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Abstract— Endowing robots with tool manipulation skills
helps them accomplish challenging tasks. While robots manip-
ulate tools to achieve goals, the alignment of tools and targets is
a noise-sensitive and contact-rich task. However, it is difficult to
access the accurate pose of the tool and the target. When there
is unknown noise in the observations, reinforcement learning
can’t be sure to perform well. In this paper, we define the
easier-to-obtain accurate task-related information as anchor
information and introduce a tool manipulation method based
on reinforcement learning and anchor information, which can
perform well when the observations include unknown noise.
To evaluate the method, we build a simulated environment
ToolGym, which includes four different kinds of tools and
different noise sampling functions for each tool. Finally, we
compare our method with baseline methods to show the
effectiveness of the proposed method.

I. INTRODUCTION

The ability to manipulate tools plays an important role

in natural intelligence [1], which has also attracted a lot of

attention in recent years in robotics [2]. To complete a tool

manipulation process, robots need to complete the following

four steps in sequence [3]: 1) realize the desired targets of

tasks, 2) select appropriate objects as tools, 3) determine how

to grasp and manipulate the selected tools, 4) grasp the tools

and manipulate them to complete tasks.

Most prior works [4], [5], [6] have focused on studying

the first three steps and assumed the last step would be

successfully executed when the grasping and manipulating

poses are successfully predicted. The predicted actions in the

third step can be parsed from different forms of the method

output (e.g., affordance maps [5] and keypoints [6]). But,

in practice, the predicted grasping and manipulating poses

often contain unknown noise that is possibly generated by
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Fig. 1: An example of the robot manipulating a wrench to

tighten a hex screw.

the inaccurate prediction model or the calibration error of

sensors. For grasping actions that contain unknown noise,

most prior works [2] leveraged additional grasping methods

[7] to complete the grasping actions. But few works stud-

ied manipulating actions. The manipulating process often

requires higher prediction or execution accuracy, especially

when aligning tools and targets. The unknown noise in

the predicted outputs will degrade the performance of the

manipulation. In this paper, we focus on learning a tool

manipulation policy that can perform well in the alignment

process when the observations (i.e., the predicted manipulat-

ing poses) include noise.

The alignment of tools and targets is critical for tool

manipulation tasks, which is a noise-sensitive and contact-

rich sub-task. Take wrenches and hex screws as an example

(as shown in Fig. 1), the alignment processes can be thought

of as a special kind of hole-on-peg task while the ends of

the wrenches are holes and the heads of the screws are pegs.

In screwdriver manipulation tasks, the alignment process is

similar to that of the peg-in-hole task. Both of them are

typical contact-rich tasks and are difficult to accomplish

when the poses of holes and pegs (i.e., the tooltips and

the targets) cannot be accurately acquired [8]. Although the

observation of the tooltip contains unknown noise, the spatial

relationship between the pose of the end-effector and the

actual pose of the tooltip is fixed once the robot grasps

the tool. In this paper, we define task-related information

that can be easily obtained during task execution as anchor
information (e.g., the accurate pose of the end-effector). It is

possible to learn an efficient policy with the help of anchor
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information.

In this paper, we leverage deep reinforcement learning

(DRL) and anchor information to learn tool manipulation

skills with imperfect observations. Reinforcement learning

can learn policies from interactions with the environment,

which can help robots handle many challenging situations

that are hard to model. Neural networks are powerful func-

tion approximators that can directly learn from training

data. DRL combines the advantages of both reinforcement

learning and neural networks, and has been widely applied to

address many challenging tasks [9]. Although the observation

of the tooltip contains unknown noise, anchor information

(e.g., the pose of the end-effector) can be used to assist the

DRL model to learn the manipulation policy. Furthermore,

to collect enough training data and evaluate our method, we

design a simulated environment ToolGym that includes four

different kinds of tools: the normal wrench, the pipe wrench,

the ratchet wrench, and the screwdriver.

The outline of this paper is as follows. Section II provides

related works. The details of the proposed method are given

in Section III. The details of the simulation are given in

Section IV. The experiments are presented in Section V.

Section VI concludes this paper.

II. RELATED WORK

A. Tool Manipulation

Learning to manipulate tools in robotics has been studied

for decades [10], [11]. Toussaint et al. [12] formulated

the tool manipulation problem as a constraint-satisfaction

optimization problem and leveraged an optimization-based

task-and-motion-planning method to solve the manipulation

problem. Fang et al. [2] proposed a simulated self-supervised

learning framework to learn the tool manipulation skill. The

framework leverages reinforcement learning to control the

robot to execute the manipulation. Do et al. [4] leveraged a

segmentation model to predict the affordance label of each

tool, and a planning method was utilized to generate the

whole-body motions of the robot based on the affordance

labels. Qin et al. [6] leveraged the keypoint representations

to model the key primitive actions in tool manipulation skills

and utilized other approaches to parse the predicted keypoints

to generate appropriate robotic motions.

B. Addressing Imperfect Observations

To address the imperfect observations, abundant ap-

proaches have been proposed in recent years, and most of

them have leveraged additional information to estimate the

underlying states. Schoettler et al. [13] proposed an image-

based reinforcement learning algorithm to deal with the

imperfect state information and sparse reward signals for

the industrial insertion task, where the visual inputs contain

fully state information. Hao et al. [14] formulated the noise

distributions as the task distributions of meta-reinforcement

learning, and combined meta-reinforcement learning and

residual reinforcement learning methods to handle the peg-

in-hole tasks, where the meta-learning method leveraged

context embeddings to represent the task information. Meng

et al. [15] formulated the problem that the observation

contains noise as a partially observable Markov decision

process (POMDP) and leveraged the history information to

estimate the underlying states, where the history can be

thought of as anchor information in their experiments. In our

case, considering the characteristics of the tool manipulation

tasks, the spatial relationship between the end-effector and

the tooltip is always the same for the specific tool once it

has been grasped. Therefore, we can leverage both the pose

of the tooltip with unknown noise and the actual pose of

the end-effector to implicitly estimate the actual pose of the

tooltip and learn an effective policy.

III. METHOD

A. Problem Statement

In DRL, each task has been formulated as a Markov

decision process (MDP) that can be defined as a tuple

(S,A, P, r, ρ0, γ), where S is a finite set of states, A is a

finite set of actions, P : S × A × S → R is the transition

probability distribution, r : S → R is the reward function,

ρ0 is the distribution of the initial state s0, and γ ∈ (0, 1)
is the discount factor. Let π denote the policy and R(π)
denote the policy’s expected discounted return. The goal of

DRL is to learn an optimal policy π∗ that can maximize

the expected return R(π). A partially observable Markov

decision process (POMDP) [16] is a generalization of an

MDP, but it assumes the state is partially observable (e.g.,

the observation contains unknown noise), and is defined

as a tuple (S,A, P, r, ρ0, γ,O,Ω), where O denotes the

additional observation space and Ω denotes the observation

model. The performance of RL methods is not guaranteed

in a POMDP problem.

Since the observation of the pose of the tooltip contains

unknown noise, the manipulation task can be thought of as

a POMDP problem. However, after the tool is once grasped

by the robot, the spatial relationship between the tool and

the end-effector is invariant for each task. Therefore, the

actual pose of the end-effector can be thought of as anchor

information for the manipulation task, which can assist DRL

to handle the unknown noise in the observation.

B. Efficient Off-Policy Reinforcement Learning

Off-policy reinforcement learning is one of the classes

of reinforcement learning. One of its implementations of-

ten selects appropriate actions by estimating the expected

discounted return Q(st, at) after the agent takes the action

at when the state is st. The values of Q can be recursively

estimated by the Bellman equation:

Q(st, at) = Est+1 [rt + γmax
at+1

Q(st+1, at+1)] (1)

Off-policy data can be used to learn the Q-values, where the

off-policy data can be represented as (st, at, rt, st+1). There-

fore, off-policy reinforcement learning is sample-efficient. In

this paper, we leverage the soft actor-critic (SAC) method

[17] to learn the basic tool manipulation skills, where SAC

is sample-efficient, stable, and requires few hyperparameter
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(a) Normal wrench (b) Pipe wrench (c) Ratchet wrench (d) Screwdriver

Fig. 2: An overview of the designed environment for four different kinds of tools.

(a) Normal wrench (b) Pipe wrench (c) Ratchet wrench (d) Screwdriver

Fig. 3: An overview of the noise ranges for four different kinds of tools. After adding the noise to the observation, the

received pose of the tooltip would be the pose of a point (i.e., the fake center point) belonging to the orange area.

adjustments. The SAC method can leverage a maximum en-

tropy objective to learn stochastic policies. Since part of the

observations contains unknown noise in our case, stochastic

policies can encourage exploration to avoid sticking to the

local minima and improve the robustness of the model to

handle the changing noise [17].

IV. SIMULATION: TOOLGYM

In order to collect training data and evaluate the proposed

method, we design a simulated environment based on the

physical engine MuJoCo [18]. The environment is built upon

the publicly available code at gym [19]. The environment

contains three different wrenches: normal wrench (as shown

in Fig. 2a), pipe wrench (as shown in Fig. 2b), ratchet wrench

(as shown in Fig. 2c), and screwdriver (as shown in Fig. 2d),

where the end of the socket wrench is a complete hole and

manipulating it is supposed to be the most challenging task.

Since we focus on studying the alignment problem in tool

manipulation, all tools are fixed on the end-effector of the

robot. The target pose of the screw in the environment is

randomly generated within the workspace of the robot.
The observation in the environments includes three dif-

ferent vectors: the pose of the end-effector of the robot pe,

the pose of the tooltip pt, and the pose of the target screw

ps. The correct values of pe and ps can be easily accessed

in both the real world and the simulation. The pose of the

tooltip pt is obtained by predictions [4], [6] such that it

could be inaccurate. Therefore, in the simulation, additional

noise is added to the pt to simulate real situations. Fig. 3

demonstrates the range of the offset of the real center point

of the tooltip.
The action in the environments includes four dimensions

(i.e., a = (x, y, z, θ)), where (x, y, z) denotes the movement

of the position of the end-effector and θ denotes the rotation

of the end-effector along the axis that is perpendicular to the

ground.

V. EXPERIMENTS

In this section, we evaluate our method in all four envi-

ronments (as shown in Fig. 2) and compare it with three

baseline methods.

• Position control (PC): It controls the robot to move

to the target pose based on the difference between the

target pose and the observed pose that contains the noise

of the tooltip.

• Position control with prior knowledge (PC+Prior):
It is similar to PC, but it leverages the prior knowledge

to improve the performance. Considering the character-

istics of tool manipulation, the method first controls the

robot to move the tool to the back of the target pose

and then controls the robot to move forward to the target

pose.

• DRL without anchor information (DRL w/o An-
chor): It is similar to the proposed method, but the pose
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(a) Normal wrench (b) Pipe wrench

(c) Ratchet wrench (d) Screwdriver

Fig. 4: Average testing success rates of different algorithms.

of the end-effector in the observations of the policy is

replaced by a zero vector with the same dimensions.

A. Implementation Details
We implement the SAC algorithm based on the publicly

available library tianshou [20]. We build all the neural

networks in the SAC algorithm with the same architecture

that includes two fully-connected layers, and each layer has

256 nodes. The learning rates of the actor and the critics are

0.001.
Noise function: For each tool, the noise range

(xmin, ymin, xmax, ymax) is determined by the size of the

tooltip, whose visualization results are shown in Fig. 3. The

noise is also applied to the orientation, where the noise range

is [− π
16 ,

π
16 ]. In practice, the added noise η = (ηx, ηy, ηθ) is

sampled from the uniform distributions, which means:

ηx ∼ U[xmin,xmax] (2)

ηy ∼ U[ymin,ymax] (3)

ηθ ∼ U[− π
16 ,

π
16 ]

(4)

The noise is resampled whenever the environment is reset.

Reward function: In this paper, the robot receives a dense

reward based on the distance from the real center point of the

tooltip ptr = (nt
r, o

t
r) to the target screw head ps = (ns, os),

where n denotes the position and o denotes the orientation.

The reward function is:

rt = −λ‖nt
r − ns‖2 − ρ‖otr − os‖2 (5)

where λ = 5 and ρ = 4 in this paper.

B. Comparative Results
For the DRL-based algorithms, we repeatedly train the

policies three times. Each time, the policy is tested on five

isolated environments, with each environment containing 20

task instances. In other words, each trained policy is tested on

100 task instances with 100 noise values. For trained policies,

we compute the moving average success rate and the average

success rate of all policies. We evaluate the other baseline

methods 300 times and compute their average success rate.

The final average success rates in the testing environments

are shown in Fig. 4.
In general, the proposed method outperforms the baselines

in all four tasks since the baseline method cannot leverage
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Fig. 5: Training returns for manipulating pipe wrench.

(a) Failure situation 1: the tool is
stuck because of the unexpected
contact

(b) Failure situation 2: the tool ar-
rives at the error target pose because
of the incorrect pose observed (i.e.,
the pose of the red cuboid)

Fig. 6: Examples of the failure situations when leveraging

control method to manipulate tools and the observation

contains noise.

correct information to handle the observation with noise.

The experimental results demonstrate that without the help

of anchor information, the tasks become POMDP problems

and the performance of the DRL model is greatly degraded.

For the proposed method, as the training progresses, the

encountered noise situations during the testing phase are

more likely to have already been experienced during training,

so the model is more and more powerful in estimating the

actual pose of the tooltip based on the observed information.

Take the pipe wrench as an example, Fig. 5 demonstrates

that the algorithm converges after about 7 × 105 steps, but

the performance in the testing environment is still improving

(as shown in Fig. 4b). For the DRL w/o Anchor, based on the

MDP assumption, the policy can only perceive the current

observations with unknown noise. Thus, it lacks enough task-

related information to estimate underlying states.

Furthermore, the experimental results demonstrate that the

traditional position control method can improve performance

with the help of prior knowledge. For the traditional method,

if the observation contains unknown noise, it will possi-

bly fail in two situations (as shown in Fig. 6). For the

PC+Prior method, we append a predefined workflow into

the PC method based on prior knowledge about the tool

manipulation tasks. It will improve the first failure situation

(as shown in Fig. 6a). Because of the workflow, in the last

step, the tooltip is always facing the target pose, making it

more possible to complete the task when the actual pose of

the tooltip is on the line connecting the incorrect pose and

the target pose. The second failure situation will always exist

(as shown in Fig. 6b). Because these methods cannot obtain

the actual pose of the tooltip.

VI. CONCLUSION

In this paper, we study learning tool manipulation skills

in robotics with unknown noise existing in observations.

Observations including unknown noise are quite normal in

the real world, which makes it difficult to estimate the true

pose of the target points. We leverage the deep reinforcement

learning method to address this problem with the help of

anchor information. In this paper, we focus on the wrench

and screwdriver manipulation that is close to the challenging

task hole-on-peg and peg-in-hole. Both of them are typical

kinds of contact-rich tasks. MuJoCo is a powerful physical

engine to simulate contact among different objects. We de-

sign a simulated environment based on the MuJoCo engine to

train tool manipulation skills and quickly collect data, which

includes four different kinds of tools: the normal wrench, the

pipe wrench, the ratchet wrench, and the screwdriver.

Although the proposed method outperforms the baseline

methods in all four tasks, it does not perform as well in

the screwdriver manipulation task as in the other tasks.

Because the physical size of the end of the screwdriver and

the slot of the screw is small, which makes this task more

noise-sensitive than the others. Especially when the noise

sampling function for orientation is the same for all tasks,

the noise greatly influences the screwdriver task. A possible

direction for future work is to leverage more environmental

information or prior knowledge to (implicitly) estimate the

actual pose of the tooltip. In this paper, we have focused

on the manipulating process in the tool manipulation tasks

and assumed the tool is fixed on the end-effector. However,

in practice, the influence of the grasping point of the tool

is also required to be considered. At each grasp, the spatial

relationship between the pose of the end-effector and the

pose of the actual tooltip may be different. Therefore, an

interesting direction for future work is to leverage meta-

learning methods to quickly adapt to the spatial relationship

changes brought by the novel grasp point.
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