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   Abstract—In  the  era  of  big  data,  there  is  an  urgent  need  to
establish  data  trading  markets  for  effectively  releasing  the
tremendous value of  the drastically explosive data.  Data security
and  data  pricing,  however,  are  still  widely  regarded  as  major
challenges  in  this  respect,  which  motivate  this  research  on  the
novel  multi-blockchain  based  framework  for  data  trading  mar-
kets and their associated pricing mechanisms. In this context, data
recording and trading are conducted separately within two sepa-
rate  blockchains:  the  data  blockchain  (DChain)  and  the  value
blockchain (VChain). This enables the establishment of two-layer
data  trading  markets  to  manage  initial  data  trading  in  the  pri-
mary market and subsequent data resales in the secondary mar-
ket.  Moreover, pricing mechanisms are then proposed to protect
these markets against strategic trading behaviors and balance the
payoffs  of  both  suppliers  and  users.  Specifically,  in  regular  data
trading  on  VChain-S2D,  two  auction  models  are  employed
according  to  the  demand  scale,  for  dealing  with  users’ strategic
bidding. The incentive-compatible Vickrey-Clarke-Groves (VCG)
model is deployed to the low-demand trading scenario, while the
nearly incentive-compatible monopolistic price (MP) model is uti-
lized for the high-demand trading scenario. With temporary data
trading  on  VChain-D2S,  a  reverse  auction  mechanism  namely
two-stage  obscure  selection  (TSOS)  is  designed  to  regulate  both
suppliers’ quoting  and  users’ valuation  strategies.  Furthermore,
experiments  are  carried  out  to  demonstrate  the  strength  of  this
research in enhancing data security and trading efficiency.
    Index Terms—Auction,  data  trading  markets,  multi-blockchain,
pricing mechanisms.
  

I.  Introduction

NOWADAYS,  data  has  become  a  crucial  resource  in
developing  intelligent  technologies  and  applications  [1],

[2].  However,  the  integration  of  distributed  data  is  challeng-
ing, leading to the emergence of “isolated data islands”. Addi-
tionally, the concentration of data in the hands of a few own-
ers  creates  a  significant  hurdle  for  the  smooth  flow  of  data,
known as the “data barrier”. These issues impede the full uti-
lization  and  realization  of  enormous  value  inherent  in  data.
Data trading has emerged as a viable solution to address these
problems.

The primary challenge of  data trading lies  in ensuring data
security, often regarded as the bottleneck in establishing effec-
tive  data  trading  markets.  As  an  emerging  technology,
blockchain can address this challenge by building a new trust
system  through  a  decentralized  autonomous  network.  It
enables non-tampering and traceability of data through a col-
lectively  maintained  time-sequential  chain  structure  [3],  [4].
Moreover,  blockchain ensures information security by imple-
menting  authentication  mechanisms,  consensus  algorithms,
and encryption technologies [5], [6]. By virtue of these techni-
cal features, blockchain is widely recognized as highly appli-
cable to data trading and holds great potential in resolving its
security  issues  [7]−[9].  In  recent  years,  significant  research
efforts  have  been  dedicated  to  utilizing  blockchain  technol-
ogy  for  constructing  decentralized  data  trading  markets  [10],
[11], with the primary goal to address security concerns such
as privacy preservation, information leakage, and data tamper-
ing [12]. Additionally, corresponding trading protocols, smart
contracts,  and  signature  algorithms  have  also  been  exten-
sively studied in this context [13], [14]. Although these works
have  contributed  to  improve  the  security  of  data  trading,  the
commonly  used  single-blockchain  structure  has  distinct  defi-
ciencies in segregating the security risks associated with data
recording  and  trading,  and  also  fails  to  guarantee  the  trading
efficiency  when  confronted  with  high  levels  of  concurrency
across  various  trading  modes  and  scenarios.  Besides,  they
mainly  focus  on  specific  task-specific  scenarios,  rather  than
the broader context of general data trading scenarios.

Therefore,  we  are  motivated  to  propose  multi-blockchain
based data trading markets that cater to a wider range of gen-
eral scenarios. Different smart contracts are deployed in multi-
ple  blockchains,  so  as  to  form  the  function-oriented  multi-
blockchain framework. Under this framework, there is no dis-
tinction  between  the  main  blockchain  and  side  blockchain.
Multiple  blockchains  operate  in  parallel,  utilizing  the  same
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infrastructure. Each blockchain in the multi-blockchain based
data trading markets operates independently with its own node
network and consensus algorithms, thereby ensuring self-con-
tained security.  This  framework separates  data  recording and
trading across different blockchains, while conducting trading
activities in distinct blockchains tailored to specific scenarios.
This  design  not  only  enhances  data  privacy  preservation  but
also  prevents  the  transmission  of  trading  risks  to  the  data
itself. Furthermore, in the designed data trading markets, data
is treated as reusable goods, allowing for the reselling of data
computing  results.  This  enables  traceability  of  data  trading
and usage, leading to enhanced data trading security.

Another  challenge of  data  trading is  to  design a  well-func-
tioned  data  pricing  mechanism  to  regulate  all  participants’
trading  behaviors,  so  as  to  enhance  the  supply  and  demand
matching  and  improve  trading  efficiency  [15],  [16].  Block-
chain-based  data  trading  differs  fundamentally  from  tradi-
tional  data  trading  as  it  eliminates  the  third-party  intermedi-
ary and operates in a decentralized manner.  Consequently,  in
trust-less  trading  markets,  where  comprehensive  information
for data may not be available, it is crucial to establish rational
pricing mechanisms. Currently, the prevailing pricing mecha-
nisms  are  query-based,  game-based,  and  model-based
[17]−[19].  Among  them,  the  approaches  based  on  game  the-
ory  and  auction  theory  are  widely  employed  for  determining
data  prices  [20],  [21],  since  they  prioritize  the  discovery  of
data prices for different trading characteristics and the evalua-
tion of market dynamics rather than relying solely on calcula-
tions  of  cost  and  profit  metrics.  However,  the  majority  of
existing research on game-based data pricing mechanisms pri-
marily  focuses  on  distributed  computing  and  shared  service
application scenarios, with limited work on designing pricing
mechanisms specifically for  direct  data trading.  Additionally,
in trust-less data trading markets based on blockchain, there is
the  notable  absence  of  analysis  on  the  truthfulness  of  data
pricing  mechanisms,  for  incentivizing  both  the  supply  and
demand sides to honestly report true valuations of data while
discouraging strategic trading behaviors.

In order to address these research gaps in existing data pric-
ing mechanisms and enhance data trading efficiency, we con-
sider different data trading scenarios and propose the tailored
pricing mechanisms for the multi-blockchain based data trad-
ing markets. For a regular data supply recorded in blockchain,
we  introduce  auction-based  pricing  mechanisms  to  sell  it  to
multiple  users.  For  a  temporary  data  supply  not  recorded  in
blockchain, we design a reverse-auction-based pricing mecha-
nism to match it  with specific demands. Both pricing mecha-
nisms are designed to discourage strategic trading behaviors in
their respective data trading scenarios.

In summary, this paper contributes in studying data trading
by  providing  a  multi-blockchain  framework,  tailored  pricing
mechanisms, and empirical evidence of their benefits in terms
of data security and trading efficiency.

The  remainder  of  this  paper  is  organized  as  follows:  Sec-
tion  II  formulates  the  two-layer  data  trading  markets  within
multiblockchain  framework,  and  outlines  the  data  recording
and trading process; Section III introduces different data pric-

ing  mechanisms  for  the  formulated  markets;  Section  IV  pro-
vides  experimental  verification  and  analysis;  Section  V sum-
marizes this paper and discusses future work.  

II.  Data Trading Markets Based on Multi-Blockchain

The framework of multi-blockchain based data trading mar-
kets  is  illustrated  in Fig. 1.  It  includes  a  multi-blockchain
infrastructure and two-layer markets constructed on top of it.
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Fig. 1.     Data trading markets based on multi-blockchain.
 

The  underlying  infrastructure  consists  of  two  types  of
blockchains:  The  data  blockchain  (DChain)  responsible  for
data  recording,  and the value blockchain (VChain)  managing
data  trading.  In  particular,  two  distinct  VChains  are  estab-
lished  to  accommodate  different  data  trading  scenarios.
Specifically, VChain-S2D is designed for trading regular data
supplies that have already been recorded in DChain. This sce-
nario involves demand being increased for  existing data  sup-
ply.  Besides,  VChain-D2S  is  intended  to  be  used  for  trading
temporary  data  supplies  that  have  not  been  recorded  in
DChain.  This  scenario  pertains  to  reverse  trading  where  the
supply  responds  to  the  proposed  data  demand.  Multiple
blockchains within the framework can be customized with dif-
ferent  permission  controls.  Access  to  DChain  is  restricted  to
data  owners  and  authorized  users  with  valid  purchasing
records.  This  design  not  only  ensures  data  security  but  also
enhances efficiency by leveraging the scalability of the multi-
blockchain  framework,  which  mitigates  potential  efficiency
reductions resulting from high concurrency arising in various
data trading functions.

On  the  basis  of  the  multi-blockchain  framework,  the  two-
layer  data  trading  markets  are  established  with  the  primary
market  for  initial  data  trading  and  the  secondary  market  for
resales of data computing results. In the primary market, once
the data is recorded in DChain, its descriptive information will
be updated in VChain-S2D through cross-chain protocols and
smart  contracts  [22],  [23].  Users  can  access  VChain-S2D  to
check for matching data supplies. If a matching supply exists,
users can submit their purchase requests to VChain-S2D. If no
matching  supply  is  found,  users  can  submit  their  demand
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offers  in  VChain-D2S and  await  responses.  In  the  secondary
market, users are allowed to resell the computing results of the
purchased data through VChain-S2D.  

A.  Initial Data Trading in the Primary Market
1) The Data Blockchain: DChain is constructed as a consor-

tium blockchain. Both data owners from the consortium orga-
nizations and ordinary data owners endorsed by enough posi-
tive  data  trading  evaluation  have  authority  to  submit  data  to
DChain.  Only after  data owners obtain the legal  data records
in DChain with the help of validators, they officially become
the regular suppliers.

Suppliers  independently  decide  to  store  data  locally  or  on
DChain.  In  general,  data  with  privacy  preservation  require-
ments  will  be  stored  locally.  If  the  data  is  stored  locally,
DChain  only  records  its  hash  value  and  descriptive  informa-
tion including data ID, address,  name, size,  type,  granularity,
update  frequency,  time,  etc.  If  the  data  is  stored  on  DChain,
the  encryption  algorithm  is  used  to  ensure  data  security
throughout the whole lifespan of data recording and trading.

When a piece of data (the whole data set or only its descrip-
tive  information)  is  submitted  to  DChain,  data  validators  are
randomly  selected  to  validate  its  authenticity  and  validity.
Although the number of validators is fixed, the validator sets
vary for different data. The selected validators will join in an
exclusive  channel  of  this  data  which  cannot  be  accessed  by
other  validators.  Besides  of  the  hash  value  and  descriptive
information,  a  sample  of  very  small  fragment  is  drawn  ran-
domly for each validator to assist data confirmation. Each val-
idator  gets  a  different  data  sample  that  cannot  be  viewed  by
others. Only when the proportion of validators confirming the
data  reaches  the  preset  threshold,  can  it  be  recorded  to
DChain. After the confirmation results are returned, the sam-
ples  will  be  hidden  and  can  not  be  viewed  by  the  validators
any  more.  However,  if  there  is  a  dispute  over  the  confirma-
tion  results,  these  samples  can  be  checked  by  the  arbitration
tribunal.  When the  data  is  recorded  into  DChain,  its  descrip-
tive information will be updated to VChain-S2D immediately
and users in need can purchase it through VChain-S2D.

The data validators will be rewarded with data confirmation
fees paid by the data suppliers. For simplicity, we assume that
each regular supplier only has one data record (i.e., data sup-
ply). To prevent validators from arbitrarily recording data into
DChain stimulated by the over-high associated fees, we calcu-
late  the  data  confirmation  fee  according  to  data  scale  and
granularity.
 

fi = f (si, li). (1)
fi

si
li

fi = γssi+γlli γs
γl

Here,  denotes  the  confirmation  fee  of  data i paid  by  its
supplier, which is determined by the data scale  and the data
granularity . For example, we can establish a linear function

 to  calculate  data  confirmation  fees,  where 
and  are  the  fee  coefficients  of  data  scale  and  granularity,
respectively.

2) The Value Blockchains: Different from DChain, VChains
can  be  either  consortium  blockchains  or  public  blockchains.
Regular suppliers sell  their  data via VChain-S2D, while tem-
porary  suppliers  sell  their  data  via  VChain-D2S.  There  is  no

selection mechanism of transaction validators in VChains, and
all of them can actively participate in confirming data trading.
To prevent collusion, data validators in DChain are prohibited
from confirming data trading in VChains. However, there are
no exclusive obligations for trading validators, and they have
the freedom to join both VChains. We view all trading valida-
tors  as  a  whole  to  discuss  their  confirmation  fees  from  con-
firming and recording data trading for users.

a) VChain-S2D: In VChain-S2D, the pricing mechanism is
determined  by  suppliers  to  maximize  their  payoffs  from
matching  the  data  supplies  reasonably  with  users’ demands.
Since data is a special type of goods that can generate differ-
ent  values  for  different  users  with  various  uses,  suppliers
know  the  costs  of  producing  and  managing  data  but  cannot
precisely get users’ valuations on data. Taking these into con-
sideration, we adopt the auction-based mechanism to price the
data in VChain-S2D.

There  are  multiple  built-in  auction  models  in  VChain-S2D
for suppliers to select, and the ranking rule and payment rule
of  each  auction  model  are  public  knowledge  of  all  suppliers
and  users.  All  auction  models  can  be  automatically  executed
by  predefined  smart  contracts  without  human  intervention.
Suppliers  have  rights  to  select  the  auction  mechanisms  for
their  data  and  change  them  dynamically,  but  they  must  be
determined before each round of data trading auction and kept
unchanged at least until the end of this round.

j ∈ Ji = {1, . . . ,ni}

b1 j
i

ti

t̄i

t̄i = ti+ ξ

Ji
[ti, t̄i]

t̄i

First,  the  auction  model  is  selected  for  the  data i;  if  a  user
 needs  this  data  and  accepts  its  auction

model, he/she will submit a purchase request to VChain-S2D
associated  with  the  highest  price  that  is  willing  to  pay.
Assume that users independently determine their bids for each
data  supply.  Then,  the  data  trading  validators  will  confirm
these  purchase  requests  and  record  them  into  VChain-S2D.
The tth round of data trading auction starts from time  when
the  first  purchase  request  of  data i is  legally  recorded  into
VChain-S2D, and all  purchase requests before the deadline 
is  valid  for  the tth  round  of  data  trading  auction.  There  is

,  and ξ is  usually  the  integer  multiple  of  the  time
interval  of  block  generation.  Accordingly,  The tth  round  of
data trading auction will be conducted among  bids submit-
ted during the time interval .  If  there are more demands
of this data after  time ,  a  new round of data trading auction
can be launched following the same process.

t̄i ai(t) ∈ A
J∗i (t)

n∗i (t)

pa
j
i j(t) ∈ J∗i (t)
Ri(t)

At time ,  the  pre-selected  auction  model  is  pow-
ered  by  the  smart  contract  to  determine  the  winner  set 
comprised  of  users  with  top  highest  bids.  Then,  valida-
tors  in  VChain-S2D  will  confirm  the  legality  of  the  auction
process and its results, and the confirmed data trading will be
recorded  into  VChain-S2D.  Consequently,  all  winning  users
will  have  legal  data  trading  records,  while  other  users  only
have bidding records. The supplier i will then get the payment
(i.e.,  the  data  price)  from  each  winning  user ,
and his/her total payoffs  in the tth round of auction are
 

Ri(t) =
∑

j(t)∈J∗i (t)

pa
j(t)
i . (2)

j ∈ J∗i (t)Meanwhile, the winning users  with a trading record
will  get  computing  results  of  the  data  after  providing  their

 2224 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 12, DECEMBER 2023



models in two ways. If the data is stored locally, the winning
users  will  be  authorized  to  access  the  computing  results  pro-
vided by the supplier. If the data is stored on DChain, the sup-
plier  can  also  call  the  computation  decentralized  application
(Com-DApp)  to  execute  data  computing,  and  the  computing
results will be returned to all winning users via the encrypted
on-chain transmission. Here, Com-DApp integrates a series of
smart contracts, and can provide data computing capability for
all participants in the blockchain-based data trading markets.

g j(t)
i

j(t) ∈ J∗i (t)

After  regular  data  trading  is  confirmed  and  recorded,  the
data trading validators will receive confirmation fees  paid
by  the  winning  user .  We  adopt  the  fee  model  of
mandatory basic fees plus voluntary extra tips, that is
 

g j(t)
i = θRi(t)+

∑
j(t)∈J∗i (t)

δ
j(t)
i . (3)

δ
j(t)
i

The  basic  fee  rate  is  represented  by θ,  which  is  combined
with users’ payments to jointly affect the data trading valida-
tors’ revenues. In addition, users can also provide extra tips to
encourage validators to confirm their trades in priority, which
is denoted by .  Since the data trading volumes and prices
are not precisely known when validators are initially involved
in data  trading to  provide confirmation service,  they have no
idea  about  total  basic  fees  and  extra  tips  generated  from  the
final data trading. As such, it is very difficult for them to fil-
ter  out  low-value  data  trading  intentionally.  However,  since
the  revenue-maximized  validators  will  carefully  predict  data
trading and make confirmation strategies accordingly, this fee
model  will  also  encourage  earlier  confirmation  of  high-qual-
ity, high-value and high-volume data trading.

ei

Finally,  the  ex-post  evaluation  mechanism  is  applied  to
guarantee  reliable  data  trading  and  safeguard  interests  of  all
participants,  under  which  all  winning  users  are  requested  to
score  the  data  supply  after  trading  is  completed.  To  prevent
users’ malicious  evaluations  from  damaging  suppliers’ inter-
ests  as  well  as  weakening  their  enthusiasm  to  provide  data,
some  measures  are  taken  as  follows.  First,  the  median  of  all
user-submitted  scores  is  used  as  the  final  score .  Second,
users are encouraged to provide evidence of their evaluations
especially  for  the  overly-high  or  overly-low  scores,  e.g.,  the
model  performance  enhanced  by  the  data.  Third,  users  are
allowed to  resell  the  purchased  data  computing  results  at  the
price  they  are  willing  to  accept,  but  the  gains  need  to  be
shared  with  data  suppliers,  which  will  be  elaborated  in  Sec-
tion  II-B.  As  a  result,  if  users  maliciously  undervalue  their
purchased data, their own gains will also be damaged.

b) VChain-D2S: In VChain-D2S, the pricing mechanism is
determined  by  users  to  make  their  data  demands  receive
proper  responses.  Usually,  users  have  the  pre-valuation  of
their required data, but have no exact information of its qual-
ity and supply cost to precisely evaluate its value. In addition,
the  complete  demand response  in  VChain-D2S may be  com-
prised of  multiple  data  supplies,  and users  cannot  price  them
independently  under  this  case.  However,  these  multiple  sup-
plies  are  not  complementary  to  each  other  as  that  in  the  dis-
tributed  computing  tasks,  because  values  they  bring  to  users
are independent. As such, the pricing method based on calcu-

lating  the  marginal  contribution  is  not  applicable.  Taking
these into consideration, the reverse auction model is used to
realize  data  pricing  for  the  reverse  trading  of  temporary  data
supplies.

v j

t̄ j

First,  the  user j proposes  a  data  demand  with  precise
requirements  and  pre-valuation  to  VChain-D2S.  Suppose
each user only submits one data demand, and his/her pre-valu-
ation  is  only  publicized  to  data  trading  validators  and
unknown  by  suppliers.  Furthermore,  the  reverse  auction
model c is publicized and the response time deadline  is set
by the user.

t j

k ∈ K j = {1, . . . ,m j}

b2 j
k

Once the demand is recorded in VChain-D2S at time , the
data  owner  who  possesses  the  matching
data  and  accepts  the  pricing  model  can  submit  his/her
response  with  the  lowest  quote  that  they  are  willing  to
accept.  The  data  owner  who  has  a  legal  response  record  is
referred to as a temporary supplier.

t̄ j

k ∈ K j∗

p j
k

At  time ,  the  reverse  auction  model  is  powered  by  smart
contract to select winners from the temporary suppliers. Only
when the reverse auction process and results are confirmed to
be legal  by data trading validators,  they can be recorded into
VChain-D2S. The winning suppliers will have legal data trad-
ing records, while other suppliers only have the quote records.
Then,  the  winning  supplier  which  has  a  legal  trading
record will  be  paid  at  the  price  by the  user j.  Meanwhile,
the user will get data computing results from the winning sup-
pliers or Com-DApp after providing his/her computing model.
The  trading  prices  will  be  discussed  in  the  following  three
cases.

b2 j
k v j

p j
k

i)  If  the demand is responded to by one supplier,  when the
quote  is less than the user’s valuation , the only tempo-
rary supplier will be the winner, and will get paid at the price

 calculated according to the reverse auction model.

k ∈ K j∗ p j
k

ii) If the demand is responded to by multiple temporary sup-
pliers  but  satisfied  by  only  one  data  supply,  the  user  deter-
mines the final winner  as well as his/her payoff .

K j∗

p j
k

iii) If the demand is satisfied by multiple suppliers, the user
not only needs to determine the winner set  but also assign
a proper price  to each winning supplier.

Accordingly, the user’s total payments are
 

P j =
∑

k∈K j∗
p j

k. (4)

g j
After  reverse  data  trading  is  confirmed  and  recorded,  the

data trading validators will also get confirmation fees  paid
by  the  user.  Similarly,  the  fee  model  based  on  mandatory
basic fees plus voluntary extra tips is used. That is,
 

g j = θP j+δ j|K j∗| (5)
δ jwhere  is the extra tip per winning data supply.

ekFinally,  the  user  is  asked to  submit  the  evaluation  score 
for  the  temporary  data  supply  he/she  purchased.  From  the
above  analysis,  the  temporary  suppliers  can  only  passively
wait for users’ demands and respond to them in VChain-D2S;
while  the  regular  suppliers  can  actively  submit  data  to
DChain,  and  allow  for  it  be  purchased  by  more  users  in
VChain-S2D. To encourage more supply of high-quality data,
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the temporary supplier can be upgraded to be the regular sup-
plier and access DChain, when the evaluation scores accumu-
lated  from  the  successful  data  trading  exceed  the  specified
threshold.  

B.  Data Resales in the Secondary Market
In the secondary market, users can become the reseller and

get  paid  by  reselling  the  purchased  data  computing  results.
Because  the  data  computing  results  are  essentially  processed
data, it is very hard to provide new values to them via further
computation.  Also,  they  are  faced  with  fierce  competitions
from not only the data supplies in the primary market but also
the  substitute  computing  results  in  the  secondary  market,
which result  in  a  relatively narrow audience.  Moreover,  their
purchase  costs  are  publicly  known.  Hence,  the  fixed  price
model is used in the secondary market. Considering the varia-
tions  in  data  computing  models  as  well  as  resellers’ prefer-
ences and costs,  the resale price is  determined from the indi-
vidual perspective to maximize their payoffs in the secondary
market.

j(t) ∈ J∗i (t)

wi, j(t)
fi, j(t)

If  the  user  decides  to  sell  the  data  computing
result  purchased  from  a  regular  supplier,  the  corresponding
data ID, hash value, descriptive information, evaluation score
as well as his/her own computing model must be submitted to
DChain.  After  being confirmed by the data  validators,  it  will
be assigned a new ID  and its owner becomes a reseller.
Meanwhile,  data  validators  will  get  confirmation  fees .
Due  to  the  fact  that  the  data  confirmation  difficulty  and  cost
not only depends on the data itself, but also is greatly affected
by  the  computing  models,  the  data  confirmation  fees  in  the
secondary market are determined by the following fee model.
 

fi, j(t) = f̄ (si, li,µi, j(t)). (6)

µi, j(t)

The  complexity  of  the  computing  model  provided  by  the
reseller is defined by .

wi, j(t)

wi, j(t) ri, j(t)

Then, users can purchase  through VChain-S2D at the
price  set  by  the  reseller.  The  resale  price  of  the  data  supply

 is a fixed price  calculated as
 

ri, j(t) = argmaxβri, j(t)xi, j(t)

xi, j(t) = h(pi,ri, j(t),ri−, j(t),µi, j(t)). (7)
wi, j(t) ri−, j(t)

xi, j(t)
µi, j(t)

xi, j(t)
ri, j(t)xi, j(t)

j(t)i

The  competitive  prices  of  are  defined  by ,  and
the resale volume is defined by . Besides, the value added
to  the  data  by  the  computing  models  is  also  viewed  as
one of  the  key parameters  of  the  demand function .  The
resale  payoff  will  be  further  allocated  between  the
reseller  and  the  initial  data  supplier i with  a  predeter-
mined weight β. When the reseller optimizes their own payoff,
it simultaneously optimizes the initial data supplier’s payoff in
the  secondary  market.  This  compensation  helps  offset  the
potential negative impact of data resale on the initial data sup-
plier’s revenues from the primary market.

gi, j(t)

The  data  trading  validators  will  also  get  confirmation  fees
.  Because the resale price is  fixed in the secondary mar-

ket, using the pricing model described by (3) will cause fees to
be  known  before  validators  make  their  choices  on  data  trad-
ing confirmation. Consequently, data trading with higher fees
will  be  confirmed faster,  while  those  with  lower  fees  will  be

detained  for  a  longer  time.  To  avoid  this  situation  and  con-
sider  that  the  data  has  been  confirmed  previously  in  the  pri-
mary market, the following fee model is used to determine the
data trading confirmation fees in the secondary market:
 

gi, j(t) = xi, j(t)ḡ. (8)

ḡ
Here,  the confirmation fee for each data trading is  fixed as

.

k ∈ K j∗

wk, j
fk, j

s j
k

l j
k

µk, j

Following  the  aforementioned  process,  the  user  can  also
resell  the  data  computing  result  purchased  from  the  tempo-
rary supplier .  With the help of  data  validators,  it  will
be recorded into DChain and assigned a new ID as . Simi-
larly, the data validators will get confirmation fees  calcu-
lated by the following fee model backed by the data scale ,
the data granularity  and the complexity of computing model

.
 

fk, j = f̄ (s j
k, l

j
k,µk, j). (9)

wk, j
rk, j

Then,  users  can  purchase  through  VChain-S2D  at  a
fixed price  given by the revenue-maximizing user j.
 

rk, j = argmaxβrk, jxk, j

xk, j = h(pk,rk, j,rk, j− ,µk, j). (10)
rk, j− xk, j

wk, j rk, jxk, j

gk, j

Here,  is the competitive prices and  is the resale vol-
ume. After  is  successfully resold,  the payoff  will
be  allocated  between  the  reseller j and  the  initial  supplier k
with  a  preset  weight β.  During  this  process,  the  data  trading
validators will get confirmation fees ,
 

gk, j = xk, jḡ. (11)

wi, j wk, j

Similar  to  the primary market,  users  in  the secondary mar-
ket  are  required  to  provide  evaluation  scores  for  the  pur-
chased data computing results. To prevent abusive data resale
from harming data suppliers’ profits,  the resold data comput-
ing results  and  are prohibited from reselling again.  

III.  The Pricing Mechanisms

In multi-blockchain based data trading markets, it  is neces-
sary  to  motivate  suppliers  and  users  properly  via  well-func-
tioned  pricing  mechanisms  that  are  aimed  at  reducing  strate-
gic  bidding  and  quoting  behaviors  while  encouraging  honest
data exchange. In what follows, we will discuss their payoffs
and  design  the  auction  model  and  reverse  auction  model  for
data pricing in VChain-S2D and VChain-D2S, respectively.  

A.  Auction-Based Pricing Mechanism in VChain-S2D
The regular supplier i can not only get paid by selling data

through VChain-S2D in the primary market and also wins the
payoff  share  from  users’ resale  of  data  computing  results  in
the secondary market. Accordingly, his/her payoff function is
 

Ri =
∑
t∈T

∑
j(t)∈J∗i (t)

[pa
j(t)
i + (1−β)ri, j(t)xi, j(t)]. (12)

However,  we can barely  optimize  the  payoff  from the  sec-
ondary market by adjusting the pricing mechanism. Therefore,
this  section  focuses  on  studying  the  auction-based  pricing
mechanism in the primary market.

The regular supplier first selects an auction model with the
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purpose  of  maximizing  the  total  payments  provided  by  win-
ning  users  in  the  primary  market.  Then,  each  user  individu-
ally  determines  the  bid  under  the  selected  auction  model
aimed  at  optimizing  the  trading  cost  represented  by  the
required payment. Consequently, the data trading game can be
viewed as a sequential game, where the regular supplier is the
first-mover  taking  a  favorable  position  and  benefiting  from
making  his/her  strategy  of  selecting  the  auction  model  as  a
hard  constraint  faced  by  users.  To  prevent  the  supplier  from
abusing this first-mover advantage and excessively squeezing
users’ profits  as  well  as  prevent  users  from  gaming  the  auc-
tion  rule  through  adjusting  the  bids  arbitrarily,  rational  auc-
tion mechanisms should be designed to balance the payoffs of
both  regular  suppliers  and  users.  As  such,  we  attach  impor-
tance to the incentive-compatibility of the auction-based pric-
ing mechanism in data trading, under which users can simply
set  bids truthfully at  their  valuations and suppliers can stably
extracts  revenues  from selling  data.  In  light  of  the  impact  of
data  demand  scale  on  auction  results,  different  auction  mod-
els are used for data trading under different demand scale (i.e.,
the number of bids).

αni
0 < α < 1 ni

b1i = (b11
i , . . . ,b1n

i )
ji

ji ≤ αni j ∈ J∗i

d j
i

With  respect  to  data  in  low  demand,  we  propose  to  adopt
the Vickrey-Clarke-Groves (VCG) auction mechanism, which
is  incentive-compatible  and  has  distributive  efficiency  [24].
Suppose  the  supply  scale  in  a  certain  round  is ,  where

 is the supply coefficient and  is the demand scale.
The  regular  supplier i sorts  all  bids  in
descending order and assigns the rank  for each user j. Only
when , user  can win the data trading auction and
purchase  data  at  a  price  equal  to  his/her  bid  subtracted  by
his/her  marginal  contribution  to  the  social  welfare  of  all
users. Hence, we have
 

pvcg
j
i = b1 j

i −d j
i . (13)

d j
iThe user’s marginal contribution  is calculated by

 

d j
i =
∑
j∈J∗i

v j
i (J∗i ,b1 j

i )−
∑
j∈J̃∗i

v j
i (J̃∗i ,b1 j

i ) (14)

J̃∗i j ∈ J∗i

b1 j
i = v j

i

where  is the winner set when the user  does not bid.
Under  VCG mechanism,  the  dominant  strategy  for  each  user
is to bid on the valuation truthfully, i.e., . Accordingly,
the total payments in a certain ground gained by the supplier i
under VCG mechanism are
 

Rvcgi =
∑
j∈J∗i

pvcg
j
i =
∑
j∈J∗i

[v j
i −d j

i ]

=
∑
j∈J∗i

[v j
i −
∑
j∈J∗i

v j
i +
∑
j∈J̃∗i

v j
i ]. (15)

However,  the  VCG  mechanism  has  a  deficiency  where  its
computational  complexity  will  be  elevated  by  the  increasing
demand scale [25], and thus may harm data trading efficiency
in the multi-blockchain based markets. Consequently, we pro-
pose  to  use  the  monopolistic  price  (MP)  mechanism for  data
in high demand, which is proven to be nearly incentive com-
patible when the demand scale is large enough [26]. Under the
MP  mechanism,  given  all  the  bids  ranked  in  the  descending

b11
i ≥ · · · ≥ b1n

i
pmpi

jmpi Rmpi

order ,  the  supplier  needs  to  jointly  determine
the  monopolistic  price  and  the  corresponding  supply
scale  to maximize the monopolistic revenue .
 

Rmpi = max
jmpi∈Ji

jmpi pmpi. (16)

pmpi = b1 jmpi

All  winning  users  pay  the  monopolistic  price  equal  to  the
lowest  bid  offered  by  them.  That  is, .  Accord-
ingly,
 

jmp
∗
i = arg max

jmpi∈Ji
jmpib1 jmpi . (17)

Then, the total payments gained by the supplier i under the
MP mechanism are
 

Rmpi = jmp
∗
i b1 jmpi

∗
. (18)

Different from the VCG mechanism, the MP mechanism is
not  strategy-proof,  and  users  can  benefit  from  shading  their
true  valuations  and  submit  lower  bids  under  the  MP  mecha-
nism. However, these strategic behaviors of users will gradu-
ally vanish with the increasing demand scale, because the ben-
efits becomes very close to zero and the risk of losing the auc-
tion increases when the demand scale is large enough.  

B.  Reverse-Auction-Based Pricing Mechanism in VChain-D2S

d j
The temporary supplier k earns payoffs from responding to

the data demand  through VChain-D2S in the primary mar-
ket  and  gets  the  payoff  share  from  reselling  data  computing
results in the secondary market. His/her payoff function is
 

Pk =
∑
j∈J

∑
k∈K j∗

[p j
k + (1−β)pk, jxk, j]. (19)

Given the dependence of the payoff share in the secondary
market on resellers’ strategies, we mainly discuss the reverse-
auction-based pricing mechanism in the primary market.

The main objective of the reverse auction model in VChain-
D2S  is  to  ensure  that  the  user  can  purchase  data  with  high
returns and the temporary suppliers can be properly rewarded
in data trading with payment allocation. With this in mind, we
design  a  reverse  auction  mechanism  called  the  two-stage
obscure  selection  (TSOS)  mechanism,  which  consists  of  two
stages:  the  potential  supply  selection  based  on  the  suppliers’
quotes and the final winner selection based on the user’s eval-
uation on each potential data supply.

v j

K̂ j∗ = {k|b2 j
k < v j} |K̂ j∗ | ≥ 1

With respect to the potential supply selection, the quotes are
accepted as  long as  they are  lower  than the  user’s  pre-valua-
tion  in view that it is very difficult for user to screen out the
desirable data without exact information. Hence, the potential
supply set is constructed as . If , the
user needs to further determine the final winning suppliers as
well as data prices for them.

Assume  that  honest  users  and  suppliers  agree  on  the  rank-
ing  of  these  data  in  terms  of  their  valuations;  however,  their
valuations  do  not  have  to  be  completely  identical.  Under
TSOS mechanism, the potential supplier will be asked to pro-
vide a data computing sample to VChain-D2S. However, The
corresponding  relation  between  the  sample  and  the  data  will
not  be  disclosed  to  the  user  at  this  stage.  To avoid  dishonest
data  sample  provisions,  the  retrospective  mechanism  will  be
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v j
k

launched  after  data  trading  is  realized,  which  mainly  mea-
sures  the  deviation  between  the  computing  results  from  the
data  sample and the complete  data  supply.  If  it  surpasses  the
allowable  range,  the  supplier  is  considered  to  be  fraudulent
and  will  be  severely  punished.  The  user  then  checks  these
samples and submits his/her valuation  under anonymity.
 

v j
k = λ

j
kv j, k ∈ K̂ j∗. (20)

λ
j
k > 0Here,  represents the deviation degree from the user’s

pre-valuation.

v j
k/b2 j

k

After  that,  the  corresponding  relation  of  the  data  and  its
sample will be sent to the user so that he/she can calculate the
return  on  all  potential  supplies.  We  sort  them  in
descending order to get
 

v j
k

b2 j
k

>
v j

k+1

b2 j
k+1

, ∀k ∈ K̂ j∗. (21)

m∗The demand scale  is determined according to the user’s
valuation constraint.
 

m∗ = argmax(k|
∑

k∈K̂ j∗

b2 j
k ≤ v j,

v j
k

b2 j
k

≥ 1). (22)

m∗ = 1If ,  the  data  with  the  highest  return  will  be  the  only
supply and paid by its quote.
 

p j
k = {b2 j

k |max
v j

k

b2 j
k

,k ∈ K̂ j∗}. (23)

In  the  case  where  multiple  data  have  the  same  highest
return,  the  one  with  the  highest  valuation  will  become  the
final winner.

m∗ > 1If , the user needs to allocate the payment among the
winning  suppliers.  The  one  with  the  highest  return  is  called
the first winner and will be paid by his/her quote plus an extra
reward;  and  the  other  winning  suppliers  are  called  ordinary
winners and will be paid by their quotes.
 

p j
k =


b2 j

k(1+
b2 j

m∗

v j
m∗
−

b2 j
k

v j
k

), k = 1

b2 j
k, k ∈ {2, . . . ,m∗}

0, k > m∗

(24)

b2 j
m∗ v j

m∗where  and  represent  the  quote  and  valuation  of  the
lowest ranked winner, respectively.

The user’s payoff under TSOS mechanism is
 

u j =
∑

k∈K j∗

v j
k

p j
k

. (25)

ω
j
k

v j
k = ω

j
k, ∀k ∈ K j∗

Here,  is  his/her  true  valuation  on  data k on  basis  of  its
sample.  If  he/she  honestly  evaluates  each  data,  there  is

.
From  the  perspective  of  data  supply,  we  discuss  whether

suppliers honestly submit true valuations as their quotes. Usu-
ally, the supplier responds to the data demand with an optimal
quote with the purpose of maximizing the payoff gained from
the user.

Lemma  1: When  the  supply  scale  becomes  sufficiently
large, the rational suppliers under the TSOS mechanism get to
be nearly truthful.

b2 j
k′

b2 j
k′ > p j

k∗

b2 j
m∗/v

j
m∗ −b2 j

1/v
j
1

b2 j
k′ k j′ ∈ {2, . . . , |K j′ |}

|K j′ | < m∗

b2 j
k′ vk∗ < b2 j

k′ < vk∗b2 j
1/v

j∑
k j′∈K̂ j′ b2 j

k j′ ≤ v j vk∗

Proof: If a higher quote  can bring higher payoff to the
rational supplier, there must be . For the first winner,

 will  be  negative,  which is  contradictory to
the  rule  of  selecting  the  winning  suppliers.  For  the  ordinary
winner,  needs to guarantee that  even if

,  otherwise  his/her  payoff  will  be  0.  Consequently,
 must satisfy the conditions that  and

,  where  is  the  supplier’s  true  valuation.
When there are large number of potential supplies, we have
 

lim
|K̂ j∗ |→∞

(
vk∗b2 j

1

v j − vk∗ ) = 0. (26)

This  implies  that  when  there  are  a  sufficient  number  of
potential supplies, the supplier can barely increase the payoff
by submitting a higher quote.

b2 j
k′If a lower quote  can bring higher payoff to the rational

supplier,  there  is  only  one  case  that  he/she  becomes  the  first
winner and the extra reward exceeds the reduced quote. It can
be obtained by further calculation that
 

b2 j
m∗ −b2 j

k′

v j >
b2 j

k∗ −b2 j
k′

b2 j
k′

. (27)

b2 j
m∗ < v j b2 j

k′ < v j (b2 j
m∗ −b2 j

k′ )/v
j < 1

m∗

b2 j
m∗ −b2 j

k′

Because , ,  we  have .
As  the  number  of  potential  supplies  grows  while  is  con-
strained  by  (22),  will  decrease  to  approximate  0,
under which (27) does not hold. Therefore, the supplier is also
nearly impossible to use the strategic low quote to improve the
payoff when the supply scale is large enough. ■

From  the  perspective  of  data  demand,  we  discuss  whether
the  user  truthfully  evaluates  each  data  sample  and  determine
final winners as well as their payoffs.

Definition  1  (Demand-Side  Incentive  Compatible  (DSIC)):
The TSOS mechanism is DSIC, if the user maximizes the pay-
off by honestly submitting the true valuations on all potential
data supplies.

m∗ = 1

m∗ > 1

Theorem 2: When , the TSOS mechanism for trading
the  temporary  data  in  VChain-D2S  is  DSIC;  while  when

, it is not DSIC, but the user’s gain from strategic valua-
tion is restricted.

v j
k∗ , ω

j
k∗

Proof: The objective of the user in trading temporary data is
to select the data supply with the highest return and pay as lit-
tle as possible. On the basis of Lemma 1, it is easy to find that
the  user  cannot  increase  his/her  payoff  by  changing  the  win-
ning supply set by giving strategic valuation on data supplies,
i.e., ,  otherwise  the  data  with  higher  return  will  be
excluded  while  the  data  with  lower  return  will  be  bought.
Consequently, we will discuss whether the user can minimize
the  payment  via  strategic  valuation  on  the  premise  that  the
most profitable data supplies are selected.

m∗ = 1 v j
k∗ , ω

j
k∗ u j

k∗ , u j

v j
1 < ω

j
1

For , if there exists  so that , we have
,  since  submitting  a  higher  valuation  will  not  change

the  user’s  payment  and  his/her  payoff.  Because  suppliers  are
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v j
1 < ω

j
1

truthful-telling  when  there  is  a  large  enough  supply  scale
according  to  Lemma  1,  there  are  two  cases  under :
Either  the  winning  supply  stays  unchanged  or  the  new  win-
ning supply will  replace the most profitable one. For the for-
mer, the user’s payoff remains unchanged; while for the latter,
the  user’s  payoff  will  decrease.  Therefore,  the  user  will  hon-
estly submit his/her true valuation on data.

m∗ > 1

v j
1 v j

m∗

b2 j
m∗/v

j
m∗ −b2 j

1v j
1

b j
1ω

j
2/b

j
2 < v j

1 < ω
j
1 ω

j
m∗ < v j

m∗ <

b j
m∗ω

j
(m−1)∗/b

j
(m−1)∗

For ,  because  the  ordinary  winners  are  paid  by  their
quotes,  the user can only increase the payoff by reducing the
extra  reward  for  the  first  winner.  With  this  purpose,  the  user
either  gives  a  lower  or  a  higher  to  minimize

.  Since  the  winners  are  determined  by
the  return,  we  have  and 

.  Accordingly,  the  maximal  growth  of  the
user’s  payoff  resulting  from  the  strategic  valuation  is
restricted to
 

b j
1

b j
1ω

j
2

b j
2ω

j
1

−
b j

m∗ω
j
(m−1)∗

b j
(m−1)∗ω

j
m∗

 . (28)

m∗ = 1 m∗ > 1
Based  on  the  above  analysis,  TSOS mechanism is  deemed

DSIC when  while not DSIC when . ■  

IV.  Experimental Analysis

The main purpose of  the experimental  analysis  is  to evalu-
ate the performance of the multi-blockchain data trading mar-
kets  and  the  associated  pricing  mechanisms.  Because  these
three  blockchains  have  isolated  data  storage,  individual  per-
mission control and different node networks,  the data trading
markets based on them can guarantee privacy preservation and
data security by nature. As such, the emphasis will be on eval-
uating the proposed pricing mechanisms.

2000 95

The experiments are conducted on a multi-blockchain plat-
form  by  using  the  data  trading  within  a  famous  power  grid
group in China as an example.  The platform is  developed on
the  hyper-ledger  Fabric,  and  the  operating  system  is  Ubuntu
18.04. It consists of three independent consortium blockchains
and they cooperate to fulfill the diverse data trading functions.
All  nodes  run in  the  unified blockchain platform and use the
same  blockchain  infrastructure,  but  we  assign  different  roles
and  permissions  to  each  node  represented  by  departments
from  different  branches.  There  are  user  nodes  and 
supplier nodes in the multi-blockchain platform.

10

To realize cross-chain communication, we randomly select a
fixed  number  of  nodes  from  the  validator  set  in  DChain  to
form the anchor node set. The anchor nodes join both DChain
and  VChains,  and  can  also  play  the  role  of  verifying  data  in
DChain. They are responsible for transmitting the descriptive
information of data from DChain to VChain-S2D and also the
data  trading  information  and  the  suppliers’ evaluation  scores
from  VChains  to  DChain.  An  entry-exit  mechanism  is  set
based on the  evaluation  scores,  under  which  the  regular  sup-
pliers  receiving  5  negative  evaluations  will  have  their  access
permission of  DChain invalidate  and the  temporary suppliers
receiving  positive evaluations will be granted permission to
join DChain.

Based on the above setting, the experimental verification of
pricing  mechanisms  of  multi-blockchain  based  data  trading

markets  are  carried  out  from the  perspective  of  their  equilib-
ria.  For  simplicity,  we  do  not  consider  validators’ confirma-
tion fees in the following experiments.
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In the experiments on the auction-based data pricing mecha-
nism  in  VChain-S2D,  one  data  supply  is  randomly  chosen
from more than  data sets. We are authorized to use these
data sets to do scientific analysis and tests. According to real
data  trading,  the  bids  it  received have fallen  into  the  interval
of  (unit:  thousand Yuan).  We then randomly gener-
ate users’ bids under the case where the number of bids is ,

, ,  and , respectively.
To prove whether the MP mechanism and VCG mechanism

are incentive compatible under different demand scales, we let
each user’s bid be equal to his/her true valuation and then ana-
lyze whether  the  equilibrium under  this  setting is  stable.  The
experimental results are shown in Figs. 2 and 3.
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Fig. 2.     The comparison of supplier’s payoff under VCG and MP mecha-
nisms.
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Fig. 3.     Strategic adjustment space of users’ bids under MP mechanism.
 

According to Fig. 2, the regular supplier’s payoffs from data
trading  under  the  MP  mechanism  are  distinctly  higher  than
that  under  the  VCG mechanism in  the  case  of  small  demand
scales.  However,  the  truthful-telling  strategy  of  bidding  with
users’ real valuations cannot converge to a stable equilibrium
under the MP mechanism, since the user with the bid equal to
the monopolistic price can revise the bid downward to reduce
his/her  own  payment  as  well  as  that  of  other  winning  users.
This will consequently reduce the supplier’s payoff under the
MP  mechanism. Fig. 3 shows  that  the  strategic  adjustment
space  of  users’ bids  is  eroded  as  the  number  of  bids  grows.
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600When  the  number  of  bids  increases  to ,  the  strategic
adjustment  space  of  the  lowest  ranked  winner  that  restricted
within  the  interval  from  the  minimum  bid  to  his  true  valua-
tion  is  almost  vanished;  meanwhile  the  supplier’s  payoffs
under both auction mechanisms get to be nearly equal. Under
these  mechanisms,  users  can  simply  submit  bids  truthfully
without  the  need  for  price  estimation  or  adjustments  as  the
demand  scale  grows,  thus  the  data  trading  efficiency  can  be
guaranteed.

150

We also compare the proposed auction-based pricing mech-
anism  with  most  common  ones,  namely  the  generalized  first
price  (GFP)  auction  mechanism  and  the  generalized  second
price (GSP) auction mechanism [27],  [28].  Here,  we take the
case of  bids as the example to conduct comparative analy-
sis,  which  is  described  by Fig. 4.  In  multi-blockchain  based
data  trading  markets,  the  MP  mechanism  and  VCG  mecha-
nism  are  essentially  the  uniform-price  auction  mechanism,
while the GFP and GSP mechanisms are discriminatory-price
auction mechanisms. Although the truth-telling strategy under
the  discriminatory-price  auction  mechanism  seems  to  extract
higher  payoffs  for  suppliers,  they  are  not  stable  and  cannot
reach  equilibrium.  Because  users  have  motivations  to  submit
lower bids for higher returns, this leads to drastic drop of the
supplier’s  payoffs.  Their  frequent  adjustments  on  bids  will
reduce data trading efficiency.
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Fig. 4.     Users’ payments under MP, GFP, GSP, and VCG mechanisms for
150 bids.
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In  experiments  on  the  reverse-auction-based  data  pricing
mechanism  in  VChain-D2S,  one  data  demand  is  produced
with pre-valuation of  (unit: thousand Yuan). We then ran-
domly generate the temporary suppliers’ quotes under the case
where the number of quotes is , , ,  and , respec-
tively. The experimental results are shown in Figs. 5−7.
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When there is only one winning supply (i.e., ), we can
see  from Fig. 5 that  the  strategic  adjustment  space  of  suppli-
ers’ quotes  under  the  TSOS  mechanism  is  reduced  by  an
increased  supply  scale.  When  the  number  of  quotes  reaches

, it is reduced to less than , and will keep shrinking
to nearly zero with a rising number of quotes. As discussed in
Section  III-B,  the  user  should  rationally  assess  the  value  of
data supplies and then determine winning ones. Here, we take
the  case  of  quotes  as  an  example  to  verify  whether  the
user will truthfully give a valuation on each data. From Fig. 6,
the  highest  return  is ,  under  which  the  user  cannot
improve his/her payoff by deviating from the true valuations.

The experimental  results  confirm the  properties  of  the  TSOS
mechanism discussed in Lemma 1 and Theorem 2.
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When there are more than one supplier (i.e., ), we see
from Fig. 7 that there are two winning suppliers with return of

 and  respectively, where the first winner can get paid
by  and the ordinary winner can get  paid by .  For
the first winner, a lower quote will make him/her keep the cur-
rent position or be an ordinary winner, both of which will cut
down  the  payoff.  Especially,  becoming  the  ordinary  winner
will make his/her payoff slump to . For the ordinary win-
ner, elevating the quote by only  will make him/her lose
the auction while a lower quote will result in the first winner
reducing the quote, thus it  would not be able to make his/her
payoff any higher.  Here,  a similar trend of diminishing quot-
ing  strategy  adjustment  space  by  rising  number  of  quotes  is
also  revealed.  However,  the  user  can  slightly  reduce  his/her
valuation  on  the  first  winner  by  so  as  to  improve  the
payoff.  The  experimental  results  also  validate  the  theoretical
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Fig. 5.     Strategic adjustment space of suppliers’ quotes under TSOS mecha-
nism when .
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analysis of the TSOS mechanism described by Lemma 1 and
Theorem  2.  It  has  proven  that  TSOS  mechanism  can  induce
nearly  truthful  trading  behaviors  in  reverse  data  trading  sce-
narios,  and  the  trading  efficiency  will  not  be  harmed  by  the
self-interested  adjustment  strategies  and  the  resulting  unbal-
anced payoffs.  

V.  Conclusions and Future Work

With  the  aim  to  guarantee  data  security  and  enhance  data
trading  efficiency,  this  paper  is  committed  to  establishing
multi-blockchain based data trading markets and designing the
pricing  mechanisms  tailored  to  different  trading  scenarios  to
regulate  trading  behaviors  and  strike  a  balance  between  the
benefits of both suppliers and users. These markets use multi-
ple  blockchains  not  only  to  record  and  trade  data  separately
but  also  to  trade  regular  and  temporary  data  independently.
Furthermore,  this  paper  introduces  tailored  pricing  mecha-
nisms to facilitate blockchain-based trading in the absence of
precise  data  information.  Different  auction  mechanisms  are
employed  based  on  the  scale  of  demand,  promoting  truthful
bidding  strategies  in  regular  data  trading.  Additionally,  a
novel  reverse  auction  model  is  designed  to  counter  strategic
quoting  by  suppliers  and  strategic  valuation  by  users  in  the
trading  of  temporary  data  supply.  Experimental  results  vali-
date the effectiveness of these pricing mechanisms in shaping
trading  behaviors  and  enhancing  trading  efficiency  in  multi-
blockchain based data trading markets.

In the future, there will be a focus on the inclusion of confir-
mation  fees  when  designing  pricing  mechanisms  for
blockchain-based data trading, since they are integral to trad-
ing  costs  and  economic  systems  of  blockchains  [29],  [30].
Additionally, the resale of data in the secondary market has a
substitute effect on data supply in the primary market. Hence,
its influence on the demand scale and bids of data supplies in
the primary market should be considered in pricing data. Fur-
thermore,  another  potential  research  direction  is  the  explo-
ration  of  decentralized  data  trading  markets  based  on  decen-
tralized  autonomous  organizations  and  operations  (DAOs)
[31]−[34],  to  attract  a  larger  number  of  individual  data  own-
ers and facilitate fair collaboration for data supply.
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