient statistics;
all four models fail to reproduce these two features for
nearly half of the instances. As for the satisfiability and
hardness of synthetic instances, all models tend to pro-
duce a majority of unsatisfiable instances, and synthetic
instances are much easier than input instances. Overall
Garzon et al.87] pointed out several limitations of current
deep generative models, which are inspiring for future av-
enues.

5 Conclusion and outlook

In this survey, we review recent progress on solving
the SAT problem with machine learning and generating
SAT instances with ML techniques, with an emphasis on
deep learning models. We summarize and compare differ-
ent works to provide an overview of this topic. As an
emergent area of interest, the integration of SAT solving
and machine learning has undergone rapid development.
End-to-end SAT solvers have come to reality and been
evaluated on random instances, even with better results
on new instances from the SAT competition. Meanwhile,
recent years have also witnessed a line of works on the
combination of learning-aided heuristics in existing solv-
ers, yielding apparent improvements in search efficiency
and effectiveness.

Nevertheless, several challenges remain to be solved,
and the following problems merit further investigation.
The major concern of current ML-SAT solvers is that
they require a considerable amount of time and samples
for training, in contrast to the instance scale they man-
age to solve. In many cases, the substantial computation-
al time may offset the performance gain. The intrinsic ex-
plainability problem of neural networks poses another
question of how people should trust the predictions of an
ML-aided SAT solver when it does not provide precise
proofs.

Currently, there is no consistent benchmark and eval-
uation pipeline for ML-based SAT solvers, as summar-
ized in Tables 1 and 2. Although many papers compare

W. Guo et al. / Machine Learning Methods in Solving the Boolean Satisfiability Problem 651

their models with peer methods, these results cannot be
gathered and compared directly due to the difference in
training datasets: the sources of training datasets and the
number of samples vary. The biggest reason for this in-
consistency is the inherent feature that ML models de-
pend on enough data for learning. Therefore, construct-
ing a universal ML-friendly benchmark is meaningful but
also requires much effort. There have also been some ef-
forts in the instance generation problem, as discussed in
Section 4, inviting future solutions to this problem.

Acknowledgements

This work was supported by National Key Research
and Development Program of China (No.2020AAA0107
600), National Science Foundation of China (No.62102
258), Shanghai Pujiang Program, China (No.21PJ1407
300), Shanghai Municipal Science and Technology Major
Project, China (No.2021SHZDZX0102), Science and Te-
chnology Commission of Shanghai Municipality Project,
China (No.22511105100), and also sponsored by Huawei
Ltd, China.

Declarations of conflict of interest

The authors declared that they have no conflicts of in-
terest to this work.

References

[1] S. A. Cook. The complexity of theorem-proving proced-
ures. In Proceedings of the 3rd Annual ACM Symposium
on Theory of Computing, Shaker Heights, USA, pp.151-
158, 1971. DOI: 10.1145/800157.805047.

2] K. Iwama, S. Miyazaki. SAT-variable complexity of hard
combinatorial problems. In Proceedings of IFIP Transac-
tions A: Computer Science and Technology, vol.51,
pp.-253-258, 1994.

[3] M. N. Velev. Exploiting hierarchy and structure to effi-
ciently solve graph coloring as SAT. In Proceedings of
IEEE/ACM International Conference on Computer-aided
Design, IEEE, San Jose, USA, pp. 135-142, 2007. DOI: 10.
1109/ICCAD.2007.4397256.

[4] R. Plachetta, A. Van Der Grinten. SAT-and-Reduce for
vertex cover: Accelerating branch-and-reduce by SAT
solving. In Proceedings of Symposium on Algorithm En-
gineering and Experiments, Philadelphia, USA, pp.169—
180, 2021. DOI: 10.1137/1.9781611976472.13.

[5] S. Skansi, K. Sekrst, M. Kardum. A different approach for
clique and household analysis in synthetic telecom data us-
ing propositional logic. In Proceedings of the 43rd Interna-
tional Convention on Information, Communication and
Electronic Technology, IEEE, Opatija, Croatia, pp.1286-
1289, 2020. DOI: 10.23919/MIPR048935.2020.9245421.

[6] J.Brakensiek, M. Heule, J. Mackey, D. Narvaez. The resol-
ution of Keller's conjecture. In Proceedings of the 10th In-
ternational Joint Conference on Automated Reasoning,
Springer, Paris, France, pp.48-65, 2020. DOI: 10.1007/
978-3-030-51074-9_4.

[7]

[10]

(11]

(12]

(13]

(14]

[15]

[16]

[17]

(18]

(19]

20]

H. T. Zhang, J. H. R. Jiang, A. Mishchenko. A circuit-
based sat solver for logic synthesis. In Proceedings of
IEEE/ACM International Conference on Computer Aided
Design, IEEE, Munich, Germany, 2021. DOI: 10.1109/IC-
CAD51958.2021.9643505.

Y. Bengio, A. Lodi, A. Prouvost. Machine learning for
combinatorial optimization: A methodological tour d'hori-
zon. European Journal of Operational Research, vol.290,
no. 2, pp.405-421, 2021. DOI: 10.1016/j.ejor.2020.07.063.

J. C.Yan, S. Yang, E. Hancock. Learning for graph match-
ing and related combinatorial optimization problems. In
Proceedings of the 29th International Joint Conference on
Artificial Intelligence, ACM, Yokohama, Japan, Article
number 694, 2021. DOI: 10.5555/3491440.3492134.

J. Y. Zhang, C. Liu, X. J. Li, H. L. Zhen, M. X. Yuan, Y.
W. Li, J. C. Yan. A survey for solving mixed integer pro-
gramming via machine learning. Neurocomputing,
vol.519, pp.205-217, 2023. DOI: 10.1016/j.neucom.2022.
11.024.

M. S. Cherif, D. Habet, C. Terrioux. Combining VSIDS
and CHB using restarts in SAT. In Proceedings of the 27th
International Conference on Principles and Practice of
Constraint Programming, Dagstuhl, Germany, vol.210,
Article number 20, 2021. DOI: 10.4230/LIPIcs.CP.2021.
20.

M. S. Cherif, D. Habet, C. Terrioux. Kissat MAB: Com-
bining VSIDS and CHB through multi-armed bandit. In
Proceedings of SAT Competition: Solver and Benchmark
Descriptions, University of Helsinki, Helsinki, Finland,
pp.15-16, 2021.

J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, P. Poupart.
MapleCOMSPS, MapleCOMSPS LRB, MapleCOMSPS
CHB. In Proceedings of SAT Competition: Solver and
Benchmark Descriptions, University of Helsinki, Helsinki,
Finland, pp.52-53, 2016.

D. Selsam, M. Lamm, B. Biinz, P. Liang, L. De Moura, D.
L. Dill. Learning a SAT solver from single-bit supervision.
In Proceedings of the 7th International Conference on
Learning Representations, New Orleans, USA, 2019.

A. Popescu, S. Polat-Erdeniz, A. Felfernig, M. Uta, M.
Atas, V. M. Le, K. Pilsl, M. Enzelsberger, T. N. T. Tran.
An overview of machine learning techniques in constraint
solving. Journal of Intelligent Information Systems,
vol.58, no.1, pp.91-118, 2022. DOI: 10.1007/s10844-021-
00666-5.

S. B. Holden. Machine learning for automated theorem
proving: Learning to solve SAT and QSAT. Foundations
and Trends® in Machine Learning, vol.14, no.6, pp.807—
989, 2021. DOI: 10.1561/2200000081.

F. Hutter, L. Xu, H. H. Hoos, K. Leyton-Brown. Al-
gorithm runtime prediction: Methods & evaluation. Artifi-
cial Intelligence, vol.206, pp.79-111, 2014. DOI: 10.1016/
j.artint.2013.10.003.

M. J. H. Heule, A. Biere. Proofs for satisfiability problems.
All About Proofs, Proofs for All, vol.55, no.1, pp.1-22,
2015.

A. Biere, M. Heule, H. Van Maaren, T. Walsh. Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelli-
gence and Applications, Amsterdam, The Netherlands:
10S Press, 2009.

J. P. Marques-Silva, K. A. Sakallah. GRASP: A search al-

@ Springer

http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1109/ICCAD.2007.4397256
http://dx.doi.org/10.1109/ICCAD.2007.4397256
http://dx.doi.org/10.1137/1.9781611976472.13
http://dx.doi.org/10.23919/MIPRO48935.2020.9245421
http://dx.doi.org/10.1007/978-3-030-51074-9_4
http://dx.doi.org/10.1007/978-3-030-51074-9_4
http://dx.doi.org/10.1007/978-3-030-51074-9_4
http://dx.doi.org/10.1109/ICCAD51958.2021.9643505
http://dx.doi.org/10.1109/ICCAD51958.2021.9643505
http://dx.doi.org/10.1109/ICCAD51958.2021.9643505
http://dx.doi.org/10.1016/j.ejor.2020.07.063
http://dx.doi.org/10.5555/3491440.3492134
http://dx.doi.org/10.1016/j.neucom.2022.11.024
http://dx.doi.org/10.1016/j.neucom.2022.11.024
http://dx.doi.org/10.4230/LIPIcs.CP.2021.20
http://dx.doi.org/10.4230/LIPIcs.CP.2021.20
http://dx.doi.org/10.1007/s10844-021-00666-5
http://dx.doi.org/10.1007/s10844-021-00666-5
http://dx.doi.org/10.1561/2200000081
http://dx.doi.org/10.1016/j.artint.2013.10.003
http://dx.doi.org/10.1016/j.artint.2013.10.003

652

21]

22]

23]

[24]

(25]

(26]

27]

28]

[29]

(30]

(31]

32]

gorithm for propositional satisfiability. IEEE Transac-
tions on Computers, vol.48, no.5, pp.506-521, 1999. DOLI:
10.1109/12.769433.

M. Davis, G. Logemann, D. Loveland. A machine pro-
gram for theorem-proving. Communications of the ACM,
vol.5, no.7, pp.394-397, 1962. DOI: 10.1145/368273.368
557.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S.
Malik. Chaff: Engineering an efficient SAT solver. In Pro-
ceedings of the 38th Design Automation Conference,
IEEE, Las Vegas, USA, pp.530-535, 2001. DOI: 10.1145/
378239.379017.

A. Biere, A. Frohlich. Evaluating CDCL variable scoring
schemes. In Proceedings of the 18th International Confer-
ence on Theory and Applications of Satisfiability Testing,
Springer, Austin, USA, pp.405-422, 2015. DOI: 10.1007/
978-3-319-24318-4_29.

A. Biere. Adaptive restart strategies for conflict driven
SAT solvers. In Proceedings of the 11th International Con-
ference on Theory and Applications of Satisfiability Test-
ing, Springer, Guangzhou, China, pp.28-33, 2008. DOI:
10.1007/978-3-540-79719-7_4.

J. H. Liang, V. Ganesh, P. Poupart, K. Czarnecki. Learn-
ing rate based branching heuristic for SAT solvers. In Pro-
ceedings of the 19th International Conference on Theory
and Applications of Satisfiability Testing, Springer, Bor-
deaux, France, pp.123-140, 2016. DOI: 10.1007/978-3-
319-40970-2 9.

F. Xiao, C. M. Li, M. Luo, F. Manya, Z. Li, Y. Li. A
branching heuristic for SAT solvers based on complete im-
plication graphs. Science China Information Sciences,
vol.62, no.7, Article number 72103, 2019. DOI: 10.1007/
$11432-017-9467-7.

B. Selman, H. A. Kautz, B. Cohen. Local search strategies
for satisfiability testing. In Proceedings of a DIMACS
Workshop on Cliques, Coloring, and Satisfiability, New
Brunswick, USA, pp. 521-532, 1993.

G. Audemard, L. Simon. Predicting learnt clauses quality
in modern SAT solvers. In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence, ACM,
Pasadena, USA, pp.399-404, 2009. DOI: 10.5555/1661445.
1661509.

B. Selman, H. Levesque, D. Mitchell. A new method for
solving hard satisfiability problems. In Proceedings of the
10th National Conference on Artificial Intelligence, San
Jose, USA, pp.440-446, 1992. DOI: 10.5555/1867135.
1867203.

A. Balint, A. Froéhlich. Improving stochastic local search
for SAT with a new probability distribution. In Proceed-
ings of the 13th International Conference on Theory and
Applications of Satisfiability Testing, Springer, Edin-
burgh, UK, pp.10-15, 2010. DOI: 10.1007/978-3-642-
14186-7_3.

A. Balint, U. Schéning. Choosing probability distributions
for stochastic local search and the role of make versus
break. In Proceedings of the 15th International Confer-
ence on Theory and Applications of Satisfiability Testing,
Springer, Trento, Italy, pp.16-29, 2012. DOI: 10.1007/
978-3-642-31612-8 3.

S. W. Cai, C. Luo, K. L. Su. CCAnr: A configuration
checking based local search solver for non-random satis-
fiability. In Proceedings of the 18th International Confer-

@ Springer

(33]

(34]

(35]

(36]

(37]

(38]

39]

(40]

[41]

[42]

(43]

(44]

[45]

[46]

Machine Intelligence Research 20(5), October 2023

ence on Theory and Applications of Satistiability Testing,
Springer, Austin, USA, pp.1-8, 2015. DOI: 10.1007/978-3-
319-24318-4 1.

A. Biere. Splatz, lingeling, plingeling, treengeling, YalSAT
entering the SAT competition. In Proceedings of SAT
Competition: Solver and Benchmark Descriptions, Hel-
sinki, Finland, pp.44-45, 2016.

S. W. Cai, X. D. Zhang. Deep cooperation of CDCL and
local search for SAT. In Proceedings of the 24th Interna-
tional Conference on Theory and Applications of Satisfiab-
ility Testing, Springer, Barcelona, Spain, pp.64-81, 2021.
DOI: 10.1007/978-3-030-80223-3 6.

H. H. Hoos, T. Stiitzle. SATLIB: An online resource for re-
search on SAT. In Proceedings of the Highlights of Satis-
fiability Research in the Year 2000, Amsterdam, The
Netherlands, pp.283-292, 2000.

T. N. Alyahya, M. El Bachir Menai, H. Mathkour. On the
structure of the boolean satisfiability problem: A survey.
ACM Computing Surveys, vol.55, no.3, Article number
46, 2023. DOI: 10.1145/3491210.

M. I. Jordan, T. M. Mitchell. Machine learning: Trends,
perspectives, and prospects. Science, vol.349, no.6245,
pp- 255-260, 2015. DOI: 10.1126/science.aaa8415.

B. Xi, R. Wang, Y. H. Cai, T. Lu, S. Wang. A novel het-
erogeneous actor-critic algorithm with recent emphasizing
replay memory. International Journal of Automation and
Computing, vol.18, no.4, pp.619-631, 2021. DOI: 10.
1007/s11633-021-1296-x.

C. J. C. H. Watkins, P. Dayan. Q-learning. Machine
Learning, vol.8, no.3-4, pp.279-292, 1992. DOI: 10.1007/
BF00992698.

Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature,
vol.521, no.7553, pp.436-444, 2015. DOI: 10.1038/
naturel4539.

J. Zhou, G. Q. Cui, S. D. Hu, Z. Y. Zhang, C. Yang, Z. Y.
Liu, L. F. Wang, C. C. Li, M. S. Sun. Graph neural net-
works: A review of methods and applications. AI Open,
vol. 1, pp.57-81, 2020. DOI: 10.1016/j.aiopen.2021.01.001.

T. N. Kipf, M. Welling. Semi-supervised classification with
graph convolutional networks. In Proceedings of the 5th
International Conference on Learning Representations,
Toulon, France, [Online|, Available: https://openreview.
net/forum?id=HkwoSDPgg, 2017.

M. H. Zhang, Y. X. Chen. Link prediction based on graph
neural networks. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
ACM, Montreal, Canada, pp.5171-5181, 2018. DOI: 10.
5555/3327345.3327423.

H. J. Dai, E. B. Khalil, Y. Y. Zhang, B. Dilkina, L. Song.
Learning combinatorial optimization algorithms over
graphs. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, ACM,
Long Beach, USA, pp.6351-6361, 2017. DOI: 10.5555/
3295222.3295382.

D. S. Lopera, L. Servadei, G. N. Kiprit, R. Wille, W. Eck-
er. A comprehensive survey on electronic design automa-
tion and graph neural networks: Theory and applications.
ACM Transactions on Design Automation of Electronic
Systems, vol.28, no.2, Article number 15, 2022. DOI: 10.
1145/3543853.

R. Y. Cheng, J. C. Yan. On joint learning for solving place-

http://dx.doi.org/10.1109/12.769433
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1007/978-3-319-24318-4_29
http://dx.doi.org/10.1007/978-3-319-24318-4_29
http://dx.doi.org/10.1007/978-3-319-24318-4_29
http://dx.doi.org/10.1007/978-3-540-79719-7_4
http://dx.doi.org/10.1007/978-3-540-79719-7_4
http://dx.doi.org/10.1007/978-3-319-40970-2_9
http://dx.doi.org/10.1007/978-3-319-40970-2_9
http://dx.doi.org/10.1007/978-3-319-40970-2_9
http://dx.doi.org/10.1007/s11432-017-9467-7
http://dx.doi.org/10.1007/s11432-017-9467-7
http://dx.doi.org/10.5555/1661445.1661509
http://dx.doi.org/10.5555/1661445.1661509
http://dx.doi.org/10.5555/1867135.1867203
http://dx.doi.org/10.5555/1867135.1867203
http://dx.doi.org/10.1007/978-3-642-14186-7_3
http://dx.doi.org/10.1007/978-3-642-14186-7_3
http://dx.doi.org/10.1007/978-3-642-14186-7_3
http://dx.doi.org/10.1007/978-3-642-31612-8_3
http://dx.doi.org/10.1007/978-3-642-31612-8_3
http://dx.doi.org/10.1007/978-3-642-31612-8_3
http://dx.doi.org/10.1007/978-3-319-24318-4_1
http://dx.doi.org/10.1007/978-3-319-24318-4_1
http://dx.doi.org/10.1007/978-3-319-24318-4_1
http://dx.doi.org/10.1007/978-3-030-80223-3_6
http://dx.doi.org/10.1007/978-3-030-80223-3_6
http://dx.doi.org/10.1145/3491210
http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1007/s11633-021-1296-x
http://dx.doi.org/10.1007/s11633-021-1296-x
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
https://openreview.net/forum?id=HkwoSDPgg
https://openreview.net/forum?id=HkwoSDPgg
http://dx.doi.org/10.5555/3327345.3327423
http://dx.doi.org/10.5555/3327345.3327423
http://dx.doi.org/10.5555/3295222.3295382
http://dx.doi.org/10.5555/3295222.3295382
http://dx.doi.org/10.1145/3543853
http://dx.doi.org/10.1145/3543853

W. Guo et al. / Machine Learning Methods in Solving the Boolean Satisfiability Problem

[47]

(48]

(49]

[51]

(52]

(53]

(54]

[55]

[57]

(58]

[59]

[60]

[61]

ment and routing in chip design. In Proceedings of the
34th Conference on Neural Information Processing Sys-
tems, pp. 16508-16519, 2021.

R.Y. Cheng, X. L. Lv, Y. Li, J. J. Ye, J. Y. Hao, J. C. Yan.
The policy-gradient placement and generative routing
neural networks for chip design. In Proceedings of the 36th
Conference on Neural Information Processing Systems,
2022.

Z. C. Lipton, J. Berkowitz, C. Elkan. A critical review of
recurrent neural networks for sequence learning, [Online],
Available: https://arxiv.org/abs/1506.00019, 2015.

O. Vinyals, M. Fortunato, N. Jaitly. Pointer networks. In
Proceedings of Advances in Neural Information Pro-
cessing Systems 28, Montreal, Canada, pp.2692-2700,
2015.

1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generat-
ive adversarial nets. In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Sys-
tems, ACM, Montreal, Canada, vol.2, pp.2672-2680,
2014. DOI: 10.5555/2969033.2969125.

L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown. SATzilla:
Portfolio-based algorithm selection for SAT. Journal of
Artificial Intelligence Research, vol.32, pp.565-606, 2008.
DOI: 10.1613/jair.2490.

D. Devlin, B. O'Sullivan. Satisfiability as a classification
problem. In Proceedings of Irish Conference on Artificial
Intelligence and Cognitive Science, 2008.

L. Xu, H. Hoos, K. Leyton-Brown. Predicting satisfiabil-
ity at the phase transition. In Proceedings of AAAI Con-
ference on Artificial Intelligence, Toronto, Canada vol. 26,
pp. 584-590, 2021. DOI: 10.1609/aaai.v26i1.8142.

M. Danisovszky, Z. G. Yang, G. Kusper. Classification of
SAT problem instances by machine learning methods. In
Proceedings of the 11th International Conference on Ap-
plied Informatics, Eger, Hungary, pp. 94-104, 2020.

A. Atkari, N. Dhargalkar, H. Angne. Employing machine
learning models to solve uniform random 3-SAT. In Pro-
ceedings of GUCON 2019 Data Communication and Net-
works, Springer, pp.255-264, 2020. DOI: 10.1007/978-981-
15-0132-6_17.

M. N. Velev. Exploiting signal unobservability for effi-
cient translation to CNF in formal verification of micro-
processors. In Proceedings of Conference on Design, Auto-
mation and Test in FEurope, IEEE, Paris, France,
pp-266-271, 2004. DOI: 10.1109/DATE.2004.1268859.

L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown. Satzilla
2009: An automatic algorithm portfolio for sat. SAT,
vol. 4, pp.53-55, 2009.

L. Simon. 2002. [Online], Available: http://www.satcom-
petition.org/2003/TOOLBOX/genAlea.c.

B. Biinz, M. Lamm. Graph neural networks and Boolean
satisfiability. [Online], Available: https://arxiv.org/abs/
1702.03592, 2017.

D. P. Kingma, J. Ba. Adam: A method for stochastic op-
timization. [Online], Available: https://arxiv.org/abs/
1412.6980, 2015.

C. Cameron, R. Chen, J. Hartford, K. Leyton-Brown. Pre-
dicting propositional satisfiability via end-to-end learning.
In Proceedings of Conference on Artificial Intelligence,

(62]

(63]

[64]

[66]

[67]

(68]

(69]

[70]

[71]

(72]

73]

(74]

[75]

653

New York, USA, vol.34, pp.3324-3331, 2020. DOI: 10.
1609/aaai.v34i04.5733.

J. Hartford, D. Graham, K. Leyton-Brown, S. Ravanbakh-
sh. Deep models of interactions across sets. In Proceedings
of the 35th International Conference on Machine Learning,
Stockholm, Sweden, pp.1909-1918, 2018.

E. Ozolins, K. Freivalds, A. Draguns, E. Gaile, R. Zakovs-
kis, S. Kozlovics. Goal-aware neural SAT solver. In Pro-
ceedings of International Joint Conference on Neural Net-
works, IEEE, Padua, Italy, 2022. DOI: 10.1109/
IJCNN55064.2022.9892733.

S. Amizadeh, S. Matusevych, M. Weimer. Learning to
solve circuit-SAT: An unsupervised differentiable ap-
proach. In Proceedings of the 7th International Confer-
ence on Learning Representations, New Orleans, USA,
2019.

D. Selsam, N. Bjorner. Guiding high-performance SAT
solvers with unsat-core predictions. In Proceedings of the
22nd International Conference on Theory and Applica-
tions of Satisfiability Testing, Springer, Lisbon, Portugal,
pp. 336-353, 2019. DOI: 10.1007/978-3-030-24258-9_24.

S. Jaszczur, M. Luszczyk, H. Michalewski. Neural heurist-
ics for SAT solving, [Online], Available: https://arxiv.org/
abs/2005.13406, 2020.

V. Kurin, S. Godil, S. Whiteson, B. Catanzaro. Can Q-
learning with graph networks learn a generalizable branch-
ing heuristic for a SAT solver? In Proceedings of the 34th
International Conference on Neural Information Pro-
cessing Systems, ACM, Vancouver, Canada, Article num-
ber 806, 2020. DOI: 10.5555/3495724.3496530.

J. M. Han. Enhancing SAT solvers with glue variable pre-
dictions, [Online], Available: https://arxiv.org/abs/2007.
02559, 2020.

Z. Zhang, Y. Zhang. Elimination mechanism of glue vari-
ables for solving SAT problems in linguistics. In Proceed-
ings of the Asian Conference on Language, ACL,
pp. 147-167, 2021. DOI: 10.22492/issn.2435-7030.2021.11.

J. Han. Learning cubing heuristics for SAT from DRAT
proofs. In Proceedings of the 5th Conference on Artificial
Intelligence and Theorem Proving, Aussois, France, 2020.

W. X. Wang, Y. Hu, M. Tiwari, S. Khurshid, K. McMillan,
R. Miikkulainen. NeuroComb: Improving SAT solving
with graph neural networks, [Online], Available: https://
arxiv.org/abs/2110.14053, 2021.

H. Z. Wu. Improving SAT-solving with machine learning.
In Proceedings of ACM SIGCSE Technical Symposium on
Computer Science Education, Seattle, USA, pp.787-788,
2017. DOI: 10.1145/3017680.3022464.

J. H. Liang, C. Oh, M. Mathew, C. Thomas, C. X. Li, V.
Ganesh. Machine learning-based restart policy for CDCL
SAT solvers. In Proceedings of the 21st International Con-
ference on Theory and Applications of Satisfiability Test-
ing, Springer, Oxford, UK, pp.94-110, 2018. DOI: 10.
1007/978-3-319-94144-8 6.

P. Vaezipoor, G. Lederman, Y. H. Wu, R. Grosse, F. Bac-
chus. Learning clause deletion heuristics with reinforce-
ment learning. In Proceedings of the 5th Conference on Ar-

tificial Intelligence and Theorem Proving, Aussois, France,
2020.

J. H. Liang, V. Ganesh, P. Poupart, K. Czarnecki. Expo-
nential recency weighted average branching heuristic for

@ Springer

https://arxiv.org/abs/1506.00019
http://dx.doi.org/10.5555/2969033.2969125
http://dx.doi.org/10.1613/jair.2490
http://dx.doi.org/10.1609/aaai.v26i1.8142
http://dx.doi.org/10.1007/978-981-15-0132-6_17
http://dx.doi.org/10.1007/978-981-15-0132-6_17
http://dx.doi.org/10.1007/978-981-15-0132-6_17
http://dx.doi.org/10.1109/DATE.2004.1268859
http://www.satcompetition.org/2003/TOOLBOX/genAlea.c
http://www.satcompetition.org/2003/TOOLBOX/genAlea.c
http://www.satcompetition.org/2003/TOOLBOX/genAlea.c
https://arxiv.org/abs/1702.03592
https://arxiv.org/abs/1702.03592
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1609/aaai.v34i04.5733
http://dx.doi.org/10.1609/aaai.v34i04.5733
http://dx.doi.org/10.1109/IJCNN55064.2022.9892733
http://dx.doi.org/10.1109/IJCNN55064.2022.9892733
http://dx.doi.org/10.1007/978-3-030-24258-9_24
http://dx.doi.org/10.1007/978-3-030-24258-9_24
https://arxiv.org/abs/2005.13406
https://arxiv.org/abs/2005.13406
http://dx.doi.org/10.5555/3495724.3496530
https://arxiv.org/abs/2007.02559
https://arxiv.org/abs/2007.02559
http://dx.doi.org/10.22492/issn.2435-7030.2021.11
https://arxiv.org/abs/2110.14053
https://arxiv.org/abs/2110.14053
http://dx.doi.org/10.1145/3017680.3022464
http://dx.doi.org/10.1007/978-3-319-94144-8_6
http://dx.doi.org/10.1007/978-3-319-94144-8_6
http://dx.doi.org/10.1007/978-3-319-94144-8_6

654

[76]

[77]

(78]

(79]

(80]

(81]

(82]

(84]

(85]

(86]

(87]

(88]

SAT solvers. In Proceedings of the 30th AAAI Conference
on Artificial Intelligence, Phoenix, USA, pp.3434-3440,
2016. DOI: 10.5555/3016100.3016385.

A. Biere. CaDiCal,, lingeling, plingeling, treengeling and
YalSAT entering the SAT competition 2018. In Proceed-
ings of SAT Competition: Solver and Benchmark Descrip-
tions, SAT, University of Helsinki, Helsinki, Finland,
pp. 13-14, 2018.

M. J. H. Heule, O. Kullmann, V. W. Marek. Solving very
hard problems: Cube-and-conquer, a hybrid SAT solving
method. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp.4864-4868, 2017.
DOI: 10.24963/ijcai.2017/683.

E. Yolcu, B. Poéczos. Learning local search heuristics for
Boolean satisfiability. In Proceedings of the 33rd Interna-
tional Conference on Neural Information Processing Sys-
tems, ACM, Red Hook, USA, Article number 718, 2019.
DOI: 10.5555/3454287.3455005.

R. J. Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Ma-
chine Learning, vol.8, no.3-4, pp.229-256, 1992. DOI: 10.
1007/BF00992696.

Y. Bengio, J. Louradour, R. Collobert, J. Weston. Cur-
riculum learning. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ACM, Mon-
treal, Canada, pp.41-48, 2009. DOI: 10.1145/1553374.
1553380.

W. J. Zhang, Z. Y. Sun, Q. H. Zhu, G. Li, S. W. Cai, Y. F.
Xiong, L. Zhang. NLocalSAT: Boosting local search with
solution prediction. In Proceedings of the 29th Interna-
tional Joint Conference on Artificial Intelligence, pp.
1177-1183, 2020. DOI: 10.24963/ijcai.2020/164.

B. Selman, H. Kautz, D. McAllester. Ten challenges in
propositional reasoning and search. In Proceedings of the
15th International Joint Conference on Artificial Intelli-
gence, ACM, Nagoya, Japan, pp.50-54, 1997. DOI: 10.
5555/1624162.1624170.

J. Giraldez-Cru, J. Levy. Generating SAT instances with
community structure. Artificial Intelligence, vol.238,
pp. 119-134, 2016. DOI: 10.1016/j.artint.2016.06.001.

J. Giraldez-Cru, J. Levy. Popularity-similarity random
SAT formulas. Artificial Intelligence, vol.299, Article
number 103537, 2021. DOI: 10.1016/j.artint.2021.103537.

H. Z. Wu, R. Ramanujan. Learning to generate industrial
SAT instances. In Proceedings of the 20th International
Symposium on Combinatorial Search, Napa, USA, 2019.
DOI: 10.1609/socs.v10i1.18493.

J. X. You, H. Z. Wu, C. Barrett, R. Ramanujan, J.
Leskovec. G2SAT: Learning to generate SAT formulas. In
Proceedings of the 33rd Conference on Neural Information
Processing Systems, Vancouver, Canada, 2019.

I. Garzon, P. Mesejo, J. Giraldez-Cru. On the performance
of deep generative models of realistic SAT instances. In
Proceedings of the 25th International Conference on The-
ory and Applications of Satisfiability Testing, Dagstuhl,
Germany, Article number 3, 2022. DOI: 10.4230/LIPIcs.
SAT.2022.3.

W. L. Hamilton, R. Ying, J. Leskovec. Inductive repres-
entation learning on large graphs. In Proceedings of the
31st International Conference on Neural Information Pro-
cessing Systems, ACM, Long Beach, USA, pp.1025-1035,

@ Springer

Machine Intelligence Research 20(5), October 2023

2017. DOI: 10.5555/3294771.3294869.

(89] J. M. Crawford, L. D. Auton. Experimental results on the
crossover point in random 3-SAT. Artificial Intelligence,
vol.81, no.1-2, pp.31-57, 1996. DOI: 10.1016,/0004-3702
(95)00046-1.

Wenxuan Guo received the B.Sc. degree
in computer science and technology from
Shanghai Jiao Tong University, China in
2021. Currently, she is a Ph.D. degree can-
didate in computer science and technology
at Department of Computer Science and
Engineering, Shanghai Jiao Tong Uni-
versity, China.

Her research interests include machine

learning and combinatorial optimization.
E-mail: arya g@sjtu.edu.cn
ORCID iD: 0000-0001-6336-3819

Hui-Ling Zhen received the B.Sc. degree
in numerical mathematics and the Ph.D.
degree in applied mathematics from
Beijing University of Posts and Telecom-
munications, China in 2011 and 2016, re-
spectively. She was a post-doctoral re-
search fellow in City University of Hong
Kong, China from 2016 to 2019. Currently,
she is a research scientist in Noah's Ark

Laboratory, Huawei, China since 2019. She has published over
60 peer-reviewed papers in mainstream conferences and journals.
Her research interests include large-scale optimization, con-
straint programming, as well as their applications in supply
chain management and chip design.
E-mail: zhenhuiling2@huawei.com

Xijun Li received M.Sc. degree in com-
puter science from Shanghai Jiao Tong
University, China in 2018. Currently, he is
a senior researcher of Huawei Noah's Ark
Laboratory, China, and also is a Ph.D. de-
gree candidate in Electronic Engineering
and information science at University of
Science and Technology of China (HUA-
4N 7 WELUSTC Joint Ph.D. Program). He has
published several papers on top peer-reviewed conferences and
journals (SIGMOD, KDD, ICDE, DAC, CIKM, ICDCS, TCYB,
etc.).

His research interests include learning to optimize combinat-
orial optimization problem and machine learning for computer
systems.

E-mail: xijun.li@huawei.com (Corresponding author)

ORCID iD: 0000-0002-9013-1180

\

Wangian Luo received the B.Sc. degree
in numerical mathematics and the M. Eng.
degree in software engineer from South
China University of Technology, China in
2016 and 2019 respectively. After that, he
is a research engineer of Huawei Noah's
Ark Laboratory, China.

His research interests include applied
formal methods, Boolean satisfiability
problem, as well as the applications in chip design.

E-mail: luowanqgianl@huawei.com

http://dx.doi.org/10.5555/3016100.3016385
http://dx.doi.org/10.24963/ijcai.2017/683
http://dx.doi.org/10.5555/3454287.3455005
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1145/1553374.1553380
http://dx.doi.org/10.1145/1553374.1553380
http://dx.doi.org/10.24963/ijcai.2020/164
http://dx.doi.org/10.5555/1624162.1624170
http://dx.doi.org/10.5555/1624162.1624170
http://dx.doi.org/10.1016/j.artint.2016.06.001
http://dx.doi.org/10.1016/j.artint.2021.103537
http://dx.doi.org/10.1609/socs.v10i1.18493
http://dx.doi.org/10.4230/LIPIcs.SAT.2022.3
http://dx.doi.org/10.4230/LIPIcs.SAT.2022.3
http://dx.doi.org/10.5555/3294771.3294869
http://dx.doi.org/10.1016/0004-3702(95)00046-1
http://dx.doi.org/10.1016/0004-3702(95)00046-1

W. Guo et al. / Machine Learning Methods in Solving the Boolean Satisfiability Problem 655

Mingxuan Yuan received the Ph.D. de-
gree in computer science from Hong Kong
University of Science and Technology,
China in 2011. He is currently a principal
researcher of Huawei Noah's Ark Laborat-
ory, China.

His research interests include data-driv-
en optimization algorithms, data-driven
SAT/MIP solving algorithms and data-
driven EDA algorithm.

E-mail: Yuan.Mingxuan@huawei.com

Yaohui Jin received the Ph.D. degree in
electronic engineering from Shanghai Jiao
Tong University, China in 2000. He is a
tenured professor in School of Electronic
Information and Electrical Engineering
and Artificial Intelligence Institute, Shang-
hai Jiao Tong University, China. He was a
member of technical staff at Bell Labs Re-
1 ;‘ search, China from 2000 to 2002.

His research interests include software defined infrastructure,

spatial and temporal data mining as well as natural language un-

derstanding.
E-mail: jinyh@sjtu.edu.cn (Corresponding author)
ORCID iD: 0000-0001-6158-6277

Junchi Yan received the B. Eng. degree in
automation from University of Science and
Technology Beijing, China in 2008, and
the M.Sc. degree in pattern recognition
and intelligent systems, and the Ph.D. de-
gree in information and communication
engineering, both from Shanghai Jiao
Tong University, China in 2011 and 2015,
respectively. He is an associate professor
with Department of Computer Science and Engineering, and Al
Institute of Shanghai Jiao Tong University, China. Before that,
he was a senior research staff member with IBM Research where
he started his career since April 2011. He served as Area Chair
for NeurIPS/ICML/CVPR/AAAI/ACM-MM and Senior PC for
IJCAI/CIKM, and Associate Editor for Pattern Recognition.

His research interests include machine learning (especially for
combinatorial optimization) and computer vision.

E-mail: yanjunchi@sjtu.edu.cn (Corresponding author)

ORCID iD: 0000-0001-9639-7679

@ Springer

	1 Introduction
	2 Preliminaries
	2.1 Boolean satisfiability problem
	2.2 Classic SAT solvers
	2.2.1 CDCL solvers
	2.2.2 Stochastic local search (SLS) solvers

	2.3 SAT benchmarks
	2.4 Graph representation of Boolean formulae
	2.5 Machine learning
	2.5.1 Major paradigms of machine learning
	2.5.2 Machine learning models for SAT solving

	3 Towards machine learning of SAT solving
	3.1 Standalone ML-SAT solvers
	3.1.1 Classifiers with handcrafted features
	3.1.2 End-to-end neural SAT solvers

	3.2 Learning-aided CDCL solvers
	3.2.1 Branching heuristics
	3.2.2 Variable initialization
	3.2.3 Restart policy
	3.2.4 Clause deletion

	3.3 Learning-aided SLS solvers
	3.3.1 Variable selection
	3.3.2 Variable initialization

	4 Machine learning for SAT instance generation
	5 Conclusion and outlook
	Acknowledgements
	Declarations of conflict of interest
	References

