

A Game Theoretic Approach for a Minimal
Secure Dominating Set

Xiuyang Chen, Changbing Tang, Senior Member, IEEE, and Zhao Zhang

 Abstract—The secure dominating set (SDS), a variant of the
dominating set, is an important combinatorial structure used in
wireless networks. In this paper, we apply algorithmic game the-
ory to study the minimum secure dominating set (MinSDS) prob-
lem in a multi-agent system. We design a game framework for
SDS and show that every Nash equilibrium (NE) is a minimal
SDS, which is also a Pareto-optimal solution. We prove that the
proposed game is an exact potential game, and thus NE exists,
and design a polynomial-time distributed local algorithm which
converges to an NE in O(n) rounds of interactions. Extensive
experiments are done to test the performance of our algorithm,
and some interesting phenomena are witnessed.
 Index Terms—Algorithmic game theory, multi-agent systems, po-
tential game, secure dominating set.

I. Introduction

W ITH the rapid progress of wireless network technology,
some distributed network systems such as multi-agent

systems, sensor networks, and wireless ad hoc networks have
become more and more popular for network monitoring which
only requires little intervention from people. To save cost, it is
desirable to use small number of intelligent devices to collect
information from the whole system. Such a consideration
leads to the minimum dominating set (MinDS) problem [1].

vi
N[vi] N[vi]

vi

Note that in a MinDS problem, each sensor is only responsi-
ble for detecting security issues of the system, and is not
endowed with the power to handle them. This limits the scope
of application of dominating sets. For example, in a museum,
each pavilion is viewed as a vertex of a graph, and the corri-
dors between the pavilions form the edge set of the graph. A
guard in pavilion is responsible for monitoring the sur-
rounding pavilions , where is the closed neighbor
set of . If every pavilion could be monitored, then those
pavilions with guards form a dominating set. If a problem

occurs in a guarded pavilion, then the guard in the correspond-
ing pavilion can deal with the issue. If a problem occurs in an
unguarded pavilion, then a nearby guard could move to deal
with the issue. At the same time, it is expected that all pavil-
ions remain to be monitored after movement. This leads to the
minimum secure dominating set (MinSDS) problem. In addi-
tion to the above scenario, SDS problems are also applied in
the context of the protection system, network security system,
military strategy analysis, etc. [1]–[4].

The concept of SDS was first introduced by Cockayne et al.
[5] in 2005. Burger et al. [6] designed two exponential-time
algorithms for the MinSDS problem in general graphs. It is
known that the MinSDS problem is NP-hard. In fact, Boume-
diene Merouane and Chellali [7] proved that the MinSDS
problem is NP-hard even when restricted to bipartite graphs
and split graphs. Therefore, many people attempted to solve
the MinSDS problem with special classes of graphs [4],
[8]–[15]. These algorithms are centralized. Note that central-
ized algorithms are vulnerable to external attacks. Damage to
the center may lead to a breakdown of the whole system. This
observation motivates us to seek distributed algorithms for the
MinSDS problem.

A distributed algorithm can effectively reduce the damage
of attacks, especially in multi-agent systems, in which each
node is an autonomous agent and can determine its strategy
for the next step based on currently collected information
(which is often local since an agent might not be as powerful
as a center). Such an autonomy eliminates the dependence on
a center, and greatly improves anti-attack capability. Note that
individual benefits and social welfare are often conflicting.
Thus, a disadvantage resulting from such autonomy is that a
self-organized algorithm take a longer time to run, and may
fail to get satisfactory solutions.

Using game theory can effectively cope with the above dis-
advantages, and the hypothetical definition of a player is
exactly what we expect from an agent: rational, intelligent,
and selfish. Game theory has the advantage whereby provid-
ing interaction frameworks (game design) and specific local
rules (distributed methods), a satisfactory collective behavior
may be theoretically guaranteed through competition and
cooperation among individuals. For studies of game theory in
wireless and communication networks, readers may refer to
the monograph [16] and references therein.

Compared with the large quantities of approximation algo-
rithms for the MinDS problem and its variants [17], studies on
the domination problems using game theory are not as com-
mon. Yen and Chen [18] designed a multi-domination game

Manuscript received June 13, 2022; accepted July 14, 2022. This work was

supported in part by the National Natural Science Foundation of China
(U20A2068, 11771013) and Zhejiang Provincial Natural Science Foundation
of China (LD19A010001). Recommended by Associate Editor Lei Ding.
(Corresponding author: Zhao Zhang.)

Citation: X. Y. Chen, C. B. Tang, and Z. Zhang, “A game theoretic
approach for a minimal secure dominating set,” IEEE/CAA J. Autom. Sinica,
vol. 10, no. 12, pp. 2258–2268, Dec. 2023.

X. Y. Chen is with the College of Mathematics and System Science,
Xinjiang University, Urumqi 830000, China (e-mail: xiuyangchen@126.
com).

C. B. Tang is with the College of Physics and Electronic Information
Engineering, Zhejiang Normal University, Jinhua 321004, China (e-mail:
tangcb@zjnu.edu.cn).

Z. Zhang is with the School of Mathematical Sciences, Zhejiang Normal
University, Jinhua 321004, China (e-mail: hxhzz@sina.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2023.123315

2258 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 12, DECEMBER 2023

http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2023.123315

and proved that every Nash equilibrium (NE) of the game is a
minimal multi-dominating set, and is also a Pareto optimal
solution. Based on the game, a distributed algorithm was
designed. Note that the algorithm uses a central daemon which
allows only one process at a time. Later, Yen and Sun [19]
designed an independent domination game and proved that
every NE is a minimal independent dominating set. A dis-
tributed algorithm was also presented under a central daemon.
Chen and Zhang [20] designed a connected domination game
and proved that every NE is a minimal connected dominating
set and a distributed algorithm can find an NE in linear rounds
of interactions. An example was given showing that the game
cannot guarantee Pareto optimality. All these game theoreti-
cal algorithms are sequential, i.e., players have to make deci-
sions in turn. As far as we know, algorithms for the secure
dominating set problem are rare, and existing algorithms are
all used for special graphs. Our paper is the first one using
game theory to compute a secure dominating set in general
graphs. Furthermore, our algorithm allows players to make
decisions simultaneously, only using local information.

Another closely related area of research is game theoretical
algorithms for the minimum vertex cover (MinVC) problem
[21]–[25]. Different from the dominating set problem which
uses vertices to monitor vertices, the vertex cover problem
uses vertices to monitor edges. Nevertheless, many ideas used
in these studies are very inspiring to our work. Yang and Li
[21] used snowdrift games to study the MinVC problem, and
devised a distributed algorithm, trying to find a vertex cover
with a small size. Tang et al. [22] generalized the study to the
weighted version, and designed an asymmetric game algo-
rithm, trying to find a vertex cover with small weight. Sun
et al. [23], [24] proposed a distributed algorithm for the Min-
WVC problem based on relaxed greed and finite memory.
They used potential game theory to prove its convergence to
an NE. Chen et al. [25] proposed a weighted vertex cover
game using a 2-hop adjustment scheme, trying to get a better
solution. In all of these works, minimality of NEs were
proved, but Pareto optimality was not discussed, which is a
preferred quality of solutions from a social point of view.

In addition to the above works which are most closely
related with our work, there are also many game theoretical
studies on various coverage problems from different perspec-
tives. For example, Li et al. [26], [27] employed cost sharing
methods and mechanisms for a generalized set cover game.
The focus was on whether players chose to lie. Fang and Kong
[28] studied the core stability of vertex cover games. The core
of a game is an important concept in cooperative game theory,
which ensures that players have a willingness to participate.
The cores of a domination game were studied by Velzen in
[29], and the cores of a connected domination game were
studied by Kim in [30]. Another measure of the quality of a
game theoretical solution is the price of anarchy (PoA), which
is the ratio between the cost of a worst NE and the cost of a
socially optimal solution. Ai et al. [31] studied PoA and com-
putational complexity of a coverage game. Note that their
algorithm is centralized.

In this paper, we study the MinSDS problem in a multi-
agent system using potential game theory. The main contribu-

tions are summarized as follows.
1) Game Design: We design a security domination game in

multi-agent systems, in which every player determines him-
self to be a dominator or a dominatee. By carefully designing
utility functions for the players, we show that every Nash
equilibrium (NE) is a minimal secure dominating set (MSDS),
as well as a Pareto-optimal solution. Furthermore, we prove
that this game is an exact potential game, and thus NE exists.

2) Algorithm Design: Based on the above security domina-
tion game, we propose a best response dynamic distributed
local algorithm (BRDDLA) for the secure dominating set
(SDS) problem. The algorithm is distributed and local: in each
round of the algorithm, every player decides by himself on his
strategy based on local information in his 6-hop neighbor-
hood.

O(n)
3) Efficiency of Algorithm: We prove that BRDDLA can

converge to an NE in rounds, where n is the number of
players. Hence the algorithm can find a minimal secure domi-
nating set, which is also a Pareto-optimal solution, in linear
time. Since the MinSDS problem is NP-hard, so minimal solu-
tions and Pareto-optimal solutions that can be obtained in lin-
ear time are fairly good. Furthermore, an NE solution achieves
a kind of balance in a multi-agent system, which is also a
desirable property.

4) Verification of Performance via Simulation: Simulations
are done to experiment on the performance of our algorithm
on randomly generated graphs. Since there is no previous
algorithm on MinSDS in general graphs (GA), we compare
BRDDLA with a natural greedy algorithm. It turns out that
BRDDLA can obtain a much better solution than GA. Further-
more, we compare the algorithm with the exact algorithm on
trees. It turns out that the output of BRDDLA is close to opti-
mal solutions. Furthermore, the number of rounds of
BRDDLA is less than those of reference algorithms, espe-
cially on the random tree graphs. It is also interesting to note
that when testing the effect of decision priority on the perfor-
mance of the algorithm in a Barabasi-Albert (BA) graph, a
better performance can be reached if we let players decide in
the order that the vertices are generated by the BA model.
This might suggest that the earlier a vertex is generated in a
BA graph, the more important it might be.

The remaining parts of the paper are organized as follows.
Section II introduces preliminaries in game theory which are
used in this paper. Section III designs the security domination
game. Section IV provides strict theoretical analysis for the
game. Section V describes the algorithm in details and pro-
vides theoretical analysis on its convergence. Section VI eval-
uates the performance and complexity of the algorithm
through extensive simulation. Section VII concludes the paper
with some discussions on future work.

II. Preliminaries

In this section, we give the formal definition of SDS, and
some basic terminologies and notations of graph theory and
game theory. Main notations are summarized in Table I.

G = (V,E)
vi v j (vi,v j) ∈ E

vi v j

Let be a graph with vertex set V and edge set E.
We say that two vertices and are adjacent if ,
in this case, we also say that and are neighbors of each

CHEN et al.: A GAME THEORETIC APPROACH FOR A MINSDS 2259

vi N(vi)
vi vi

deg(vi) = |N(vi)| vi N[vi] =
N(vi)∪{vi} vi v j
d(vi,v j) vi v j

vi Nk
i

vi vi

Nk
i N1

i = N[vi]

other. The open neighbor set of , denoted as , consists
of those neighbors of in G. The degree of vertex is

. The closed neighbor set of is
. The distance between and , denoted as

, is the length of a shortest path between and in
G. The k-hops neighborhood of , denoted as , consists of
all those vertices at distance at most k from . Clearly, also
belongs to and .

C ⊆ V v ∈ V \C

V \C
C ⊆ V

V \C

For a vertex subset , a vertex is dominated
by C if v has a neighbor in C. Vertices in C are called domina-
tors and vertices in which are dominated by C are called
dominatees. A dominating set of G is a subset which
dominates every vertex of . If C is not a dominating set,
those vertices which are not dominated by C are called
orphans.

G =
(V,E) C ⊆ V
v ∈ V \C u ∈C

Definition 1 (Dominating Set (DS)): Given a graph
, a subset is a dominating set of G if every vertex

 is adjacent to at least one vertex .
G = (V,E)

C ⊆ V
u ∈ V \C v ∈C uv ∈ E
(C \ {v})∪{u}

Definition 2 (SDS): Given a graph , a dominating
set is a secure dominating set of G if for each vertex

, there exists a vertex such that and
 is also a dominating set of G.

G = (V,E)
S S DS

C∗ = argminC∈S S DS |C|

Definition 3 (MinSDS Problem): Given a graph ,
let be the set of all SDSs of G. The goal of the MinSDS
problem is to find an SDS with the minimum cardinality, that
is, .

Γ = (V; {S i}ni=1; {ui}ni=1)
V = {v1,v2, . . . ,vn} S i vi

ui vi
Σ = S 1×S 2× · · ·×S n C = (c1,

c2, . . . ,cn) ∈ Σ vi C = (ci,

C−i) C−i = (c1, . . . ,ci−1,ci+1, . . . ,cn)
vi ui(C)

vi

A game Γ can be written as , where
 is the set of players, is ’s strategy set,

and is ’s utility function. The strategy space of the game is
. A strategy profile is an n-tuple

. For player , we may express C as
, where indicates the strate-

gies of those players except . Function is the utility of
 under strategy profile C. Players are assumed to be selfish,

intelligent and rational, which means that the goal of every
player is to maximize his own utility. The best response of

viplayer to current strategy profile C is

BR(vi,C) = argmax{ui(c′i ,C−i) : c′i ∈ S i}.
A Nash equilibrium (NE) is a strategy profile C such that no

player wants to deviate from C unilaterally. The formal defini-
tion of NE is as follows.

Γ = (V; {S i}ni=1; {ui}ni=1)
C∗ = (c∗1,c

∗
2, . . . ,c

∗
n)

Definition 4 (NE [32]): Given a game ,
a strategy profile is an NE if

ui(c∗i ,C
∗
−i) ≥ ui(ci,C∗−i) for any vi ∈ V and any ci ∈ S i.

Note that an NE is not necessarily a global optimal solution.
Especially for an NP-hard problem, in many cases, people are
satisfied with minimal solutions or Pareto-optimal solutions.

v ∈C C \ {v}
Definition 5 (MSDS): A secure dominating set C of graph G

is an MSDS if for any vertex , the vertex set is no
longer a secure dominating set of G.

Γ = (V; {S i}ni=1; {ui}ni=1) C′ = (c′1, . . . ,c
′
n)

C = (c1, . . . ,cn) ui(C′) ≥
ui(C) i ∈ {1, . . . ,n}

j ∈ {1, . . . ,n} u j(C′) > u j(C)
C∗ = (c∗1, . . . ,c

∗
n)

C∗

Definition 6 (Pareto-Optimal Solution): Given a game
, a strategy profile

strictly dominates strategy profile if
 holds for any index and there exists an

index with . A strategy profile
 is a Pareto-optimal solution if there is no

strategy profile which strictly dominates .

III. Security Domination Game

In this section, we design a game framework for the secure
dominating set problem.

vi ci = 1 vi

Nk
i vi

vi v j ∈ Ñ1
i (C) v j

vi vi
v j

Di(C)
vi

For a vertex , its c-value indicates that is a domi-
nator. Denote by the k-th closed neighborhood of vertex ,
including itself. A vertex means that is in the
closed neighborhood of such that is the only vertex in the
closed neighborhood of that is possibly a dominator. The
set contains those vertices in the closed neighborhood
of which are dominators.

v j ∈ V \C ∃vk ∈C vkv j ∈ E
Ñ1

k ⊆ N1
j v j

Definition 7 (Secure Vertex): For a vertex set C (which
might not necessarily be a dominating set), we call a vertex

 to be secure if such that and
. Otherwise we say that is insecure.

vk

v j
vk (C \ {vk})∪{v j}

Note that a secure vertex must be a dominatee because of
the existence of a neighbor in C. Insecure vertices include
both insecure dominatees and orphans. The idea behind such a
terminology is based on the observation that if is a secure
vertex and satisfies Definition 7, then is still
a dominating set.

Assume that all players are selfish, intelligent and rational,
in the sense that they will not consider the benefit of the other
players while seeking to maximize their own benefits. The
most critical part of the game is to design good utility func-
tions for the players such that a stable and reasonable social
status can be reached through cooperation and competition
among players. The following are some preferred features of a
game.

1) Self-Stability: Starting from any initial state, the game
can end up in an NE which corresponds to a secure dominat-
ing set.

2) Small Size: The cardinality of the SDS corresponding to
an NE should be reasonably small. Since the computation of a

TABLE I

List of Notations

Notation Meaning

Γ The game

n The number of vertices, and also the number of players
vi Both the vertex in the graph and the player in the game

V V = {v1,v2, . . . ,vn}The set of players or vertices
S i S i = {0,1} vi is the strategy set of player
Σ Σ = S 1 × · · ·×S n is the strategy space
C C = (c1,c2, . . . ,cn) ∈ Σ is a strategy profile

{vi : ci = 1}C also denotes the vertex set
d(vi,v j) vi v jThe length of shortest path between vertex and

Nk
i Nk

i = {v j ∈ V : d(i, j) ≤ k}

Ñ1
i (C) Ñ1

i (C) = {v j ∈ N1
i :

∏
vk∈N1

j \{vi}
(1− ck) = 1}

Di(C) Di(C) = {vk ∈ N1
i : ck = 1}

deg(vi) viThe degree of vertex in graph G

ui(C) vi ’s utility with respect to strategy profile C

 2260 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 12, DECEMBER 2023

minimum SDS is NP-hard even using centralized algorithms,
we cannot hope for a minimum SDS in reasonable time. An
alternative requirement is that the computed SDS should be
minimal, that is, removing any vertex will no longer be an
SDS.

3) Time Efficiency: The time for the game to reach an NE
should be polynomial in the size of the instance.

C = (c1,c2, . . . ,cn) vi

We define utility functions as follows. For a strategy profile
, the utility function of is defined as

ui(C) = gi(C)+qi(C) (1)
gi(C) qi(C)where and are defined to be

gi(C) = −λ1ci (2)

qi(C) = −λ2

∑
v j∈N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C) (3)

mk, j(C)where is an indicator function defined as

mk, j(C) =

1, |Ñ1
k (C) \N1

j | , 0

0, |Ñ1
k (C) \N1

j | = 0
(4)

λ1, λ2 0 < λ1 < λ2 D j(C) =
∅ ∏

vk∈D j(C) mk, j(C) v j ∈ N3
i

−λ2 qi(C)

and are constants satisfying . When
, we regard to be 1. So, an orphan

always contributes to .
mk, j(C)

v j

vk ∈ D j(C) Ñ1
k (C) \N1

j =

∅ mk, j(C) = 0 v j
qi(C) v j

vk ∈ D j(C) Ñ1
k \N1

j , ∅∏
vk∈D j(C) mk, j(C) = 1

N3
i −λ2 qi(C)

qi(C)

The idea behind the definition of comes from the
observation that if is a secure vertex, then there exists a ver-
tex satisfying Definition 7, which has
 and thus . Therefore, secure vertex con-

tributes 0 to . On the other hand, if is an insecure dom-
inatee, then for any vertex , we have ,
and thus . Hence an insecure dominatee
in will contribute to . Notice that a dominator
also contributes 0 to since its c-value equals 1. Combin-
ing these observations with the comment in the last sentence
of the last paragraph, we have proved the following property.

vi N3
i

−λ2 qi(C)
qi(C) = −λ2|IS i(C)|

IS i(C) N3
i

Property 1: For any vertex , a vertex in contributes
 to if and only if it is an insecure vertex, otherwise,

the contribution is 0. Hence, , where
 is the set of insecure vertices in .

N3
i qi(C)The reason why we use in the definition of is

because of the following property:
vi

mk, j(C) v j < N3
i vk ∈ D j(C)

Property 2: The status of vertex does not affect the value
of for any and .

mk, j

mk, j(C) = 1 Ñ1
k (C) = {vl,vk,v j} ⊈ N1

j

mk, j(C′) = 0 Ñ1
k (C′) = {vk,v j} ⊆ N1

j
vi v j

vi

Property 2 follows from the definition of , and an intu-
ition can be gained by considering the example in Fig. 1.
Notice that since , while

 since . This is because of
the influence of vertex . But if is at least 4 hops away
from , such an influence will not occur.

ui
v1, v2, v4 v3

v5, v6 D5(C) = {v4}
Ñ1

4 = {v5,v6} Ñ1
4 \N1

5 = {v6} , ∅ v5

v7

To gain some intuition about , consider the example in Fig 2,
in which are dominators, is a secure dominatee,

 are insecure dominatees (for example, and
, so , and thus is an insecure

dominatee), and is an orphan.
1) vi ci = 1
λ1 gi(C) g1(C) = g2(C) = g4(C) = −λ1

 A dominator has , and thus gets a punishment of
 from . For this instance, .

2) vi

v5
u5(C) = −3λ2 v5

u5(c′5 = 1,C−5) = −λ1 0 <
λ1 < λ2 u5(c′5 = 1,C−5) > u5(c5 = 0,C−5) u5

v6 v7

 If is an insecure dominatee, then it will encourage him-
self to be a dominator, and at the same time help some inse-
cure neighbors become secure. For example, is an insecure
dominatee with . If we change the status of to
be a dominator, then . Because

, we have . Thus,
has an incentive to change his strategy from 0 to 1, while at
the same time, both and become secure dominatees.

3) vi

v3
u3(C) = −3λ2 v3

v5,v6,v7 u3(c′3 = 1,C−3) = −λ1−
3λ2 < u3(C) v3

 If is a secure dominatee which cannot help any inse-
cure dominatee to become secure, then he has no incentive to
change his current strategy. For example, is a secure domi-
natee with . If changes from 0 to 1, then ver-
tices are still insecure, and

. So, prefers to stay 0.
4) 2) 3)

v2
v2 c2 = 1 c′2 = 0

u2(C) = −λ1−3λ2 < u2(c′2 = 0,C−2) = −3λ2 v2

 The above and show that the designed utility can
stimulate an evolution towards a feasible solution. We can
show that the designed utility can also provide an incentive for
redundant players to leave C. For example, is redundant in
the sense that if changes his strategy from to ,
then he becomes a secure domiantee and does not cause other
secure dominatees to become insecure. In view of utility,

. Thus, is will-
ing to retreat from the dominating set.

IV. Theoretical Analysis

(c1, . . . ,cn) ∈ Σ {vi : ci = 1}

In this section, we analyze the theoretical properties of the
security domination game designed in the above section. In
the following, we shall use C to denote both a strategy profile

 and the vertex set it corresponds to.
We assume that a player is willing to change his strategy only
when he can be strictly better off.

A. Nash Equilibrium Solution
In this subsection, we show that an NE of the game always

corresponds to a minimal secure dominating set. The proof
makes use of the following property and Lemma 1.

vi ∈ V C ⊆C′

mk, j(C) ≥ mk, j(C′) v j ∈ V vk ∈ D j(C)
Property 3: For any player and two profiles ,

we have for any and .

vi vl vk vj

(a) C

(b) C′

vi vl vk vj

Fig. 1. An example illustrating Property 2.

v1 v4 v7

v2 v5

v3 v6

ui

Fig. 2. An example illustrating the ideas behind the definition of utility
function . Blackened vertices are selected vertices in strategy profile C.

CHEN et al.: A GAME THEORETIC APPROACH FOR A MINSDS 2261

vl ∈ Ñ1
k (C′)

(N1
l \ {vk})∩C′ = ∅ C ⊆C′ (N1

l \ {vk})∩C′ = ∅
(N1

l \ {vk})∩C = ∅ vl ∈ Ñ1
k (C)

Ñ1
k (C′) ⊆ Ñ1

k (C)
mk, j

Proof: Notice that a vertex if and only if
. Since , implies

, which is equivalent to say that .
Thus, . Then the observation follows from the
definition of . ■

V \C
Lemma 1: Vertex set C is an SDS if and only if all vertices

in are secure.

V \C
vi ∈ V \C v j vi

Ñ1
j \N1

i , ∅ vk ∈ Ñ1
j \N1

i
C \ {v j}∪ {vi} C \ {v j}∪ {vi}

v j

Proof: To prove the “only if ” part, consider an SDS C.
Then all vertices in are dominatees. If there exists an
insecure dominatee , then for any dominator of ,

. In such a case, any vertex must be an
orphan with respect to , and thus is
not a DS. By the arbitrariness of , C is not an SDS, which is
a contradiction.

V \C

vi

v j ∈ N1
i ∩C C \ {v j}∪ {vi}

Ñ1
j \N1

i , ∅ vi

To prove the “if ” part, suppose all vertices in are
secure. Since secure vertices are dominatees, vertex set C is a
DS. If C is not an SDS, then there exists a vertex such that
for any vertex , is not a DS. This
implies that , and thus is not a secure vertex,
which is a contradiction. ■

Theorem 1: Every Nash equilibrium of the security domina-
tion game is a minimal secure dominating set.

vi ∈ V \C
vi vi

−λ2 qi(C)

Proof: We first prove that every Nash equilibrium C is a
secure dominating set. By Property 1, this is equivalent to
showing that any player is secure. Suppose this is
not true and consider an insecure vertex . By Property 1,
contributes to , and thus

ui(C) = −λ2−λ2

∑
v j∈N3

i \{vi}

(1− c j)
∏

vk∈D j(C)

mk, j(C).

C′ = (c′i = 1,C−i)Let , where we have

ui(C′) = −λ1−λ2

∑
v j∈N3

i \{vi}

(1− c j)
∏

vk∈D j(C′)

mk, j(C′).

D j(C) ⊆ D j(C′)By Property 3 and because , we have
 ∏

vk∈D j(C′)

mk, j(C′) ≤
∏

vk∈D j(C)

mk, j(C′) ≤
∏

vk∈D j(C)

mk, j(C).

0 < λ1 < λ2
ui(C′) > ui(C)

Combining this with the assumption , we have
, which contradicts the fact that C is a Nash

equilibrium. Thus, C is a secure dominating set.

vi ∈C C′ =C \ {vi}
V \C′

V \C ui(C) = −λ1 ui(C′) = 0 vi
ci = 1 c′i = 0

Next we show that C is a minimal SDS. Otherwise, there is
a vertex such that is still an SDS. Then any
vertex in is secure, and the same holds for any vertex in

. By Property 1, and . Thus, is
willing to change from to , which contradicts that
C is an NE. ■

B. Potential Game and Existence of NE
Note that a game in strategic form does not necessarily have

a pure Nash equilibrium [32]. However, a potential game
always has a pure Nash equilibrium [33]. In this subsection,
we prove the existence of NE for our game by showing that it
is a potential game, and show that an NE can be reached in
linear rounds of interactions among the players.

Definition 8 (Exact Potential Game): We call a game

Γ = (V; {S i}ni=1; {ui}ni=1)
π : Σ 7→ R vi ∈ V
ci,c′i ∈ S i c−i ∈ S −i

 an exact potential game if there exists a
potential function such that for any player
and any strategies , , the following equality
holds:

π(ci,C−i)−π(c′i ,C−i) = ui(ci,C−i)−ui(c′i ,C−i).

Lemma 2: The proposed security domination game is an
exact potential game.

Proof: We prove that the following function is a potential
function:

π(C) = −λ1

n∑
j=1

c j−λ2

n∑
j=1

(1− c j)
∏

vk∈D j(C)

mk, j(C).

π(C) π(1)(C) π(2)(C)Denote the two terms of as and , respec-
tively.

C = (ci,C−i) C′ = (c′i ,C−i)
vi ci c′i

ci = 0 c′i = 1

Let and be two strategy profiles
before and after some changes its strategy from to . We
may assume, without loss of generality, that and .
It can be calculated that

π(1)(C)−π(1)(C′) = λ1 = gi(C)−gi(C′) (5)
and

π(2)(C)−π(2)(C′)

= −λ2

∑
v j∈N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C)

−λ2

∑
v j<N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C)

+λ2

∑
v j∈N3

i

(1− c′j)
∏

vk∈D j(C′)

mk, j(C′)

+λ2

∑
v j<N3

i

(1− c j)
∏

vk∈D j(C′)

mk, j(C′)

= −λ2

∑
v j∈N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C)

+λ2

∑
v j∈N3

i

(1− c′j)
∏

vk∈D j(C′)

mk, j(C′)

= qi(C)−qi(C′) (6)
where the second equality holds because of Property 2 and
thus the second and the fourth terms are cancelled. Combin-
ing (5) and (6), we have

π(C)−π(C′) = ui(C)−ui(C′).
■

(λ1+λ2)n
min{λ2−λ1,λ1} = O(n)

Theorem 2: The secure domination game always has an NE.
Furthermore, starting from any initial state, the number of iter-
ations needed for the security domination game to reach an
NE is at most .

vi ci
c′i C = (ci,C−i)

C′ = (c′i ,C−i)

Proof: We consider the minimum benefit that a player can
achieve in each round. Suppose changes his strategy from
to to achieve a positive profit. Let and

.
ci = 0 c′i = 1If and , by the definition of utility functions and

 2262 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 12, DECEMBER 2023

vi

qi(C′)−qi(C) = λ2(|IS i(C)| − |IS i(C′)|) ≥ λ2
gi(C′) = −λ1 gi(C) = 0 ui(C′)−

ui(C) ≥ λ2−λ1 > 0

Property 1, the incentive for player to change from 0 to 1 is
that he can help some insecure vertex become a secure vertex,
hence . Combin-
ing this with and , we have

.
ci = 1 c′i = 0

qi(C′)−qi(C) ≤ 0 qi(C′)−qi(C) < 0 qi(C′)−qi(C) ≤
−λ2 vi

vi
qi(C′) = qi(C) ui(C′)−ui(C) = gi(C′)−gi(C) = 0− (−λ1) =
λ1

In the case and , changing a vertex from 1 to 0
cannot reduce the number of insecure vertices, and thus

. If , then
, the decrease is too large for to be willing to change.

Thus, has an incentive for such a change only when
 and

.
π(C′)−π(C) = ui(C′)−ui(C) ≥min{λ2−λ1,

λ1} −(λ1+λ2)n ≤ π(C) ≤ 0
0−(−(λ1+λ2)n)
min{λ2−λ1,λ1} O(n) λ1 λ2

0 < λ1 < λ2
λ2 = 2λ1 3n

By Lemma 2,
. Notice that . Hence the number of

iterations is at most , which is since and
are constants satisfying . For example, if taking

, then the number of iterations is no more than . ■

C. Pareto Optimality
Note that an NE is a stable state from the view of individual

players, in which no single player can be strictly benefited by
unilateral deviation. While a Pareto optimal solution is a sta-
ble state in which a strict benefit for some players will defi-
nitely harm the interest of some others, which is from the view
of social welfare. This subsection shows that any NE of the
game is also Pareto optimal.

Theorem 3: Every NE of the security domination game is a
Pareto-optimal solution.

C ∈ 2V

ui(C) ≤ −λ1 < 0 vi ∈C ui(C) ≤ 0
vi ∈ V \C

Proof: First, notice that for any strategy profile ,
 for any player , and for any

player .
C = (c1, . . . ,cn)

C′ = (c′1 . . . ,c
′
n)

ui(C′) ≥ ui(C) i ∈ {1,2, . . . ,n} ∃ j ∈
{1,2, . . . ,n} u j(C′) > u j(C)

Suppose is an NE but not a Pareto-optimal
solution. Then there is a strategy profile such
that holds for any , and

 with .
qi(C) = 0

vi ui(C) = −λ1 vi ∈C
ui(C) = 0 vi ∈ V \C vi ∈ V \C
0 ≥ ui(C′) ≥ ui(C) = 0 ui(C′) = 0
vi ∈ V \C′ V \C ⊆ V \C′ C′ ⊆C

C′ C′

By Theorem 1, C is an SDS. Then by Property 1,
for any player . Thus, for any and

 for any . As a consequence, for ,
 leads to , which implies

. Hence, , or equivalently, .
Because and C are different, is a proper subset of C.

ui(C′) ≥ ui(C) = −λ1 > −λ2
vi ∈C ui(C′) = 0 −λ1

qi(C′) = 0 IS i(C′) = ∅ C′

On the other hand, implies that
any player has or . This is possible only
when , in other words, . Then, is also
an SDS, contradicting the fact that C is a minimal SDS. ■

D. Relation of the Solutions
S S DS S MS DS S NE S POS

S NE ⊆ S MS DS ∩S POS

Let , , and be the set of secure domi-
nating sets, minimal secure dominating sets, Nash equilibria
of the secure domination game, and Pareto-optimal solutions
of the SDS problem, respectively. According to Theorems 1
and 3, we have . The relations between
these sets are illustrated by Fig. 3

V. Algorithm Design and Analysis

To realize the above SDS game, one may let players make
their decisions in order until no player can improve his utility.

O(n)
Theorem 2 guarantees that in this way, the algorithm con-
verges to an NE in rounds. However, this algorithm is
not distributed and is quite time consuming (since every
player has to wait for the decisions of the other players).

G = (V,E) C = (0, . . . ,0)
vi ui(c′i = 1,C−i)−ui(C) ≥ λ2−λ1 > 0

C′ = (1, . . . ,1)
vi ui(c′′i = 0,C′−i)−ui(C′) = λ1 > 0

C = (0, . . . ,0)

To design a distributed algorithm, an idea is to let all play-
ers make decisions simultaneously. However, such a method
may cause a failure of convergence, and may even be trapped
in an infinite loop. For example, given a connected graph

, if the current strategy profile is , then
for every player , since ,
he is inclined to change his strategy from 0 to 1. Thus, the
next strategy profile becomes . Then for every
player , , and thus he is
inclined to change his strategy back to 0, leading to the next
strategy profile back to . Thus, simultaneous
decisions may cause the algorithm to be stuck in an infinite
loop.

The reason why a mess might be created by a simultaneous
decision is as follow: A best response of a player is based on
the assumption that all the other players keep their strategies;
thus, if two correlated players change their strategies simulta-
neously, then their best responses for the previous strategy
profile are no longer best responses for the strategy profile
after the simultaneous change.

ui(C) vi

vi

An idea to avoid such a mess is to let only a set of indepen-
dent players make decisions simultaneously. By the definition
of utility function , it is easy to see that player can
make his decision on local information which is at most six
hops away from . The following argument shows that a lit-
tle more storage space may further reduce the dependence on
local information to at most three hops.

Ñ1
k (C) N2

k
v j vk ∈ D j(C) mk, j(C)

N2
k

v j
∏

vk∈D j mk, j(C)
N3

j v j

Notice that only uses c-values of players in . Thus,
for any player and , the value of only
depends on information in . As a consequence, every player

 can compute locally using information in
. Suppose every stores information

S S j = (c j,
∏

vk∈D j

mk, j)

S S j

N3
j vi

gi(C) qi(C) N3
i

with respect to current solution C. Then can be com-
puted using local information , and player can compute

 and by accessing local information in .

BR(vi,CN3
i
)

N3
i vi

The distributed algorithm is described in Algorithm 1. To
emphasize the range of information needed for a computation,
we use a subscript. For example, indicates that
only information in is needed for to compute a best
response. The details for the execution of the algorithm are

SSDS

SMSDS SNE SPOS

S S DS S MS DS S NE S POSFig. 3. Relations between solution sets , , and .

CHEN et al.: A GAME THEORETIC APPROACH FOR A MINSDS 2263

explained as follows.

T = (λ1+λ2)n
min{λ2−λ1,λ1}n

vi mui(C) = ui(BR(vi,CN3
i
),C−i)−ui(ci,C−i)

vi

Algorithm 1 is a distributed realization of the SDS game
presented in Section II, where parameter ,
the reason of which will be clear after proving Lemma 4. For
current strategy profile C, we denote the marginal utility of
player by . All
players compute their marginal utility simultaneously, but not
all of them change their strategy at the same time. A player
decides to change his strategy only when

i = argmin{ j : v j ∈ N6
i and mu j(C) > 0}. (7)

Algorithm 1 Best Response Dynamic Distributed Local Algo-
rithm (BRDDLA)

C(0) = (c(0)
1 , . . . ,c

(0)
n)Input: An initial strategy profile

C′Output: A minimal SDS
C←C(0)1:

t = 1,2, . . . ,T2: for do
vi3: 　for every player (this is done simultaneously) do

c′i ← BR(vi,CN3
i
) S S j v j ∈ N3

i4: 　　 by accessing for
mui← ui(c′i ,C−i)−ui(ci,C−i)5: 　　

vi6: 　　if satisfies (7) then
ci← c′i7: 　　　

8: 　　end if
9: 　end for

C =C(t−1)10: 　if then
1611: 　　Break and go to line

12: 　else
C(t)←C13: 　　

14: 　end if
15: end for

C′←C16: Output

vi

N6
i

That is, the player has the priority to change his strategy
only when he has the smallest ID among players in with a
strictly positive marginal utility.

The reason why we use (7) to determine who can change
strategy is based on the following property.

H

H

Property 4: Suppose is the set of players who have
changed their strategies simultaneously in one execution of
the inner for loop of Algorithm 1; then is a 3-hop indepen-
dent set in the SDS game, that is,

N3
i ∩N3

j = ∅, ∀vi, v j ∈ H .
C′

vi
C′

As a consequence, if a strategy profile C changes into ,
then for any player who has changed his strategy by rule
(7), his best response to C is also a best response to .

Intuitively, since decisions are made locally, only allowing
players who are somewhat distant to change strategies can
effectively decouple mutual influences, and thus leads to a
guaranteed convergence rate. We give a strict analysis for this
intuition in the following.

C′ = (C′H ,C−H) H

Lemma 3: Suppose C is the current strategy profile. After a
round of the inner for loop of Algorithm 1, the new strategy
profile is , where is the set of players who
have their strategies changed in this round. Then,

π(C′)−π(C) =
∑
vi∈H

(ui(c′i ,C−i)−ui(ci,C−i)).

H = {vi1 ,vi2 , . . . ,vit }
H

V = N3
i1
∪N3

i2
∪ · · ·

∪N3
it
∪Vt Vt = V \∪t

l=1N3
il

π(C)

Proof: Suppose . According to Property 4,
 is a 3-hop independent set, thus the player set V can be

decomposed into disjoint union of sets
, where . Hence, the potential func-

tion can be rewritten as

π(C) = −λ1

∑
vi∈H

ci−λ1

∑
vi<H

ci

−λ2

∑
vi∈H

∑
v j∈N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C)

−λ2

∑
v j∈Vt

(1− c j)
∏

vk∈D j(C)

mk, j(C).

π(C′)Similarly, can be rewritten as

π(C′) = −λ1

∑
vi∈H

c′i −λ1

∑
vi<H

ci

−λ2

∑
vi∈H

∑
v j∈N3

i

(1− c′j)
∏

vk∈D j(C′)

mk, j(C′H ,C−H)

−λ2

∑
v j∈Vt

(1− c′j)
∏

vk∈D j(C′)

mk, j(C′H ,C−H).

ℓ ∈ {1, . . . , t}
v j ∈ N3

iℓ
viℓ′ ℓ′ , ℓ

mk, j(C) vk ∈ D j(C)
mk, j(C′H ,C−H) = mk, j(c′i ,C−i) D j(C′) = D j(c′i ,C−i)

v j ∈ Vt
D j(C′) = D j(C) mk, j(C′) = mk, j(C) vk ∈ D j(C′)

By the partition of V and Property 2, for any
and any , the status of vertex with will not
affect the value of for any , and thus

 and . Simi-
lar argument shows that for any , we have

 and for any . It
follows that:

π(C′)−π(C)

=−λ1

∑
vi∈H

c′i +λ1

∑
vi∈H

ci

−λ2

∑
vi∈H

∑
v j∈N3

i

(1− c′j)
∏

vk∈D j(c′i ,C−i)

mk, j(c′i ,C−i)

+λ2

∑
vi∈H

∑
v j∈N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C)

=
∑
vi∈H

(ui(c′i ,C−i)−ui(ci,C−i)).

■
C(0)

(λ1+λ2)n
min{λ2−λ1,λ1}n

O(n)

Lemma 4: Starting from any initial strategy profile ,
Algorithm 1 converges in at most rounds, which
is .

min{λ2−λ1,λ1}

Proof: Based on Lemma 3 and the assumption that a player
is willing to change his strategy only when he can be strictly
better off, which is similar to the proof of Theorem 2, in every
round of Algorithm 1, the potential π is reduced by at least

. Then, the lemma follows.
The following theorem shows the quality of the solution.

C′Theorem 4: The output of algorithm BRDDLA is a mini-
mal secure dominating set and a Pareto-optimal solution.

 2264 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 12, DECEMBER 2023

C =C(t−1)

C =C(t−1)

C(t−1)

Proof: We claim that when , C must be an NE. In
fact, C stops being updated only when no player can be
strictly better off. Thus, the reason why is because

 consists of best responses for every player, and thus is
an NE. Then, the theorem follows from Theorems 1 and 3. ■

VI. Simulation Results

In this section, we experiment on the performance of our
algorithm BRDDLA. All experiments are coded in Python and
run with an identical configuration: AMD Ryzen 5 3500U
with Radeon Vega Mobile Gfx and 16 GB of RAM.

A. Comparison With a Greedy Algorithm

IS (C)

Although there are some polynomial-time algorithms for
MinSDS on special classes of graphs [4], [8]–[15], we have
not found any algorithm on MinSDS designed for a general
graph. Hence, we compare our algorithm with a natural
greedy algorithm (GA) described in Algorithm 2, where
denotes the set of insecure vertices in V with respect to cur-
rent solution C. The algorithm iteratively selects a vertex the
addition of which reduces the number of insecure vertices
most. By Lemma 1, the whole vertex set V is an SDS, and thus
GA terminates in at most n rounds.

Algorithm 2 Greedy Algorithm (GA)

Input: graph G
Output: an SDS C

IS (C) , ∅1: while do
vi← argmaxvi∈V\C{|IS (C)| − |IS (C∪{vi})|}2: 　
C←C∪{vi}3: 　

4: end while

Graphs for the experiments are generated randomly using
the following two models.

1) The Barabási-Albert Graph (BA) [34]: Starting from a

m0

m ≤ m0

graph with a small number of vertices, new vertices are
iteratively added. When a new vertex is added, it is connected
to m existing vertices, where , and the probability that
an existing vertex is linked with the new vertex depends on its
current degree.

ö2) The Erd s-Rényi Graph (ER) [35]: In this graph, every
edge is presented with probability p independent of the other
edges.

m = m0 = 5
p = 0.2 m0

In Fig. 4, the horizontal axis is the number of vertices n. For
each n, 1000 sampled graphs are generated. The vertical axis
is the average size of computed solutions. It turns out that
BRDDLA is superior to GA, especially in BA, where the
average sizes of the solutions computed by BRDDLA are
roughly 59% of those computed by GA. For clarity of figures,
we only show the case when for the BA, and

 for the ER. In fact, when we tested on other m, and
p, all experiments support the same results.

B. Comparison With an Exact Solution on Trees
To see the accuracy of our algorithm, we compare

BRDDLA with the exact algorithm DefendTree proposed by
Burger et al. [4] for MinSDS on trees. Trees for the experi-
ments are constructed in the following two manners.

m0 = 2 m = 1
1) Barabási-Albert Tree (BAT): A tree is constructed by the

Barabási-Albert model with and .
2) Random Tree (RT): Let V be a vertex set on n vertices

and F be the edge set consisting all possible edges between
vertices of V. Starting from an empty graph on vertex set V,
iteratively add an edge e from F randomly and uniformly as
long as no cycle is created, until we obtain a spanning tree on V.

Again, for each n, 1000 trees of size n are sampled. Fig. 5
shows the average sizes of solutions computed by BRDDLA
(red line) and the average sizes of optimal solutions computed
by DefendTree (blue line). It can be seen that these two lines

(a)

BRDDLA, m = 535

30

25

20

15C
ar

di
na

lit
y

of
 se

cu
re

do
m

in
at

in
g

se
ts

50 60 70
Number of vertices

80 90 100

GA, m = 5

(b)

BRDDLA, p = 0.218

17

16

15

14C
ar

di
na

lit
y

of
 se

cu
re

do
m

in
at

in
g

se
ts

50 60 70
Number of vertices

80 90 100

GA, p = 0.2

m0 = 5 p = 0.2Fig. 4. Comparison between BRDDLA and GA. (a) BA, ; (b) ER, .

(a)

BRDDLA400
350
300
250
200
150
100

C
ar

di
na

lit
y

of
 se

cu
re

do
m

in
at

in
g

se
ts

100 200 300
Number of vertices

400 500 600

DefendTree

(b)

300

250

200

150

100C
ar

di
na

lit
y

of
 se

cu
re

do
m

in
at

in
g

se
ts

100 200 300
Number of vertices

400 500 600

BRDDLA
DefendTree

Fig. 5. Comparison of BRDDLA and DefendTree on trees. (a) BAT; (b) RT.

CHEN et al.: A GAME THEORETIC APPROACH FOR A MINSDS 2265

γ = |C
′ |−|C∗ |
|C∗ |

C′ C∗
are very close. We use to measure relative error of
BRDDLA, where is the output of BRDDLA and is the
optimal solution computed by DefendTree. It can be seen
from Table II that γ is around 1% for BAT and 6% for RT.

TABLE II

Relative Error of Brddla Measured By γ

Graph |V | = 100 200 300 400 500 600

BAT 0.95% 1.03% 0.98% 1.04% 0.99% 1.11%

RT 6.05% 6.27% 6.14% 6.22% 6.31% 6.25%

C. Effect of Decision Priority
Theoretical analysis guarantees that BRDDLA could always

find a minimal SDS, but different minimal solutions may have
different sizes. According to decision rule 7, a player with a
smaller ID has a higher priority to make a change. So, a ques-
tion is: will different ID of players lead to solutions with much
difference?

C C

C′

(1,2, . . . ,n)

ω =
|C|−|C|
|C′ |

η =
|C|−|C′ |
|C′ |

(1,2, . . . ,n)

To test the effect of decision priority, for a randomly gener-
ated graph, we randomly and uniformly generate 1000 permu-
tations of the players which are used as players’ ID used by
BRDDLA. Denote by and the solution with the maxi-
mum size and the solution with the minimum size among
these 1000 solutions, respectively. Still use to denote the
solution computed using ID . Then parameter

 can be used to measure the relative gap between the
worst solution and the best solution influenced by different
ID, and parameter can be used to measure the
improvement on the natural ID .

Tables III and IV show the values of ω and η in various
types of experimental graphs.

From Table III, it can be seen that for a general graph, there
is a big difference between the best solution and worst solu-
tion, and the difference is relatively smaller for ER than for
BA. This indicates that sizes of different minimal solutions
might vary greatly, and the variance is smaller in an evenly
distributed graph than in a power-law graph. While for trees,
the difference is much smaller, and smaller for BA than for
ER. This might be because our algorithm is already fairly
accurate for trees, especially for power law graphs. These
experiments certify that different IDs of players do make a
difference in the quality of the solution obtained by
BRDDLA, which also suggests that in order to obtain a better
solution, one may repeat the algorithm several times based on
different ID arrangements.

(1,2, . . . ,n)

What is most interesting is to observe from Table IV that
the improvement brought about by decision priority is signifi-
cantly smaller for BA than for ER. The reason might be
explained as follows. For BA, is the order of ver-
tices added in the construction of the graph. A vertex which is
added earlier has a larger chance to be an important individ-
ual, and thus letting such the vertex to make a decision earlier
may have a better chance to create a good result. While in ER,
importance of vertices is distributed evenly, and thus trying
different players’ IDs might result in more diversified solu-
tions. In summary, changing players’ ID might improve the

performance of the algorithm for evenly distributed random
graphs, while for BA, letting players’ IDs be equivalent to
construction order might be good enough.

D. Effect of Initial Solution

C(0) = (0, . . . ,0)
In the above experiments, the initial strategy profile is

always taken to be . Although Lemma 2 guar-
antees that BRDDLA could converge to an NE starting from
any initial strategy profile, we would like to know the influ-
ence of initial strategy profile on the final output. For this pur-
pose, we use a simple method: restart.

(0, . . . ,0)

The results are shown in Fig. 6. For each type of graphs, 10
sample-graphs are generated. For each graph, 100 initial strat-
egy profiles are taken uniformly and randomly, and the small-
est size of these 100 solutions is recorded as the “result of
restart”. In Fig. 6, the green lines mark the results of restart,
and the red lines mark the sizes of those solutions starting
from strategy profile . It turns out that the effect of
restart is obvious on ER and RT, but not so obvious on BA
and BAT. The reason might be similar as before: our algo-
rithm is already good enough for the BA model, which leaves
only a little space for improvement.

E. Convergence Rate

O(n)

In this subsection, we test on the number of rounds needed
by DefendTree, GA and BRDDLA on BA, ER, BAT and RT.
The number of vertices is 1000. The results are shown in
Table V. As Lemma 4 shows, BRDDLA converges in
rounds, where n is the number of vertices. This is a theoreti-
cal result. It turns out that in a practical setting, BRDDLA
converges in much less rounds than n. Furthermore, BRDDLA
converges faster than the reference algorithms, especially on
BAT and RT. The reason might be that both BAT and RT are
sparse, and thus more players can change their strategies
simultaneously.

VII. Conclusion

In this paper, we use the game theoretic method to solve the
MinSDS problem in a multi-agent system. An SDS game was
proposed and proven to be an exact potential game, converg-
ing to an NE in linear rounds of interactions. Moreover, we
proved that every NE of the game is a minimal secure domi-
nating set and a Pareto optimal solution. Then, a distributed
algorithm was designed to simulate the game process. In each
round of the algorithm, every player only uses local informa-
tion at most three hops away to make his decision. The perfor-
mance of our algorithm was tested through experiments on
randomly generated graphs using both ER and BA. We com-
pare its performance with a natural greedy heuristic, and it
turns out that our algorithm out-performs the greedy strategy
by a large amount. Compared with an existing exact algo-
rithm for MinSDS on trees, our algorithm turns out to be fairly
accurate. Furthermore, our algorithm is not only better in
accuracy, but also faster in convergence.

There might be a lot of interesting topics to be further
explored, such as price of anarchy (PoA) [36], allocation
games [37], evolutionary games [38] and networked games
[39], [40].

 2266 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 12, DECEMBER 2023

References

 T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of
Domination in Graphs. Boca Raton, USA: CRC Press, Jan. 1998.

[1]

 T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in
Graphs. New York, USA: Routledge, Oct. 1998, vol. 2.

[2]

 T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, Topics in
Domination in Graphs. Geneva, Switzerland: Springer, Cham, Jan.
2020, vol. 64.

[3]

 A. Burger, A. de Villiers, and J. van Vuuren, “A linear algorithm for
secure domination in trees,” Discrete Applied Math., vol. 171,
pp. 15–27, 2014.

[4]

 E. Cockayne, P. Grobler, W. Gründlingh, J. Munganga, and J. Vuuren,
“Protection of a graph,” Utilitas Mathematica, vol. 67, pp. 19–32, 2005.

[5]

 A. Burger, A. de Villiers, and J. Vuuren, “Two algorithms for secure
graph domination,” J. Combinatorial Math. and Combinatorial

[6]

Computing, vol. 85, pp. 321–339, 2013.
 H. Boumediene Merouane and M. Chellali, “On secure domination in
graphs,” Infor. Proc. Lett., vol. 115, no. 10, pp. 786–790, 2015.

[7]

 T. Araki and H. Miyazaki, “Secure domination in proper interval
graphs,” Discrete Applied Math., vol. 247, pp. 70–76, 2018.

[8]

 T. Araki and R. Yamanaka, “Secure domination in cographs,” Discrete
Applied Math., vol. 262, pp. 179–184, 2019.

[9]

 T. Araki and I. Yumoto, “On the secure domination numbers of
maximal outerplanar graphs,” Discrete Applied Math., vol. 236,
pp. 23–29, 2018.

[10]

 A. P. Burger, M. A. Henning, and J. H. van Vuuren, “Vertex covers and
secure domination in graphs,” Quaestiones Math., vol. 31, no. 2,
pp. 163–171, 2008.

[11]

 A. Burger, A. de Villiers, and J. van Vuuren, “On minimum secure
dominating sets of graphs,” Quaestiones Math., vol. 39, no. 2,
pp. 189–202, 2016.

[12]

 E. Castillano, R. Ugbinada, and S. Canoy Jr, “Secure domination in the
joins of graphs,” Applied Math. Sciences, vol. 8, pp. 5203–5211, 2014.

[13]

 D. Corneil, H. Lerchs, and L. Burlingham, “Complement reducible
graphs,” Discrete Applied Math., vol. 3, no. 3, pp. 163–174, 1981.

[14]

 D. Pradhan and A. Jha, “On computing a minimum secure dominating
set in block graphs,” J. Combinatorial Optimization, vol. 35, pp. 613–
631, 2018.

[15]

 Z. Han, D. Niyato, W. Saad, T. Başar, and A. Hjørungnes, Game Theory
in WIReless and Communication Networks: Theory, Models, and

[16]

TABLE III

Influence of Decision Priority Measured By ω

Graph |V | = 50 60 70 80 90 100 Graph |V | = 100 200 300 400 500 600

BA 63.64% 100.00% 86.67% 100.00% 75.00% 71.43% BAT 1.39% 1.46% 1.42% 0.72% 1.72% 1.24%

ER 42.86% 38.46% 41.18% 50.00% 50.00% 38.89% RT 10.17% 7.02% 7.60% 7.14% 5.21% 5.78%

TABLE IV

Improvement By Decision Priority Measured By η

Graph |V | = 50 60 70 80 90 100 Graph |V | = 100 200 300 400 500 600

BA −3.06% −3.67% −3.24% −3.33% −3.59% −3.41% BAT −1.21% −0.73% −0.47% −0.36% −1.44% −0.99%

ER −28.57% −15.38% −23.53% −14.29% −25.00% −22.22% RT −6.78% −2.63% −3.51% −4.02% −2.78% −3.18%

TABLE V

Number of Rounds of Three Algorithms

Algorithm m0 = 5BA, p = 0.2ER, BAT RT

DefendTree None None 1000 1000

GA 377 43 711 601

BRDDLA 360 41 568 210

(a)

14.0
13.5
13.0
12.5
12.0
11.5
11.0
10.5
10.0

C
ar

di
na

lit
y

of
 se

cu
re

do
m

in
at

in
g

se
ts

1 2 3
Graphs

4 5 10986 7

BRDDLA
Restart

(b)

15

14

13

12

11

10
C

ar
di

na
lit

y
of

 se
cu

re
do

m
in

at
in

g
se

ts
1 2 3

Graphs
4 5 10986 7

BRDDLA
Restart

(c)

430

425

420

415

410C
ar

di
na

lit
y

of
 se

cu
re

do
m

in
at

in
g

se
ts

1 2 3
Graphs

4 5 10986 7

(d)

345
340
335
330
325
320
315C

ar
di

na
lit

y
of

 se
cu

re
do

m
in

at
in

g
se

ts

1 2 3
Graphs

4 5 10986 7

BRDDLA
DefendTree
Restart

BRDDLA
DefendTree
Restart

m0 = m = 5 |V | = 50 p = 0.2 |V | = 50 |V | = 600 |V | = 600Fig. 6. Effect of Initial Solution by Restart. (a) BA, , ; (b) ER, , ; (c) BAT, ; (d) RT, .

CHEN et al.: A GAME THEORETIC APPROACH FOR A MINSDS 2267

http://dx.doi.org/10.1016/j.dam.2014.02.001
http://dx.doi.org/10.1016/j.ipl.2015.05.006
http://dx.doi.org/10.1016/j.dam.2018.03.040
http://dx.doi.org/10.1016/j.dam.2019.02.043
http://dx.doi.org/10.1016/j.dam.2019.02.043
http://dx.doi.org/10.1016/j.dam.2017.10.020
http://dx.doi.org/10.2989/QM.2008.31.2.5.477
http://dx.doi.org/10.2989/16073606.2015.1068238
http://dx.doi.org/10.12988/ams.2014.47519
http://dx.doi.org/10.1016/0166-218X(81)90013-5
http://dx.doi.org/10.1007/s10878-017-0197-y

Applications. Cambridge, UK: Cambridge University Press, Jan. 2011.
 D.-Z. Du and P.-J. Wan, Connected Dominating Set: Theory and
Applications. New York, USA: Springer 2013, vol. 77.

[17]

 L.-H. Yen and Z.-L. Chen, “Game-theoretic approach to self-stabilizing
distributed formation of minimal multi-dominating sets,” IEEE Trans.
Parallel and Distributed Systems, vol. 25, no. 12, pp. 3201–3210, 2014.

[18]

 L.-H. Yen and G.-H. Sun, “Game-theoretic approach to self-stabilizing
minimal independent dominating sets,” in Proc. Internet and
Distributed Computing Syst., 2018, pp. 173–184.

[19]

 X. Chen and Z. Zhang, “A game theoretic approach for minimal
connected dominating set,” Theoretical Computer Science, vol. 836,
pp. 29–36, 2020.

[20]

 Y. Yang and X. Li, “Towards a snowdrift game optimization to vertex
cover of networks,” IEEE Trans. Cyber., vol. 43, no. 3, pp. 948–956,
2013.

[21]

 C. Tang, A. Li, and X. Li, “Asymmetric game: A silver bullet to
weighted vertex cover of networks,” IEEE Trans. Cyber., vol. 48, no. 10,
pp. 2994–3005, 2018.

[22]

 C. Sun, W. Sun, X. Wang, and Q. Zhou, “Potential game theoretic
learning for the minimal weighted vertex cover in distributed
networking systems,” IEEE Trans. Cyber., vol. 49, no. 5, pp. 1968–1978,
2019.

[23]

 C. Sun, X. Wang, H. Qiu, and Q. Chen, “A game theoretic solver for the
minimum weighted vertex cover,” in Proc. IEEE Int. Conf. Syst., Man
and Cyber., 2019, pp. 1920–1925.

[24]

 J. Chen, K. Luo, C. Tang, Z. Zhang, and X. Li, “Optimizing
polynomial-time solutions to a network weighted vertex cover game,”
IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 512–523, 2023.

[25]

 X.-Y. Li, Z. Sun, W. Wang, X. Chu, S. Tang, and P. Xu, “Mechanism
design for set cover games with selfish element agents,” Theoretical
Computer Science, vol. 411, no. 1, pp. 174–187, 2010.

[26]

 X.-Y. Li, Z. Sun, W. Wang, and W. Lou, “Cost sharing and
strategyproof mechanisms for set cover games,” J. Comb. Optim.,
vol. 20, pp. 259–284, 2010.

[27]

 Q. Fang and L. Kong, “Core stability of vertex cover games,” in
Internet and Network Economics. Berlin Heidelberg, Germang:
Springer, 2007, pp. 482–490.

[28]

 B. van Velzen, “Dominating set games,” Operations Research Letters,
vol. 32, no. 6, pp. 565–573, 2004.

[29]

 H. K. Kim, “On connected dominating set games,” J. Korean Data and
Information Science Society, vol. 22, pp. 1275–1281, 2011.

[30]

 X. Ai, V. Srinivasan, and C. Tham, “Optimality and complexity of pure
nash equilibria in the coverage game,” IEEE J. Selected Areas in
Commun., vol. 26, no. 7, pp. 1170–1182, 2008.

[31]

 J. F. Nash, “Equilibrium points in n-person games,” Proc. National
Academy of Sciences, vol. 36, no. 1, pp. 48–49, 1950.

[32]

 D. Monderer and L. Shapley, “Potential games,” Games and Economic
Behavior, vol. 14, pp. 124–143, 1996.

[33]

 A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[34]

 P. Erdös and A. Rényi, “On random graphs l,” Publicationes
Mathematicae Debrecen, vol. 6, pp. 290–297, 1959.

[35]

 T. Roughgarden, “The price of anarchy is independent of the network
topology,” J. Computer and System Sciences, vol. 67, no. 2, pp. 341–
364, 2003.

[36]

 Y. Li and A. S. Morse, “The power allocation game on a network: A
paradox,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 771–776, 2018.

[37]

 G. Zhao, Y. Wang, and H. Li, “A matrix approach to the modeling and
analysis of networked evolutionary games with time delays,” IEEE/CAA
J. Autom. Sinica, vol. 5, no. 4, pp. 818–826, 2018.

[38]

 M. Ye, D. Li, Q.-L. Han, and L. Ding, “Distributed Nash equilibrium
seeking for general networked games with bounded disturbances,”
IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 376–387, 2023.

[39]

 D. Cheng, T. Xu, F. He, and H. Qi, “On dynamics and Nash
equilibriums of networked games,” IEEE/CAA J. Autom. Sinica, vol. 1,
no. 1, pp. 10–18, 2014.

[40]

Xiuyang Chen received the B.S. degree in mathe-
matics and applied mathematics from Zhejiang Inter-
national Studies University in 2018, the M.S. degree
in mathematics and applied mathematics from Zhe-
jiang Normal University in 2021. He is currently a
Ph.D. candidate in mathematics and applied mathe-
matics at Xinjiang University. His current research
interests include game theory, mechanism design,
intelligence algorithm, and approximation algorithm.

Changbing Tang (Senior Member, IEEE) received
the B.S. and M.S. degrees in mathematics and
applied mathematics from Zhejiang Normal Univer-
sity, in 2004 and 2007, respectively, the Ph.D. degree
in circuits and systems from the Department of Elec-
tronic Engineering, Fudan University in 2014. He is
currently an Associate Professor with the College of
Physics and Electronic Information Engineering,
Zhejiang Normal University. His research interests
include game theory, blockchain and its applications,

networks and distributed optimization.
 He is the recipient of the Academic New Artist Doctoral Post Graduate
from the Ministry of Education of China in 2012 and the recipient of the Aca-
demician Pairing Training Program for Young Talents of Zhejiang Province
in 2019.

Zhao Zhang received the B.S. degree in computa-
tional mathematics, the M.S. degree in basic mathe-
matics and the Ph.D. degree in applied mathematics
from Xinjiang University, in 1996, 1999 and 2003,
respectively. From 2003 to 2014, She was engaged in
scientific research in Xinjiang University. She is cur-
rently a Distinguished Professor of Zhejiang Normal
University. Her current research interests include
approximation algorithm, combinatorial optimiza-
tion and machine learning.

 2268 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 12, DECEMBER 2023

http://dx.doi.org/10.1109/TPDS.2013.2297100
http://dx.doi.org/10.1109/TPDS.2013.2297100
http://dx.doi.org/10.1016/j.tcs.2020.05.020
http://dx.doi.org/10.1109/TSMCB.2012.2218805
http://dx.doi.org/10.1109/TCYB.2017.2754919
http://dx.doi.org/10.1109/TCYB.2018.2817631
http://dx.doi.org/10.1109/JAS.2022.105521
http://dx.doi.org/10.1016/j.tcs.2009.09.024
http://dx.doi.org/10.1016/j.tcs.2009.09.024
http://dx.doi.org/10.1007/s10878-009-9209-x
http://dx.doi.org/10.1016/j.orl.2004.02.004
http://dx.doi.org/10.1109/JSAC.2008.080914
http://dx.doi.org/10.1109/JSAC.2008.080914
http://dx.doi.org/10.1073/pnas.36.1.48
http://dx.doi.org/10.1073/pnas.36.1.48
http://dx.doi.org/10.1006/game.1996.0044
http://dx.doi.org/10.1006/game.1996.0044
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1016/S0022-0000(03)00044-8
http://dx.doi.org/10.1109/JAS.2018.7511129
http://dx.doi.org/10.1109/JAS.2016.7510259
http://dx.doi.org/10.1109/JAS.2016.7510259
http://dx.doi.org/10.1109/JAS.2022.105428
http://dx.doi.org/10.1109/JAS.2014.7004614

	I Introduction
	II Preliminaries
	III Security Domination Game
	IV Theoretical Analysis
	A Nash Equilibrium Solution
	B Potential Game and Existence of NE
	C Pareto Optimality
	D Relation of the Solutions

	V Algorithm Design and Analysis
	VI Simulation Results
	A Comparison With a Greedy Algorithm
	B Comparison With an Exact Solution on Trees
	C Effect of Decision Priority
	D Effect of Initial Solution
	E Convergence Rate

	VII Conclusion
	References

