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Abstract—Transformer models have been widely used in the
filed of natural language processing due to their powerful
learning ability. Nevertheless, recent studies have shown that
transformer models are vulnerable to the maliciously crafted
adversarial examples. In the challenging black box setting, main
stream textual adversarial attacks typically consist of two steps:
Word Importance Ranking (WIR) and word transformation.
The attack performance is highly dependent on the ranking of
words. Existing WIR methods are designed with heuristic rules,
which lack theoretical guarantee and require a large amount of
queries. To address this issue, we design a textual coalitional
game and propose PWSHAP, which is a plug-and-in WIR
method employing Shapley value to determine the significance
of each word based on its impact on the classification. Through
extensive experiments on three benchmark datasets and model
architectures, we illustrate that the proposed PWSHAP achieve
the-state-of-the-art attack success rate with significant fewer
queries to the classification model. Meanwhile, the generated
adversarial examples are more natural and coherent compared
to the strong baselines.

I. INTRODUCTION

Deep Neural Networks (DNNs) are increasingly prevalent
since they have achieved incredible performance on many
Natural Language Processing (NLP) tasks [1], [2]. With the
advent of large scale pre-trained transformer models such as
BERT [3] and ELECTRA [4], the transformer based DNNs
can match or even surpass human performance on the GLUE
benchmark [5].

Despite the great success of DNNs, several recent studies
have highlighted their vulnerability to adversarial attacks [6],
[7]. Attackers can maliciously craft Adversarial Examples
(AEs) by perturbing original inputs, causing DNNs to make
incorrect predictions. The vulnerability of DNNs has revealed
the tremendous risk of their robustness. The generation of AEs
should meet two proprieties: (1) the ability to mislead DNNs
and (2) the perturbations to original inputs must be small
enough to be imperceptible to humans, while still maintaining
semantic consistency with the inputs. Based on the knowledge
of the model, adversarial attacks can be categorized into two
types: white box attack and black box attack. In the former
type, the attacker has access to all information about the
model, including its structure and training process. This type of
attack is often occurred when the model is publicly available.
In contrast, the latter only allows the attacker to query the
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model and view its output, which is more common when using
models or APIs from third-party sources.

In this paper, we investigate the automatic generation of
AEs in the challenging black box setting. Previous research
on black box attacks typically follows a two-step schema: (1)
Word Importance Ranking (WIR), ranking each word based
on its importance, and (2) word transformation, perturbing
the words according to their importance ranking to generate
AEs. Previous studies adopt heuristic rules, such as the logit
difference when the word is deleted [8] or replaced [9], to
determine the importance of words. The major drawback of
such WIR methods is that they lack theoretical guarantee, and
the search process guided by this ranking mechanism requires
a large amount of queries to the original model, which is costly
in the black box setting.

To address this issue, we propose the use of Shapley value
[10] to evaluate the contribution of each word. Shapley value
is a concept of cooperative game theory, which is adopted
to fairly distribute a value among a group of players. Its
extension, SHapley Additive exPlainations (SHAP), is widely
used to interpret machine learning models. Following this line,
we design a textual coalitional game to explain the transformer
models. In our model, each word is considered as a player
to contribute for the classification, and the contribution is
quantified with Shapley value. As the exact Shapley value is
computational intractable when the number of words is large,
we adopt a learning-based method to build an explainer model,
so we can obtain the Shapley value of each word by a single
forward pass once the model is optimized. We further propose
a novel WIR method, named probability weighted SHAP
(PWSHAP). It uses both Shapley value and classification
probability to determine the significance of each word based
on its impact on the classification. The proposed PWSHAP is
a plug-and-in module that can be integrated in any attack with
two-step attack scheme without much effort.

To validate the effectiveness of our method, we conduct
extensive experiments on three benchmark datasets across
three the-state-of-the-art (SOTA) transformer models. The
experimental results demonstrate that PWSHAP achieves the
highest attack success rate compared with previous methods.
Meanwhile, the generated AEs have higher semantic similarity
with the original inputs so that they are more natural and
coherent. Due to the better WIR, the number of queries to the
classification model required in the attack process are largely
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reduced as well.
To summarize, the main contributions of this paper are as

follows:
• We design a textual coalitional game to explain the

transformer models. In the game, we employ Shapley
value to allocate credit to each word. To estimate Shapley
value efficiently, we further develop a learning-based
approach by training an explainer model. After training,
the Shapley value of each word can be obtained by a
single forward pass to the explainer model.

• We propose a novel word importance ranking method
PWSHAP. It employs Shapley value as well as classifi-
cation probability to determine the significance of each
word to the classification. It is a plug-and-in module that
can be integrated in any black box attack using two-step
attack schema.

• We conduct extensive experiments across three datasets
and model architectures, the experimental results demon-
strate that PWSHAP can generate more natural and
coherent AEs at a higher attack success rate, while signifi-
cantly reducing the number of queries to the classification
model.

The rest of this paper is structured as follows: we discuss
related works on adversarial attacks in Section II. Section III
provides a detailed introduction to the proposed PWSHAP
method. Following this, in Sections IV and V, we present
experiments and results, respectively. Finally, we summarize
the contributions of the paper and provide a conclusion in
Section VI.

II. RELATED WORKS

Textual black box attacks involve utilizing the outputs of
models, such as confidence scores or class probabilities, to
create AEs. Those AEs are generated by ranking words based
on their impact on the confidence scores, and then manipu-
lating these words through insertion, deletion, or replacement
until the model misclassifies. The primary difference between
various attacking methods lies in the WIR method and the
word transformation method.

Gao et al. first proposed DeepWordBug [11] and the afore-
mentioned two-step attack schema, in which words are ranked
based on the logit difference when they are replaced with the
token “[UNK]” and then perturbed at the character level. Fol-
lowing the attack schema, Jin et al. proposed TextFooler [12],
which ranks words based on the logit difference when they are
deleted, and then greedily substitutes them with synonyms that
are close in the counter-fitted embedding space [13]. Ren et al.
proposed PWWS [14], which ranks words based on probability
weighted word saliency and swaps them with synonyms from
WordNet [15]. Li et al. proposed BERT-Attack [9] to attack
the pre-trained transformer model BERT, which adopts the
same word importance ranking method as DeepWordBug,
and exploits the masked language model (MLM) to generate
replacement words considering the context.

In addition to greedily perturbing words in order, the in-
telligent optimization algorithms can be adopted by modeling

the search process as a combinatorial optimization problem.
Under the guidance of classification probability, Alzantot et al.
[16] uses genetic algorithm to search for AEs. Zang et al. [17]
uses particle swarm optimization as the search method and
substitute words by sememes. While the optimization based
methods may enhance the success rate of attacks, they come
with a price of a significant increase of model queries, which
resulting in the intractable com putational time.

III. METHODOLOGY

A. Problem Formulation

Consider a text classification problem. Given a dataset D
that comprises N pairs of benign sentence x ∈ X with label
y ∈ Y . Each input sentence x = ⟨x1, x2, ...xL⟩ consists of
L words. The training process aims to find a classification
model parameterized by θ, fθ : X → Y that maps input texts
to labels. The goal of adversarial attacks is to generate AE x̂
for any data pair (x, y) in order to mislead the classification
model, i,e.,

fθ(x) ̸= fθ(x̂) s.t. ∆(x, x̂) < ϵ, (1)

where function ∆(·) is the constraint that maintains the
semantic consistency of x and x̂.

B. Textual Coalitional Game

Shapley value is a game theoretical concept which is pro-
posed to conduct a fair allocation of credit to players in the
coalitional games [10]. Let set P = {x1, x2, ...xL} denote
L players (i.e., words xi in sentence x) in textual coalitional
game, and subset s ∈ {0, 1}L denotes the subset of indices
of P , where si = 1 if the player xi is chosen, otherwise si
is nil. The textual coalitional game can be represented by a
subset value function v(·), which assigns any subset of the
players a scalar value, i.e., v(s) : {0, 1}L → R. For any value
function v(·), the Shapley value ϕi(v) of player xi is defined
as follows:

ϕi(v) =
1

L

∑
si ̸=1

v(s+ ei)− v(s)(
L−1
1T s

) , (2)

where ei is the i−th standard basis of RL, s+ei denotes adding
xi to subset s, 1 denotes the vector of all ones. The numerator
in the summation part represents the marginal contribution
of player xi to the subset s, while the denominator is the
corresponding weight.

Shapley value is essentially the weighted average of
marginal contributions over all subsets, and it is proven to be
the only attribution method satisfying the following properties
[18]:

• Efficiency: Shapley values sum to the value of all players
minus the value of none,

∑L
i=1 ϕi(v) = v(1)− v(0).

• Missingness: If the marginal contribution of player xi is
0 for any possible subset, then ϕi(v) = 0.

• Symmetry: If player xi contributes as much as player xj

for any possible subset, then ϕi(v) = ϕj(v).
• Monotonicity: If player xi contributes more than player

xj for any possible subset, then ϕi(v1) > ϕj(v2).
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Fig. 1. Illustration of calculating the importance score of word x2.

Shapley value offers a fair attribution to each player. How-
ever, to adapt the DNNs to the coalitional game, we need to
define the value function v(·) in terms of fθ, i.e., we need to
define a imputer to handle missing values when some words
are absent. Instead of using the commonly adopted baseline
imputer, we refer to the surrogate model [19] to reduce the
number of queries to classification model fθ. Specifically, we
define a surrogate model gβ , parameterized by β, to estimate
the conditional expectation of the classification model when
given a subset of words xs:

gβy (xs) = E
[
fθ
y (x)|xs = xs

]
, (3)

where xs denotes a subset of words, defined by

xsi =

{
xi if si = 1

[UNK] if si = 0
(4)

It has been proven the conditional expectation can be obtained
by minimizing the following loss [20]:

min
β

Ex∼DEs∼Uni(s)
[
DKL

(
fθ(x)∥gβ(xs)

)]
, (5)

where the data x samples from the dataset D and the coalition
subset s samples uniformly from all possible subsets, DKL

represents the Kullback–Leibler divergence. The choice of
surrogate model as the imputer allows us to obtain the condi-
tional expectation of classification model in a single forward
pass, which significantly reduces the number of queries to
classification model and accelerates the estimation process of
Shapley value.

As illustrated in (2), the computational complexity of Shap-
ley value is exponential to the number of players, which is
infeasible when L is large. To estimate Shapley value with
less queries to the classification model, we further exploit a
learning-based estimation approach following FastSHAP [21].

We adopt the transformer architecture as the explainer to
output Shapley value directly. The explainer model Φη(x, y),
parameterized by η, takes data pair (x, y) as inputs, and
outputs the Shapley value of each word directly. We train the
explainer as follows:

min
η

E(x,y)∼DEs∼p(s)

[(
vxy(s)− vxy(0)− sTΦη(x,y)

)2]
,

(6)
where p(s) ∝ L−1

(L−1

1T s)·1T s·(L−1T s)
for s such that 0 < 1T s < L

[22] and the value function is calculated using the surrogate
imputer vxy(s) = gβy (xs). The minimization part encourages
the explainer satisfy the efficiency property for any subset s.
It has been proven the global optimizer of (6) produces the
explainer which outputs the exact Shapley value [21].

C. Word Importance Ranking

We define the synonym set S(xi) of size K that contains
K synonyms of word xi. By replacing xi with its synonym
S(xi)j , a candidate sentence x̂ij can be generated:

x̂ij = [x1, x2, ...S(xi)j , ..., xL] . (7)

Our goal is to find the best synonym S(xi)
∗ and construct the

optimal candidate x̂∗
i = [x1, x2, ...S(xi)

∗, ..., xL] that achieves
the largest confidence drop:

∆P ∗
i = fθ(x)−maxjf

θ(x̂ij). (8)

Combing the Shapley value of each word and the confidence
drop of each replacement, we propose the WIR method
PWSHAP, the score function of word xi is derived as follows:

I(xi) = σ(Φη
i (x)) ·∆P ∗

i , (9)
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where σ(z)i =
ezi∑
j zj

is the softmax function. Since fθ(x) =

gβ(x), then the rank of each word can be obtained:

π = arg sort σ(Φη
i (x))

(
gβ(x)−max

j
gβ(x̂ij)

)
= arg sort σ(Φη

i (x))min
j

gβ(x̂ij)
. (10)

The process to determine the importance score of word x2 is
illustrated in Fig. 1.

D. PWSHAP Attack

The proposed PWSHAP generates AE for any input sen-
tence by perturbing the word in the order specified by π. At
each perturbing step, xi is replaced by its synonym from the
synonym set S(xi). The perturbed candidate is generated if
the semantic constraint is satisfied. The algorithm continues
to perturb the candidate until it alerts the classification label,
which generates AE successfully. The details of PWSHAP
attack is shown in Alg. 1.

Algorithm 1 PWSHAP Attack Algorithm
Input: Data pair (x, y), optimized classification model fθ, im-
puter gβ and explainer Φη , synonym set S, semantic constraint
∆ and the corresponding threshold ϵ.
Output: Adversarial example

1: construct candidate sentence x̂ij from equation (7)
2: π ← arg sort σ(Φη

i (x))minj g
β(x̂ij)

3: xadv ← x //initialize the candidate
4: for i in π do
5: for w in S(xi) do
6: xtmp = [x1, ..., xi−1, w, xi+1, ..., xL]
7: if ∆(x, xtmp) < ϵ then
8: if argmaxc f

θ
c (x) ̸= argmaxc f

θ
c (xtmp) then

9: xadv ← xtmp //attack success
10: return xadv

11: end if
12: if fθ

y (xadv) > fθ
y (xtmp) then

13: xadv ← xtmp //update the candidate xadv

14: end if
15: end if
16: end for
17: end for
18: return xadv //return xadv when the iteration finished

IV. EXPERIMENTS

A. Datasets

We conduct experiments on three representative benchmark
dataset: the sentence-level sentiment classification dataset MR
[23] from rotten tomatoes, the document-level sentiment clas-
sification dataset IMDB [24] and the textual entailment dataset
SNLI [25]. Following the evaluation setting used in TextFooler
[8], we evaluate our algorithm on a set of 1,000 examples
randomly sampled from the test set. The statistics of each
dataset are summarized in Tab. I.

TABLE I
THE DATASET STATISTICS. AVGLEN REPRESENTS THE AVERAGE LENGTH.

Task Dataset Classes Train Test AvgLen

Classification MR 2 8,530 1,066 20
IMDB 2 25,000 25,000 215

Entailment SNLI 3 550,152 10,000 8

B. Victim Models

We adopt three pre-trained transformer models as victim
models, BERT [3], ALBERT [26] and DistilBERT [27].
For convenience and transparency, we exploit the fine-tuned
models trained by textattack [28] from Huggingface model
hub 1 directly. Tab. II summarizes the model performance on
each dataset.

TABLE II
THE MODEL PERFORMANCE ON EACH DATASET.

Dataset Model Name Accuracy

MR
BERT textattack/bert-base-

uncased-rotten-tomatoes 96.7

ALBERT textattack/albert-base-v2-
rotten-tomatoes 89.7

DistilBERT textattack/distilbert-base-
uncased-rotten-tomatoes 86.4

IMDB
BERT textattack/bert-base-

uncased-imdb 90.9

ALBERT textattack/albert-base-v2-
imdb 92.0

DistilBERT textattack/distilbert-base-
uncased-imdb 90.2

SNLI
BERT textattack/bert-base-

uncased-snli 89.1

ALBERT textattack/albert-base-v2-
snli 89.1

DistilBERT - 88.1

C. Baselines

We consider the following three SOTA black box attacks as
baselines:

• TextFooler ranks word based on the confidence drop
when deleting the word, and transform it to the synonym
that is close in the embedding space. [8]

• PWWS ranks word based on the probability weighted
word saliency, and transform it to the synonym from
WordNet. [14]

• BERT-Attack ranks word based on the confidence drop
when replaced with token “[UNK]”, and transform the
word by the masked language model. [9]

The detailed components of each method are shown in Tab.III.
The constraint POS represents the part-of-speech, and USE is
the universal sentence encoder [29] to estimate the sentence
similarity of benign and adversarial texts.

D. Evaluation Metrics

To evaluate the attack performance, we use the following
metrics:

1https://huggingface.co/textattack

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on September 27,2023 at 06:59:22 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
THE COMPONENTS OF BASELINE METHODS.

Method WIR Transformation Constraint
TextFooler delete embedding POS, USE

PWWS probability weighted
word saliency WordNet POS

BERT-Attack unk:
replaced with [UNK] MLM USE

• ASR measures the attack success rate of attacks.
• PPL measures the perplexity of the generated AE by the

language model GPT-2 [30].
• USE measures the semantic similarity of original input

and generated AE.
• QRY measures the average number of queries to the

classifier.
• PTB measures the ratio of number of words that are

perturbed.

Of those metrics, ASR and USE are higher better, while others
are lower better.

V. RESULTS

In this section, we report the attack results first, and then
we investigate the effect of different WIR, the transferability
of AEs and the relationship between ASR and USE. Finally,
we provide a case study of the generated AEs.

A. Attack Results

The results of the proposed method PWSHAP compared
with the baselines are shown in Tab. IV, V and VI for
dataset MR, IMDB and SNLI, respectively. The average ASR
of each method increases by about 1% when the original
WIR is replaced with PWSHAP, which boost the attack
performance even when the original ASR already approaches
100%. Further, the ratio of perturbed words PTB is much
lower for PWSHAP, indicates that it can find the words with
greater impact on the classification more accurately. This in
turn improves the quality of the generated AEs, as reflected
by lower PPL and higher USE. Most importantly, the number
of queries QRY required is significantly reduced, which is
exhilarating since queries in black-box settings can be costly.

B. Effect of WIR

To further investigate the impact of WIR and validate the
effectiveness of PWSHAP, we perform various attacks with
different WIR on BERT using the MR dataset. We report the
ASR in Tab. VII. The WIR method unk and delete produce
comparable attack performance, while PWWS outperforms
them by incorporating word saliency. PWSHAP, which em-
ploys Shapley value, achieves the highest ASR across all
settings. The result highlights the importance of WIR to the
attack performance.

TABLE IV
THE ATTACK RESULTS FOR MR DATASET.

Model Attack WIR ASR PPL USE QRY PTB

BERT

Text
Fooler

delete 92.7 222.6 0.82 106 18.6
PWSHAP 94.1 187.2 0.85 76 14.1

PWWS PWWS 85.2 208.1 0.83 146 15.2
PWSHAP 85.8 211.5 0.83 40 15.3

BERT-
Attack

unk 90.2 144.9 0.83 136 15.5
PWSHAP 92.6 156.8 0.86 90 11.6

ALBERT

Text
Fooler

delete 96.3 213.0 0.84 91 16.4
PWSHAP 96.8 181.9 0.86 72 14.0

PWWS PWWS 84.7 200.7 0.84 148 15.2
PWSHAP 85.4 208.6 0.83 43 16.3

BERT-
Attack

unk 93.2 174.1 0.84 125 15.3
PWSHAP 94.2 161.5 0.86 93 12.3

Distil
BERT

Text
Fooler

delete 95.2 196.4 0.85 80 15.2
PWSHAP 96.3 179.2 0.86 61 12.8

PWWS PWWS 88.2 205.8 0.84 141 14.6
PWSHAP 89.1 203.1 0.84 35 14.5

BERT-
Attack

unk 94.8 168.5 0.85 103 13.0
PWSHAP 95.6 157.3 0.87 77 11.3

TABLE V
THE ATTACK RESULTS FOR IMDB DATASET.

Model Attack WIR ASR PPL USE QRY PTB

BERT

Text
Fooler

delete 98.2 66.6 0.92 592 7.6
PWSHAP 98.7 57.3 0.95 238 4.2

PWWS PWWS 97.7 58.9 0.94 1428 4.3
PWSHAP 96.5 58.3 0.94 150 4.3

BERT-
Attack

unk 98.5 57.9 0.92 619 6.2
PWSHAP 99.8 52.4 0.95 198 2.7

ALBERT

Text
Fooler

delete 98.4 63.2 0.93 580 6.5
PWSHAP 99.1 56.2 0.95 224 3.9

PWWS PWWS 96.5 57.6 0.95 1430 3.6
PWSHAP 97.2 59.0 0.94 151 4.3

BERT-
Attack

unk 99.9 55.1 0.94 519 3.9
PWSHAP 100 51.4 0.96 154 2.2

Distil
BERT

Text
Fooler

delete 99.8 58.6 0.94 370 4.5
PWSHAP 99.8 53.7 0.96 138 2.7

PWWS PWWS 99.5 55.9 0.95 1385 3.2
PWSHAP 99.5 56.4 0.95 95 3.3

BERT-
Attack

unk 99.7 53.3 0.95 356 3.2
PWSHAP 99.9 51.0 0.96 137 1.9

TABLE VI
THE ATTACK RESULTS FOR SNLI DATASET.

Model Attack WIR ASR PPL USE QRY PTB

BERT

Text
Fooler

delete 98.2 38.6 0.90 41 7.1
PWSHAP 97.9 39.1 0.90 43 7.2

PWWS PWWS 98.2 43.5 0.89 175 7.3
PWSHAP 98.5 48.3 0.89 28 9.1

BERT-
Attack

unk 100 32.0 0.91 66 6.1
PWSHAP 100 31.5 0.91 56 6.4

ALBERT

Text
Fooler

delete 98.3 40.9 0.90 47 7.7
PWSHAP 98.7 40.0 0.90 42 7.4

PWWS PWWS 98.7 41.7 0.89 173 7.0
PWSHAP 98.5 60.4 0.89 40 6.7

BERT-
Attack

unk 100 32.2 0.91 66 6.1
PWSHAP 99.9 36.0 0.90 57 5.7

Distil
BERT

Text
Fooler

delete 98.6 40.0 0.90 41 7.1
PWSHAP 98.3 36.9 0.91 37 6.4

PWWS PWWS 98.3 42.7 0.88 174 7.3
PWSHAP 98.3 43.1 0.88 24 7.5

BERT-
Attack

unk 99.9 32.1 0.91 65 6.0
PWSHAP 99.9 30.9 0.91 49 5.7
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Fig. 2. Plots of USE against ASR by varying the maximum allowed percent of perturbed tokens.

TABLE VII
THE RESULTS OF DIFFERENT WIR.

WIR TextFooler PWWS BERT-Attack
unk 92.7 82.7 90.2

delete 93.5 83.6 90.3
PWWS 93.9 85.2 91.8

PWSHAP 94.1 85.8 92.6

C. Transferability

The transferability is one of the important property of AEs:
the AEs generated against a target model can fool another
target model. In order to study the transferability of PWSHAP,
we feed the AEs generated with different attacks to three
victim models on MR dataset. The accuracy of models are
demonstrated in Tab. VIII. It is clear that the AEs generated
by PWSHAP consistently achieve lower accuracy on victim
models, i.e., PWSHAP can produce AEs with higher transfer-
ability.

D. Tradeoff between ASR and USE

To study the relationship between ASR and USE, we attack
BERT and ALBERT on MR and SNLI datasets multiple
times by varying Pmax, the percentage of allowed perturbed
tokens in the attack constraints. Specifically, we select Pmax

values of 0.05, 0.1, 0.2, 0.5, and 1. The plots of USE against

TABLE VIII
RESULTS OF TRANSFER ATTACK.

Model Attack WIR BERT ALBERT DistilBERT

BERT

Text
Fooler

delete - 65.4 51.5
PWSHAP - 63.8 48.2

PWWS PWWS - 62.2 49.5
PWSHAP - 59.1 47.4

BERT-
Attack

unk - 61.9 50.9
PWSHAP - 56.3 45.1

ALBERT

Text
Fooler

delete 76.4 - 63.1
PWSHAP 75.0 - 59.8

PWWS PWWS 72.5 - 61.2
PWSHAP 69.7 - 58.4

BERT-
Attack

unk 70.5 - 61.2
PWSHAP 64.7 - 55.2

Distil
BERT

Text
Fooler

delete 66.5 64.7 -
PWSHAP 66.1 63.8 -

PWWS PWWS 62.2 66.3 -
PWSHAP 62.1 64.4 -

BERT-
Attack

unk 63.1 63.4 -
PWSHAP 59.2 60.8 -

ASR with different Pmax are shown in Fig. 2. It is evident that
USE is negatively related to ASR. The result is intuitive since
when Pmax increases, the attack methods can perturb more
tokens, so ASR increases. On the other hand, USE decreases
because higher Pmax causes more distortion to the input. Since
the plots of attacks with PWSHAP (in thick line) is positioned
in the upper-right compared to the original methods, it can
be concluded that PWSHAP can achieve a better ASR-USE
tradeoff.
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TABLE IX
THE BENIGN INPUTS AND CORRESPONDING AE GENERATED WITH DIFFERENT WIR

WIR Examples Labels

delete a mature (grownup), deeply felt fantasy of a director (rector)’s travel through 300 years of russian history (bygone).
Positive 100%

↓
Negative 97%

PWSHAP a mature, deeply felt fantacy (illusion) of a director’s travel through 300 years of russian history.
Positive 100%

↓
Negative 96%

delete

LIGHTS OF NEW YORK was the first ”all-taking (opted)” feature film, coming in at a brisk (briskly) 57 minutes
and directed by Bryan Foy (of the famous vaudeville family).The story has two dopey barbers (hairdressers) (Cullen
Landis, Eugene Palette) yearning for a chance at ”big city life” and getting involved with gangsters (mobsters) and

bootleg booze (intoxicating). One of the guys gets framed for the murder of a cop but is saved at the last minute by a
gun moll (Gladys Brockwell). Much of the story takes place in a night club called The Night Hawk, which is run by
a crook named Hawk (Wheeler Oakman) who has his eye on a pretty chorine (Helene Costello) who is the girl friend
of Landis. Costello gets to do a brief dance, and we hear Harry Downing (made up to resemble Ted Lewis) sing ”At

Dawning) in his best Al Jolson style. The acting ranges from good (Palette and Brockwell) to awful (Oakman)...

Positive 100%
↓

Negative 58%

PWSHAP

LIGHTS OF NEW YORK was the first ”all-taking” feature film, coming in at a brisk 57 minutes and directed by
Bryan Foy (of the famous vaudeville family).The story has two dopey barbers (Cullen Landis, Eugene Palette)

yearning for a chance at ”big city life” and getting involved with gangsters and bootleg booze. One of the guys gets
framed for the murder of a cop but is saved at the last minute by a gun moll (Gladys Brockwell). Much of the story
takes place in a night club called The Night Hawk, which is run by a crook named Hawk (Wheeler Oakman) who

has his eye on a pretty chorine (Helene Costello) who is the girl friend of Landis. Costello gets to do a brief dance,
and we hear Harry Downing (made up to resemble Ted Lewis) sing ”At Dawning) in his best Al Jolson style. The

acting ranges (fluctuates) from good (Palette and Brockwell) to awful (Oakman)...

Positive 100%
↓

Negative 54%

delete Premise: A black man in a blue suit is talking on a cellphone while smoking
Hypothesis: The man (boy) is talking to his friend (girlies) on the phone

Neutral 100%
↓

Contradiction 70%

PWSHAP Premise: A black man in a blue suit is talking on a cellphone while smoking
Hypothesis: The man is talking to his friend on the phone (handset)

Neutral 100%
↓

Contradiction 64%

E. Case Study
Tab. IX presents the examples of benign texts and corre-

sponding AEs generated with different WIR on dataset MR,
IMDB and SNLI respectively. As shown by these examples,
the attacks with PWSHAP perturb less words and produce AEs
that are more natural and coherent, which is due to PWSHAP’s
ability to produce better word rankings by identifying words
with greater impact on the classification.

VI. CONCLUSION

This paper presented PWSHAP, a query efficient word
importance ranking method for generating textual AEs with
theoretical guarantee. PWSHAP models the textual classifica-
tion problem as a cooperative coalitional game and employs
Shapley value to determine the contribution of each word. PW-
SHAP can be integrated to any black box attacks using two-
step attack schema. Extensive experiments on three datasets
and model architectures validated that PWSHAP effectively
improves the attack success rate and linguistic quality of AEs,
while significantly reducing the number of queries to the
original model.
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