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   Abstract—This paper presents a subspace identification method
for closed-loop systems with unknown deterministic disturbances.
To deal with the unknown deterministic disturbances, two strate-
gies are implemented to construct the row space that can be used
to  approximately  represent  the  unknown  deterministic  distur-
bances  using the  trigonometric  functions  or  Bernstein  polynomi-
als depending on whether the disturbance frequencies are known.
For closed-loop identification, CCF-N4SID is extended to the case
with  unknown deterministic  disturbances  using  the  oblique  pro-
jection. In addition, a proper Bernstein polynomial order can be
determined  using  the  Akaike  information  criterion  (AIC)  or  the
Bayesian  information  criterion  (BIC).  Numerical  simulation
results  demonstrate  the  effectiveness  of  the  proposed  identifica-
tion method for both periodic and aperiodic deterministic distur-
bances.
    Index Terms—Bernstein  polynomial,  closed-loop  system,  subspace
identification, unknown deterministic disturbances.
  

I.  Introduction

SYSTEM  identification  has  been  widely  investigated  over
the past several decades, which serves as an important tool

for monitoring and control purpose [1]–[6]. In particular, sub-
space identification methods (SIMs) can be advantageous over
the  identification  of  the  state-space  model  using  the  process
data  available,  which has  been demonstrated to  be quite  use-
ful  for  the  identification  of  multivariate  systems.  Recently,
many  achievements  have  been  made  regarding  complex  sys-
tems  and  conditions  on  the  subspace  identification.  In  [7],
subspace  identification  for  structured  state-space  models  is

proposed  with  the  user-defined  linear  or  polynomial  parame-
terization  structure.  In  [8],  a  unified  subspace  identification
framework  for  linear  parameter-varying  (LPV)  systems  is
established in innovation form, which gives an in-depth view
on the LPV subspace identification problem. In [9], subspace
identification for large-scale interconnected systems with het-
erogeneous network is  investigated with no constrains on the
sparse interconnection.

In  practice,  most  industrial  processes  are  required  to  be
operated  in  practice  under  closed-loop  conditions  due  to  the
concern for system safety and product quality. In some cases,
the  process  cannot  be  separated  for  open-loop  identification
tests,  for  instance,  the  process  needs  to  be  stabilized  for
bounded  outputs  or  requires  online  identification.  This  moti-
vates  the  subspace  identification  work  for  closed-loop  sys-
tems  using  the  available  process  data.  The  main  challenge  is
to  deal  with  the  inherited  correlation  between  the  control
inputs  and  noise  under  the  feedback  control  in  order  to  get
unbiased  estimation  results  [10].  Until  now,  many  various
methods have been developed for closed-loop subspace identi-
fication,  such  as  innovation  estimation  method  (IEM)  [11],
predictor-based subspace identification (PBSID) [12], closed-
loop  subspace  identification  method  via  principal  component
analysis (CSIMPCA) [13] and nuclear norm subspace identifi-
cation method (N2SID) [14]. In addition, a novel closed-loop
identification  method  called  CCF-N4SID  was  recently  pro-
posed  in  [15]  to  integrate  the  prior  knowledge  of  the  con-
troller  into  the  subspace  identification  framework,  based  on
which  the  closed-loop  identification  framework  will  be  used
in this work.

On the other hand, practical industrial processes may suffer
from  various  unknown  deterministic  disturbances,  for
instance, the flatness of the strip can be greatly influenced due
to the roll eccentricities as a typical external unknown distur-
bance during the rolling process [16] and wind turbines can be
prone to unknown periodic disturbances due to the air  turbu-
lence  [17],  [18].  These  unknown  deterministic  disturbances
can  lead  to  the  biased  or  even  totally  incorrect  identification
results if they cannot be well handled. However, less attention
has been paid to the in-depth investigation of subspace identi-
fication with unknown deterministic disturbances. A subspace
identification  method  with  deterministic  disturbances  is  pro-
posed  in  [19]  based  on  the  multiple-input-multiple-output
error state-space model identification (MOESP) algorithm and
it  is  derived  under  the  assumption  that  disturbances  can  be
parametrisable.  The  base  space  of  the  disturbances  is  not
explicitly  constructed  though  it  is  mentioned  that  a  proper
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base space can be helpful to the subspace identification under
the  strong  periodic  disturbances.  A  biased-eliminated  sub-
space  identification  method  with  constant  load  or  periodic
load  is  proposed  in  [20],  [21]  for  the  consistent  estimation
where the output responses are decomposed into the disturbed
part  and  the  undisturbed  part.  In  addition,  the  above  results
have also been extended to the identification of the Hammer-
stein nonlinear system with periodic or slowly varying distur-
bances [22],  [23].  However,  few studies have been dedicated
to the subspace identification with aperiodic deterministic dis-
turbances.

In  this  paper,  a  closed-loop subspace identification method
is  proposed  to  deal  with  the  unknown  deterministic  distur-
bances  under  standard  feedback  control.  The  influence  of
unknown deterministic  disturbances  can  be  alleviated  via  the
projection  onto  the  constructed  row  space,  which  can  easily
adapt  to  aperiodic  deterministic  disturbances  with  unknown
frequencies  using  the  row  space  constructed  by  Bernstein
polynomials. The main contributions can be summarized as:

1)  The row space that  can be used to  approximately repre-
sent  the  unknown  deterministic  disturbances  is  respectively
designed  using  the  trigonometric  functions  and  Bernstein
polynomials.

2)  CCF-N4SID  is  extended  to  the  closed-loop  subspace
identification  with  unknown  deterministic  disturbances  using
the oblique projection.

3)  A  proper  Bernstein  polynomial  order  is  determined  to
approximate  the  unknown  deterministic  disturbances  via  the
Akaike  information  criterion  (AIC)  or  Bayesian  information
criterion (BIC).

The  rest  of  the  paper  is  organized  as  follows.  Section  II
briefly  introduces  the  preliminaries  and  formulates  the  prob-
lem.  Section  III  presents  the  proposed  closed-loop  subspace
identification  algorithm  with  unknown  deterministic  distur-
bances. Section IV discusses the choice of the Bernstein poly-
nomial  order.  Section V verifies the effectiveness of  the pro-
posed  algorithm  via  the  simulation  study.  Section  VI  con-
cludes this work.  

II.  Preliminaries and Problem Formulation
  

A.  System Description
G(z)Consider  the  following  state  space  model  with  peri-

odic disturbances under the standard feedback control:
 

x(k+1) = Ax(k)+Bu(k)+Edd(k)+w(k) (1)
 

y(k) =Cx(k)+Du(k)+Fdd(k)+ v(k) (2)
x(k) ∈ Rn u(k) ∈ Rl y(k) ∈ Rm d(k) ∈ Rnd

w(t) ∈ Rn v(k) ∈ Rm

A ∈ Rn×n

B ∈ Rn×l C ∈ Rm×n D ∈ Rm×l Ed ∈ Rn×nd Fd ∈ Rm×nd

where , ,  and  denote the
system state,  control  input,  measurement  output  and  periodic
disturbances,  respectively;  and  are  the
process noise and measurement noise, respectively; ,

, , ,  and  are
parameter matrices with appropriate dimensions.

K(z)Given the controller  in the form of the state space rep-
resentation as
 

xc(k+1) = Acxc(k)+Bc(r(k)− y(k)) (3)
 

u(k) =Ccxc(k)+Dc(r(k)− y(k)) (4)
xc(k) ∈ Rncwhere  denotes  the  state  vector  of  the  controller,

r(k) ∈ Rm Ac ∈ Rnc×nc Bc ∈
Rnc×m Cc ∈ Rl×nc Dc ∈ Rl×m

 denotes  the  reference  signal; , 
,  and  are parameter matrices of the

controller with appropriate dimensions.  

B.  Definition and Lemma

f (x) ∈C[0,1] n ∈ N+
Bn( f , x)

Definition  1  (Bernstein  Polynomial  [24]): For  a  bounded
function , for , the n-order Bernstein poly-
nomial  is defined as
 

Bn( f , x) =
n∑

l=0

f
(

l
n

) n

l

 xl(1− x)n−l (5)

C[0,1]
(nl) = n!

l!(n−l)!

where  denotes  the  continuous  function  on  [0,  1],
.

f (x) C[0,1] x ∈ [0,1]
Lemma 1 (Approximation Theorem [24]): Let a continuous

function  be  bounded  on ,  for  any  point ,
then
 

lim
n→∞

Bn( f , x) = f (x) (6)

holds uniformly in [0, 1].
Definition  1  and  Lemma  1  indicate  that  the  deterministic

disturbances  in  analytic  form  can  be  approximated  by  the
Berstein  polynomial,  which  serves  as  the  foundation  for  the
design  of  the  row  space  that  approximately  represents  the
unknown deterministic disturbances in Section III-B.  

C.  Problem Formulation

G(z)
In  this  paper,  the  identification  problem  is  formulated  as

determining the matrices A, B, C and D from the process 
with  the  unmeasurable  deterministic  disturbances  under  the
feedback  control.  The  main  focus  is  the  solution  to  two  key
problems: 1)  How to approximate the unknown deterministic
disturbances  in  the  subspace  context.  2)  How  to  identify  the
process model with unknown deterministic disturbances under
closed-loop conditions.

To identify the process model, several assumptions have to
be made:

Assumption  1: The  standard  feedback  control  loop  is  well-
posed and internally stabilized by the controller.

G(z) (A,C)
(A,B)

Assumption 2:  is minimal, i.e., the pair  is observ-
able and the pair  is reachable.

{r(k)}Assumption 3: The reference  is an ergodic, quasi-sta-
tionary random process and can be persistently exciting of any
order.

{w(k)} {v(k)}

{r(k)}

Assumption  4:  and  are  assumed  to  be  zero-
mean white noise sequences and independent of the reference

 with covariance matrix
 

E




w(k1)
v(k1)
r(k1)




w(k2)
v(k2)
r(k2)


T =


Rw 0 0
0 Rv 0
0 0 Rr

 (7)

and
 

Rw = E
{
w(k1)wT (k2)

}
= σ2

wI×δ(k1− k2) (8)
 

Rv = E
{
v(k1)vT (k2)

}
= σ2

v I×δ(k1− k2) (9)

E{·} σ2
w σ2

vwhere  denotes the expectation operator,  and  denote
the  variances  of  the  process  noise  and  measurement  noise,
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respectively; δ denotes the Dirac function.  

III.  Closed-Loop Subspace Identification With
Unknown Deterministic Disturbances

  

A.  Data Equation
us,kDefine the stacked vectors  with length s as follows:

 

us,k =


u(k− s)

u(k− s+1)
...

u(k)


∈ R(s+1)×l. (10)

By arranging the stacked vectors at different instants, define
 

Uk,s =
[

us,k−N+1 · · · us,k
]
∈ R(s+1)l×N

Yk,s =
[

ys,k−N+1 · · · ys,k
]
∈ R(s+1)m×N

Dk,s =
[

ds,k−N+1 · · · ds,k
]
∈ R(s+1)nd×N

Xk,N =
[

x(k−N +1) · · · x(k)
]
∈ Rn×N

(11)

ys,k ds,k
us,k

where N is  a  large  integer,  and  have  the  same struc-
ture as .

To split the data into past and future horizons, define
 

Up = Uk−s f−1,sp , U f = Uk,s f

Yp = Yk−s f−1,sp , Y f = Yk,s f

Dp = Dk−s f−1,sp , D f = Dk,s f

(12)

sp s fwhere  and  denote  the  past  horizon and the  future  hori-
zon, respectively.

Iterating on (1), it leads to
 

Y f = Γ f Xk,N +Hu, f U f +Hd, f D f +Φ f (13)
Φ f
Γ f Hu, f Hd, f

where  denotes the noise term, which can refer to [15] for
details. , , and  are
 

Γ f =


C

CA
...

CAs f


(14)

 

Hu, f =


D 0 · · · 0

CB D · · · 0
...

...
. . .

...

CAs f−1B CAs f−2B · · · D


(15)

 

Hd, f =


Fd 0 · · · 0

CEd Fd · · · 0
...

...
. . .

...

CAs f−1Ed CAs f−2Ed · · · Fd


. (16)

Consider the predictor model of (1) as follows:
 

x̂(k+1) = AK x̂(k)+BKu(k)+EKd(k)+Ky(k) (17)
 

y(k) =Cx̂(k)+Du(k)+Fdd(k)+ e(k) (18)
AK = A−KC

BK = B−KD EK = Ed −KFd

where K is  the  Kalman  filter  gain  matrix, ,
, .

Xk,NIterating on (17),  can be rewritten as
 

Xk,N ≈
[
∆u ∆y ∆d

]
Zp,d (19)

Zp,d =


Up

Yp

Dp

 ∆u =
[

Asp−1
K BK · · · BK

]
∆y =[

Asp−1
K K · · · K

]
∆d =

[
Asp−1

K EK · · · EK

]
where , , 

, .
G(z)In this way, the data equation of  can be given as

 

Y f = Ξz,p,dZp,d +Hu, f U f +Hd, f D f +Φ f (20)

Ξz,p,d = Γ f
[
∆u ∆y ∆d

]
where .
  

B.  Dealing With Unknown Deterministic Disturbances
1)  Dealing  With  Deterministic  Disturbances  With  Known

Frequencies: Assume that  the  deterministic  disturbances  that
can be approximately described by the superposition of finite
number of sine functions as follows:
 

di(k) ≈ ai,0+

mi∑
j=1

ai, j sin
(
ωi, jk+φi, j

)
(21)

di(k)
mi

i = 1,2, . . . ,nd ai,0 di(k) a j ω j φ j

where  denotes  the ith  scalar  consisting  of  the  distur-
bance  vector,  is  the  number  of  distinct  frequencies,

.  is the bias of . ,  and  denote the
amplitude,  frequency  and  phase  for jth  sine  components,
respectively.

Based on the triangle identity, we have
 

ai, j sin(ωi, jk+φi, j) = βi, j,1 sin(ωi, jk)+βi, j,2 cos(ωi, jk) (22)
βi, j,1 = ai, j cos(φi, j) βi, j,2 = ai, j sin(φi, j)where , .

According to (22), (21) can be reformulated as
 

di(k) ≈ ai,0+β
T
i ρi,k (23)

where
 

βT
i =

[
βi,1,1 βi,1,2 · · · βi,mi,1 βi,mi,2

]
(24)

 

ρT
i,k =

[
sin(ωi,1k) cos(ωi,1k) · · · sin(ωi,mik) cos(ωi,mik)

]
.

(25)
Therefore, we have

 

d1(k)
...

di(k)
...

dnd (k)

︸      ︷︷      ︸
d(k)

≈



a1,0 βT
1 · · · 0 · · · 0

...
...
. . .

...
. . .

...

ai,0 0 · · · βT
i · · · 0

...
...
. . .

...
. . .

...

and ,0 0 · · · 0 · · · βT
nd

︸                                         ︷︷                                         ︸
P



1
ρ1,k

...

ρi,k

...

ρnd ,k

︸    ︷︷    ︸
ρk

.

(26)
Note that

  sin
(
ωi, j (k+1)

)
cos

(
ωi, j (k+1)

) =
 cos

(
ωi, j

)
sin

(
ωi, j

)
−sin

(
ωi, j

)
cos

(
ωi, j

) ︸                           ︷︷                           ︸
Ti, j

 sin
(
ωi, jk

)
cos

(
ωi, jk

) 
(27)
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it follows that:
 

ρi,k+1 =


Ti,1 · · · 0

...
. . .

...

0 · · · Ti,mi

︸                   ︷︷                   ︸
Ti

ρi,k. (28)

Based on (28), it leads to
 

1

ρ1,k+1

...

ρi,k+1

...

ρnd ,k+1

︸       ︷︷       ︸
ρk+1

=



1 0 · · · 0

0 T1 · · · 0

...
...
. . .

...

0 0 · · · Tnd

︸                      ︷︷                      ︸
T



1

ρ1,k

...

ρi,k

...

ρnd ,k

︸    ︷︷    ︸
ρk

.
(29)

ds,kAccording  to  (29),  can  be  represented  in  the  compact
form as follows:
 

d(k− s)

d(k− s+1)

...

d(k)

︸             ︷︷             ︸
ds,k⃗

≈



Pρk−s

Pρk−s+1

...

Pρk


=



P

PT

...

PT s−1

︸      ︷︷      ︸
Ps

ρk−s
(30)

and
 

Dk,s =
[

ds,k−N+1 · · · ds,k
]
≈ PsDb,tri (31)

Db,tri =
[
ρk−N+1−s · · · ρk−s

]
∈ R(2ndmd+1)×N md =∑nd

i=1 mi Db,tri

where , 
.  Note  that  (31)  implies  that  can  be  used  to

approximately describe the row space to which the determinis-
tic disturbances belongs.

Db,tri

ωi, jk
Db,tri

Db,tri

f
N ≥ 1

Remark 1: Note that  is constructed by the trigonomet-
ric  functions  with  distinct  frequency  components.  In  some
cases,  the disturbance frequencies can be estimated using the
fast  fourier  transformation  (FFT)  or  other  related  signal  pro-
cessing  techniques.  In  addition,  the  calculation  of  is
needed  to  construct  and  it  can  observed  that  the  fre-
quency  estimation  error  may  lead  to  the  deviation  of 
especially  when N is  large.  Therefore,  an  empirical  sugges-
tion is that the sampling frequency f should satisfy .

2) Dealing With Deterministic Disturbances With Unknown
Frequencies: In  practice,  the  frequency  estimation  of  the
deterministic  disturbance  can  be  inaccurate,  and  it  is  even
impossible to estimate the frequency components of the deter-
ministic disturbance in some cases. In the following, the focus
will be on how to approximately describe the row space where
the  deterministic  disturbances  belong  to  when  disturbances
frequencies are unavailable.

Db,tri

The  underlying  idea  is  to  approximate  the  trigonometric
function in  based on the Bernstein polynomial and try to

construct the row space that only contains the time sequences,
which can be used to address the aperiodic deterministic dis-
turbances as well.

sin(ωk) ∈C[−1,1] cos(ωk) ∈C[−1,1]Note  that , ,  which
implies that the Lemma 1 can not be directly used. Therefore,
the following transformations are made first.

gsin(k) = 1
2 (sin(ωk)+1) ∈C[0,1] gcos(k) = 1

2 (cos(ωk)+
1) ∈C[0,1] k ∈ [a,b]

Let , 
, , based on Definition 1 and Lemma 1, we

have
 

gsin(k) = lim
nb→∞

nb∑
l=0

1
2

(sa,b,ω(l)+1)
 nb

l

ϕa,b(k, l) (32)

 

gcos(k) = lim
nb→∞

nb∑
l=0

1
2

(ca,b,ω(l)+1)
 nb

l

ϕa,b(k, l) (33)

sa,b,ω(l) = sin(ω( b−a
nb

l+a) ca,b,ω(l) = cos(ω( b−a
nb

l+a)
ϕa,b(k, l) = qa,b(k)l(1−qa,b(k))nb−l qa,b(k) = k−a

b−a ∈ [0,1] nb

where , ,
, ,  is

the order of the Bernstein polynomial.
sin(ωk) = 2gsin(k)−1 cos(ωk) = 2gcos(k)−1Note  that , ,  we

have
 

sin(ωk) = lim
nb→∞

nb∑
l=0

sa,b,ω(l)
 nb

l

ϕa,b(k, l) (34)

 

cos(ωk) = lim
nb→∞

nb∑
l=0

ca,b,ω(l)
 nb

l

ϕa,b(k, l). (35)

a = k0 b = k0+N −1 k ∈ [k0,k0+N −1]Let , , , it follows that:
 

 sin(ωi, jk)

cos(ωi, jk)

 = Qi, j



ϕk0,k0+N−1(k,0)

ϕk0,k0+N−1(k,1)

...

ϕk0,k0+N−1(k,nb)


(36)

Qi, jwhere the entries in the rth row and cth column of  can be
given as
 

Qi, j(r,c) =

 sk0,k0+N−1,ωi, j (c−1), if r = 1

ck0,k0+N−1,ωi, j (c−1), if r = 2.
(37)

Therefore, we have
 

sin(ωi,1k)

cos(ωi,1k)

...

sin(ωi,mik)

cos(ωi,mik)

︸             ︷︷             ︸
ρi,k

=



Qi,1

Qi,2

...

Qi,mi

︸    ︷︷    ︸
Qi



ϕk0,k0+N−1(k,0)

ϕk0,k0+N−1(k,1)

...

ϕk0,k0+N−1(k,nb)


.

(38)

Consider the property of the Bernstein basis, i.e.,
 

nb∑
l=0

 nb

l

kl(1− k)nb−l = 1 (39)

and based on (38), it leads to
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ρk =



1
ρ1,k

...

ρi,k

...

ρnd ,k


=



ϱ

Q1

Q2

...

Qnd

︸   ︷︷   ︸
Q


ϕk0,k0+N−1(k,0)
ϕk0,k0+N−1(k,1)

...

ϕk0,k0+N−1(k,nb)

︸                    ︷︷                    ︸
Kk

(40)

ϱ =

  nb

0

  nb

1

 · · ·
 nb

nb

 where .

In fact, (40) implies that
 

Db,tri = QDb,bern (41)

Db,bern =
[
Kk0 Kk0+1 · · · Kk0+N−1

]
where .

Db,tri Db,bern
Db

To facilitate the following description,  and  are
unified as .  

C.  Closed-Loop Subspace Identification
For  closed-loop  subspace  identification,  the  CCF-N4SID

algorithm is extended to the case with unknown deterministic
disturbances.

Note that (20) can be rewritten as
 

Y f = Ξz,pZp+Hu, f U f + H̃d, f Db+Φ f (42)

Zp =

 Up

Yp

 Ξz,p = Γ f
[
∆u ∆y

]
H̃d, f Db = Γ f∆dDp+Hd, f D f Dp D f

Db

where , ,  and  it  holds  that

 based on the fact  and  can
be both represented by .

K(z)Given the left coprime factorization of  as
 

K(z) = V̂c(z)−1Ûc(z) (43)

V̂c(z) =
 Av Bv

Cv Dv

 Ûc(z) =
 Au Bu

Cu Du

where , .

M fDefine the instrumental variable  [15],
 

M f = Kc
v, f U f +Kc

u, f Y f (44)

where
 

Kc
v, f =



Dv 0 · · · 0

CvBv Dv · · · 0

...
...

. . .
...

CvA
s f−1
v Bv CvA

s f−2
v Bv · · · Dv


(45)

 

Kc
u, f =



Du 0 · · · 0

CuBu Du · · · 0

...
...

. . .
...

CuA
s f−1
u Bu CuA

s f−2
u Bu · · · Du


. (46)

The  following  Theorem  1  gives  a  feasible  solution  to  the
estimation  on  the  extended  observability  matrix  for  closed-
loop systems with unknown deterministic disturbances.

Theorem 1: For a sufficiently large N, under the assumption


Zp

Db

M f

Y f

that  is of full row rank, perform the following LQ fac-

torization:
 

Zp

Db

M f

Y f

︸  ︷︷  ︸
Zc

=


Lc,11 0 0 0
Lc,21 Lc,22 0 0
Lc,31 Lc,32 Lc,33 0
Lc,41 Lc,42 Lc,43 Lc,44

︸                                  ︷︷                                  ︸
Lc


Qc,1

Qc,2

Qc,3

Qc,4

︸   ︷︷   ︸
Qc

(47)

I−Lc,43L−1
c,33Kc

u, fand if  is invertible, it follows that:
 

Γ f X̆k,N = lim
sp→∞

(I−Lc,43L−1
c,33Kc

u, f )−1Lc,zpZp (48)

 

Hu, f = (I−Lc,43L−1
c,33Kc

u, f )−1Lc,43L−1
c,43Kc

v, f (49)

Lc,zp = (Lc,41 − Lc,42L−1
c,22Lc,21−Lc,43L−1

c,33Lc,31+Lc,43×

L−1
c,33Lc,32L−1

c,22Lc,21)L−1
c,11 Zc,p =

 Up

Yp

 X̆k,N =
[
∆u ∆y

]
× Up

Yp


where 

, , 

.
Proof: See Appendix. ■

M f
Φ f

Remark 2: It  has been proven that  is  uncorrelated with
noise term  under Assumption 4 in [15], which can be used
to  eliminate  the  identification  bias  under  closed-loop  condi-
tions.

Γ f X̆k,N

Based on Theorem 1, perform the singular value decompo-
sition (SVD) on  as follows:
 

Γ f X̆k,N = ŬsvdΣ̆svdV̆svd (50)
rank(Σ̆svd) = nwhere .

For a balanced realization based on (50), we have
 

Γ f = ŬsvdΣ̆
1/2
svd (51)

 

X̆k,N = Σ̆
1/2
svd V̆svd. (52)

Γ fSince  has been derived, the matrices A, B, C and D can
be calculated based on subspace identification.

The  proposed  closed-loop  subspace  identification  method
with  unknown  deterministic  disturbances  is  summarized  in
Algorithm 1.  

IV.  Discussion on the Bernstein Polynomial Order

Based on the information entropy theory, the Akaike infor-
mation  criterion  (AIC)  is  widely  used  to  deal  with  the  trade-
off between the model complexity and the model fitting good-
ness. The purpose is to determine a model that can well inter-
pret the data with the least parameters. Therefore, the follow-
ing  AIC  indicators  can  be  helpful  to  determine  the  proper
order of the Bernstein polynomial:
 

AIC = N ln(det(Σe))+N(ny ln(2π)+1)+2h (53)
det(·)
Σe =

1
N Lc,44LT

c,44 ny = (s f +1)m
h = (s f +1)m[(sp+1)(l+m)+ (s f +1)l+

nb]

where  denotes the determinant operator, N is the sample
length, ,  is  the  dimension  of
the  model  output, 

 is the model parameter numbers.
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Algorithm  1 Closed-loop  subspace  identification  with  unknown
deterministic disturbances

u(k) y(k)Input: , .
Output: A, B, C and D.

sp s f Up U f Yp Y fS1:  Set ,  and N,  construct  Hankel  matrices ,   and 
according to (12).

DbS2:  Construct  the  row  space  that  approximates  the  unknown
deterministic disturbances as follows,

Db,tri Db

a) When frequencies of deterministic disturbances are known, con-
struct  as ,

Db,bern Db

b)  When  frequencies  of  deterministic  disturbances  are  unknown,
construct  as .

K(z) V̂c(z) Ûc(z)
Kc

v, f Kc
u, f

S3:  Do  left  coprime  factorization  on ,  obtain  and ,
construct  and  according to (45) and (46).

M f = Kc
v, f U f +Kc

u, f Y fS4: Construct the instrumental variable .
Γ f X̆k,N Hu, fS5: Do LQ factorization as (47), obtain  and .

S6: Identify the matrices A, B, C and D.

,Therefore  an appropriate order of the Bernstein polynomial
should satisfy
 

nb =min
nb

AIC. (54)

ln(N)

Note  that  the  penalty  coefficient  of  model  parameter  num-
bers  is  set  to  be  2  for  AIC.  To  avoid  the  overfitting,  the
penalty coefficient of model parameter numbers can be prop-
erly increased. As a special case, when the penalty coefficient
is  set  to  be ,  it  leads  to  the  Bayesian  information  crite-
rion (BIC), i.e.,
 

BIC = N ln(det(Σe))+N(ny ln(2π)+1)+h ln(N). (55)
In terms of performance indicators, it is suggested that AIC

and BIC can be  both  analyzed for  performance evaluation to
determine a proper Bernstein polynomial order in most cases.  

V.  Simulation Study

G(z)Consider  a  linear  invariant  system ,  the  parameter
matrices are given as
 

A =


−0.0939 0.1241 0.9861 0
−0.3214 −0.3926 0.0941 0.8193
0.3287 0.6784 −0.1096 0.3902
−0.3217 −0.1356 0.0817 −0.4200


 

B =


0.3257 0.3232
0.6647 −0.7841
0.0852 −1.8054
0.8810 1.8586

 , C =


0.4600 −0.6817

0 0.5932
0 0
0 0


T

 

D =
 −0.6045 0.5632

0.1034 0.1136

 , Ed =


1
0
0
0

 Fd =

 0
0

 .
K(z)The controller  can be designed arbitrarily such that the

system is stabilized.

Pn = 0.2 Pn = 0.3
During  the  simulation,  the  noise  powers  of  two  reference

signals  are  set  to  be  and ,  respectively.  The

w(k) v(k) Pn = 0.0002
ts = 0.002 s

N = 5000 sp = 30 s f = 8

noise powers of  and  are both set to be .
The sampling time is set to be . The parameter set-
tings are ,  and , respectively.

Assume  that  there  exists  a  deterministic  disturbance  in  the
closed-loop system with five distinct frequencies as follows:
 

d(kts) =
5∑
j

a1, j sin(ω1, jkts) (56)

a1, j ω1, jwhere  the  amplitude  and  the  frequency  can  be
referred to Table I for simulation settings.
 

TABLE I 

Parameters of Deterministic Disturbance

Amplitude Value Frequency Value

a1,1 0.6 ω1,1 3 rad/s ( )
a1,2 0.8 ω1,2 2 rad/s ( )
a1,3 0.6 ω1,3 5 rad/s ( )
a1,4 0.8 ω1,4 7 rad/s ( )
a1,5 0.6 ω1,5 13 rad/s ( )

 
 

Db,tri
Db,bern

nb = 8 nb = 9

To  verify  the  effectiveness  of  the  proposed  algorithm  for
closed-loop identification  with  unknown deterministic  distur-
bances, Fig. 1 compares the method in [15] while ignoring the
deterministic  disturbance  (i.e.,  CCF-N4SID),  the  proposed
algorithm  using  (i.e.,  CCF-N4SID-D1)  and  the  pro-
posed  algorithm  using  (i.e.,  CCF-N4SID-D2)  with

 and .

Db,tri
Db,bern

nb = 8
nb = 9

Db,tri

From Fig. 1,  it  can  be  observed  that  CCF-N4SID  delivers
the  wrong  pole  estimation  results  due  to  the  fact  that  it  is
directly  implemented  while  ignoring  the  influence  of  the
unknown  deterministic  disturbances,  which  implies  that  the
dynamics of the identified model cannot be consistent with the
real  one.  In  contrast,  the  proposed  algorithm  using  or

 can both obtain a relatively reliable pole estimation. It
should  be  mentioned  that  the  pole  estimation  results  are  less
accurate with obviously biased estimation for poles located on
the left half of the unit circle when . However, the pole
estimation performance improves a lot when , which is
competitive  to  the  pole  estimation  results  via  the  proposed
algorithm using .  Note  that  the  discussion  above  in  fact
indicates the importance of the proper choice of the Bernstein
polynomial order.

nb = 9
nb ∈ [1,12]

nb

nb > 9
nb = 9

Db,bern

To  determine  the  proper  Bernstein  polynomial  order,  AIC
and  BIC  are  respectively  tested  as  shown  in Fig. 2,  from
which  it  can  be  observed  that  the  AIC  curve  and  BIC  curve
both  reach  the  minimum  when  with  the  range  for  the
integer . In addition, the two curves begin to climb
up with the increase of  due to the possible overfitting and
the  BIC  curve  shows  more  obvious  increasing  trend  when

 due to the larger penalty coefficient of model parame-
ter  numbers.  The  above  analysis  implies  that  can  be
indeed a proper choice for the construction of .

CAiB
nb CAiB

In addition, Fig. 3 compares the estimation error of Markov
parameters  under different Bernstein polynomial orders

. The evaluation indicator for the estimation error of  is
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given as follows:
 

Ei = 20log
(
∥CAiB− ĈÂiB̂ ∥F
∥CAiB ∥F

)
∥ · ∥Fwhere  denotes  the  Frobenius  norm.  Note  that  the  loga-

rithm function is used to magnify the estimation error for bet-
ter visualization.

CAiB nb
nb = 9

nb = 10
nb = 9

From Fig. 3, it  can be observed that the estimation error of
 gradually  decreases  with  the  increase  of  until  it

reaches  the  minimum  when .  Note  that  the  estimation
error shows a slight increase when  compared with the
result  when ,  which  again  verifies  the  reasonability  of
the  choice  of  the  Bernstein  polynomial  order  using  AIC  or

BIC.
Hu, f

nb = 9
Hu, f

Hu, f

Fig. 4 shows  the  structure  of  the  identified  when
.  In Fig. 4,  the  light  color  means  that  the  entries  in  the

identified  are  close  to  0.  Therefore,  it  can  be  observed
that  the  identified  holds  the  lower  triangular  Topelitz
structure  well  though  no  extra  structural  constraints  are
applied, which verifies the effectiveness of the proposed algo-
rithm.

Table II shows  the  comparison  of  identification  perfor-
mance  in  case  of  different  disturbance  types  including  con-
stant,  signal  in  (56),  ramp  and  chirp  signals,  which  involves
the periodic and aperiodic signals during the test.  The distur-
bance types in the above four cases are described as
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Case  1  (Periodic): The  deterministic  disturbance  is  a  con-
stant signal with
 

d(kts) = 1.2.
Case  2  (Periodic): The  deterministic  disturbance  is  the

superposition of five distinct frequencies as in (56), i.e.,
 

d(kts) =
5∑
j

a1, j sin(ω1, jkts).

0.2/s
Case 3 (Aperiodic): The deterministic disturbance is a ramp

signal with the slope , i.e.,
 

d(kts) = 0.2kts.

0.1 Hz 20 Hz
Case 4 (Aperiodic): The deterministic disturbance is a chirp

signal varying from  to  in 100 s with amplitude
1, i.e.,
 

d(kts) = cos(2π f (kts)kts)
f (kts) = 0.1+0.199ktswhere .

Errpole,i

To  quantify  the  accuracy  of  estimated  poles,  the  indicator
 is defined as the error between the true poles and the

average of estimated poles,
 

Errpole,i =
∣∣∣λi−λi

∣∣∣
λi λiwhere  and  denote the ith true pole and the average of ith

estimated poles, respectively.

In  addition,  the  determined Bernstein  polynomial  order  via
AIC and BIC is shown in Table II. It should be noted that the
constant signal can be described by a row vector with all ele-
ments being 1, i.e., the polynomial order is zero, and the ramp
signal is linear that can be described by the first-order polyno-
mial.

E7

E7

From Table II, it can be observed that CCF-N4SID delivers
the  wrong  estimation  of  the  poles  and  Markov  parameter 
with quite large errors for all four disturbance types. However,
CCF-N4SID-1  and  CCF-N4SID-2  can  deliver  the  correct
identification performance with a small estimation error of the
poles and , which demonstrates the effectiveness of the pro-
posed  identification  methods  for  both  periodic  and  aperiodic
deterministic disturbances.  

VI.  Conclusion

In  this  paper,  a  subspace identification method is  proposed
for  closed-loop  systems  with  unknown  deterministic  distur-
bances  in  order  to  improve  the  estimation  performance.  To
overcome  the  influence  of  the  unknown  deterministic  distur-
bances, the row space that can be used to approximately repre-
sent  the  unknown  deterministic  disturbances  is  constructed
using  the  trigonometric  functions  or  Bernstein  polynomials
depending on whether the disturbance frequencies are known,
which can be used to address the aperiodic deterministic dis-
turbances. CCF-N4SID is then extended to the subspace iden-
tification  with  unknown  deterministic  disturbances  using  the
oblique  projection  under  feedback  control.  Moreover,  the
Bernstein polynomial order can be properly determined using
AIC  or  BIC.  The  numerical  example  demonstrates  that  the
proposed method can effectively alleviate the influence of the
deterministic disturbances with reliable identification results.  

Appendix
Proof of Theorem 1

Y f

The LQ factorization  in  (47)  can  be  interpreted  by  decom-
posing  into the following four parts [25]:
 

Y f = Y f

∣∣∣∣∣∣∣∣∣∣
Zp Db

M f

 +Y f

∣∣∣∣∣∣∣∣∣∣
M f Db

Zp

 +Y f

∣∣∣∣∣∣∣∣∣∣
Db M f

Zp


+Lc,44Qc,4 (57)

Y f

∣∣∣∣∣∣∣∣∣∣
Zp Db

M f

 Y f

∣∣∣∣∣∣∣∣∣∣
M f Db

Zp

 Y f

∣∣∣∣∣∣∣∣∣∣
Db M f

Zp


Y f Zc,p

 Db

M f

 Y f

M f

 Db

Zp

 Y f Db M f

Zp



where ,  and  denote  the

projection of  onto  along ,  the projection of 

onto  along  and the projection of  onto  along

, respectively.

By unfolding the LQ factorization, we have
 

Y f

∣∣∣∣∣∣∣∣∣∣
Zp Db

M f

 = Lc,zpZp, Y f

∣∣∣∣∣∣∣∣∣∣
M f Db

Zp

 = (Lc,43L−1
c,33)M f

(58)
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Y f

∣∣∣∣∣∣∣∣∣∣
Db M f

Zp

 = (Lc,42L−1
c,22−Lc,43L−1

c,33Lc,32L−1
c,22)Db (59)

Lc,zp = (Lc,41−Lc,42L−1
c,22Lc,21−Lc,43L−1

c,33Lc,31+Lc,43×
L−1

c,33Lc,32L−1
c,22Lc,21)L−1

c,11

where 
.

Substitute (44) into (42), it leads to
 

T c
f Y f = Ξz,pZp+Hu, f Kc−1

v, f M f + H̃d, f Db+Φ f (60)

where
 

T c
f = I+Hu, f Kc−1

v, f Kc
u, f . (61)

In addition, (60) can be rewritten as
 

Y f = T c−1
f Ξz,pZp+T c−1

f Hu, f Kc−1
v, f M f

+T c−1
f H̃d, f Db+T c−1

f Φ f . (62)

Recall that
 

Y f = Lc,zpZp+Lc,43L−1
c,33M f

+ (Lc,42L−1
c,22−Lc,43L−1

c,33Lc,32L−1
c,22)Db+Lc,44Qc,4. (63)

Comparing (62) with (63), we have
 

Hu, f Kc−1
v, f = T c

f Lc,43L−1
c,33. (64)

Substituting (64) into (61), it leads to
 

T c
f = (I−Lc,43L−1

c,33Kc
u, f )−1. (65)

sp→∞Therefore, when , we have
 

Γ f X̆k,N = lim
sp→∞

(I−Lc,43L−1
c,33Kc

u, f )−1Lc,zpZp (66)

and
 

Hu, f = T c
f Lc,43L−1

c,33Kc
v, f . (67)

■
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