
 

A Game Theoretic Approach for a Minimal
Secure Dominating Set

Xiuyang Chen, Changbing Tang, Senior Member, IEEE, and Zhao Zhang

 
   Abstract—The  secure  dominating  set  (SDS),  a  variant  of  the
dominating  set,  is  an  important  combinatorial  structure  used  in
wireless networks. In this paper, we apply algorithmic game the-
ory to study the minimum secure dominating set (MinSDS) prob-
lem  in  a  multi-agent  system.  We  design  a  game  framework  for
SDS  and  show  that  every  Nash  equilibrium  (NE)  is  a  minimal
SDS,  which is  also  a  Pareto-optimal  solution.  We prove  that  the
proposed  game  is  an  exact  potential  game,  and  thus  NE  exists,
and  design  a  polynomial-time  distributed  local  algorithm  which
converges  to  an  NE  in O(n)  rounds  of  interactions.  Extensive
experiments  are  done  to  test  the  performance  of  our  algorithm,
and some interesting phenomena are witnessed.
    Index Terms—Algorithmic  game  theory,  multi-agent  systems,  po-
tential game, secure dominating set.
  

I.  Introduction

W ITH the rapid progress of wireless network technology,
some  distributed  network  systems  such  as  multi-agent

systems, sensor networks, and wireless ad hoc networks have
become more and more popular for network monitoring which
only requires little intervention from people. To save cost, it is
desirable to use small number of intelligent devices to collect
information  from  the  whole  system.  Such  a  consideration
leads to the minimum dominating set (MinDS) problem [1].

vi
N[vi] N[vi]

vi

Note that in a MinDS problem, each sensor is only responsi-
ble  for  detecting  security  issues  of  the  system,  and  is  not
endowed with the power to handle them. This limits the scope
of application of dominating sets. For example, in a museum,
each pavilion is viewed as a vertex of a graph, and the corri-
dors between the pavilions form the edge set of the graph. A
guard  in  pavilion  is responsible  for  monitoring  the  sur-
rounding  pavilions ,  where  is  the  closed  neighbor
set  of .  If  every  pavilion  could  be  monitored,  then  those
pavilions  with  guards  form  a  dominating  set.  If  a  problem

occurs in a guarded pavilion, then the guard in the correspond-
ing pavilion can deal with the issue. If a problem occurs in an
unguarded  pavilion,  then  a  nearby  guard  could  move  to  deal
with the issue. At the same time, it  is expected that all pavil-
ions remain to be monitored after movement. This leads to the
minimum secure dominating set  (MinSDS) problem. In addi-
tion to  the above scenario,  SDS problems are  also applied in
the context of the protection system, network security system,
military strategy analysis, etc. [1]–[4].

The concept of SDS was first introduced by Cockayne et al.
[5]  in  2005.  Burger et  al. [6]  designed  two  exponential-time
algorithms  for  the  MinSDS  problem  in  general  graphs.  It  is
known that the MinSDS problem is NP-hard. In fact, Boume-
diene  Merouane  and  Chellali  [7]  proved  that  the  MinSDS
problem  is  NP-hard  even  when  restricted  to  bipartite  graphs
and  split  graphs.  Therefore,  many  people  attempted  to  solve
the  MinSDS  problem  with  special  classes  of  graphs  [4],
[8]–[15]. These  algorithms are  centralized.  Note  that  central-
ized algorithms are vulnerable to external attacks. Damage to
the center may lead to a breakdown of the whole system. This
observation motivates us to seek distributed algorithms for the
MinSDS problem.

A  distributed  algorithm  can  effectively  reduce  the  damage
of  attacks,  especially  in  multi-agent  systems,  in  which  each
node  is  an  autonomous  agent  and  can  determine  its  strategy
for  the  next  step  based  on  currently  collected  information
(which is often local since an agent might not be as powerful
as a center). Such an autonomy eliminates the dependence on
a center, and greatly improves anti-attack capability. Note that
individual  benefits  and  social  welfare  are  often  conflicting.
Thus,  a  disadvantage  resulting  from such  autonomy is  that  a
self-organized  algorithm  take  a  longer  time  to  run,  and  may
fail to get satisfactory solutions.

Using game theory can effectively cope with the above dis-
advantages,  and  the  hypothetical  definition  of  a  player  is
exactly  what  we  expect  from  an  agent:  rational,  intelligent,
and selfish.  Game theory  has  the  advantage  whereby provid-
ing  interaction  frameworks  (game  design)  and  specific  local
rules  (distributed  methods),  a  satisfactory  collective  behavior
may  be  theoretically  guaranteed  through  competition  and
cooperation among individuals. For studies of game theory in
wireless  and  communication  networks,  readers  may  refer  to
the monograph [16] and references therein.

Compared with  the  large  quantities  of  approximation  algo-
rithms for the MinDS problem and its variants [17], studies on
the domination  problems  using  game  theory  are  not  as  com-
mon.  Yen  and  Chen  [18]  designed  a  multi-domination  game
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and proved that every Nash equilibrium (NE) of the game is a
minimal  multi-dominating  set,  and  is  also  a  Pareto  optimal
solution.  Based  on  the  game,  a  distributed  algorithm  was
designed. Note that the algorithm uses a central daemon which
allows  only  one  process  at  a  time.  Later,  Yen  and  Sun  [19]
designed  an  independent  domination  game  and  proved  that
every NE  is  a  minimal  independent  dominating  set.  A  dis-
tributed algorithm was also presented under a central daemon.
Chen and Zhang [20] designed a connected domination game
and proved that every NE is a minimal connected dominating
set and a distributed algorithm can find an NE in linear rounds
of interactions. An example was given showing that the game
cannot guarantee  Pareto  optimality.  All  these  game  theoreti-
cal algorithms are sequential, i.e.,  players have to make deci-
sions  in  turn.  As  far  as  we  know,  algorithms  for  the  secure
dominating  set  problem are  rare,  and  existing  algorithms  are
all  used  for  special  graphs.  Our  paper  is  the  first  one  using
game  theory  to  compute  a  secure  dominating  set  in  general
graphs.  Furthermore,  our  algorithm  allows  players  to  make
decisions simultaneously, only using local information.

Another closely related area of research is game theoretical
algorithms  for  the  minimum  vertex  cover  (MinVC)  problem
[21]–[25].  Different  from  the  dominating  set  problem  which
uses  vertices  to  monitor  vertices,  the  vertex  cover  problem
uses vertices to monitor edges. Nevertheless, many ideas used
in  these  studies  are  very  inspiring  to  our  work.  Yang  and  Li
[21] used snowdrift games to study the MinVC problem, and
devised  a  distributed  algorithm,  trying  to  find  a  vertex  cover
with a small size. Tang et al. [22] generalized the study to the
weighted version,  and  designed  an  asymmetric  game  algo-
rithm,  trying  to  find  a  vertex  cover  with  small  weight.  Sun
et al. [23], [24] proposed a distributed algorithm for the Min-
WVC  problem  based  on  relaxed  greed  and  finite  memory.
They used potential  game theory to  prove its  convergence to
an  NE.  Chen et  al. [25]  proposed  a  weighted  vertex  cover
game using a 2-hop adjustment scheme, trying to get a better
solution.  In  all  of  these  works,  minimality  of  NEs  were
proved,  but  Pareto  optimality  was  not  discussed,  which  is  a
preferred quality of solutions from a social point of view.

In  addition  to  the  above  works  which  are  most  closely
related  with  our  work,  there  are  also  many  game  theoretical
studies on various coverage problems from different perspec-
tives. For example, Li et al. [26], [27] employed cost sharing
methods  and  mechanisms  for  a  generalized  set  cover  game.
The focus was on whether players chose to lie. Fang and Kong
[28] studied the core stability of vertex cover games. The core
of a game is an important concept in cooperative game theory,
which  ensures  that  players  have  a  willingness  to  participate.
The  cores  of  a  domination  game  were  studied  by  Velzen  in
[29],  and  the  cores  of  a  connected  domination  game  were
studied  by  Kim in  [30].  Another  measure  of  the  quality  of  a
game theoretical solution is the price of anarchy (PoA), which
is  the ratio between the cost  of  a  worst  NE and the cost  of  a
socially optimal solution. Ai et al. [31] studied PoA and com-
putational  complexity  of  a  coverage  game.  Note  that  their
algorithm is centralized.

In  this  paper,  we  study  the  MinSDS  problem  in  a  multi-
agent system using potential game theory. The main contribu-

tions are summarized as follows.
1) Game Design: We design a security domination game in

multi-agent systems,  in  which  every  player  determines  him-
self to be a dominator or a dominatee. By carefully designing
utility  functions  for  the  players,  we  show  that  every  Nash
equilibrium (NE) is a minimal secure dominating set (MSDS),
as  well  as  a  Pareto-optimal  solution.  Furthermore,  we  prove
that this game is an exact potential game, and thus NE exists.

2) Algorithm Design: Based on the above security domina-
tion  game,  we  propose  a  best  response  dynamic  distributed
local  algorithm  (BRDDLA)  for  the  secure  dominating  set
(SDS) problem. The algorithm is distributed and local: in each
round of the algorithm, every player decides by himself on his
strategy based  on  local  information  in  his  6-hop  neighbor-
hood.

O(n)
3)  Efficiency  of  Algorithm: We  prove  that  BRDDLA  can

converge to an NE in  rounds, where n is the number of
players. Hence the algorithm can find a minimal secure domi-
nating  set,  which  is  also  a  Pareto-optimal  solution,  in  linear
time. Since the MinSDS problem is NP-hard, so minimal solu-
tions and Pareto-optimal solutions that can be obtained in lin-
ear time are fairly good. Furthermore, an NE solution achieves
a  kind  of  balance  in  a  multi-agent  system,  which  is  also  a
desirable property.

4) Verification of Performance via Simulation: Simulations
are  done  to  experiment  on  the  performance  of  our  algorithm
on  randomly  generated  graphs.  Since  there  is  no  previous
algorithm  on  MinSDS  in  general  graphs  (GA),  we  compare
BRDDLA  with  a  natural  greedy  algorithm.  It  turns  out  that
BRDDLA can obtain a much better solution than GA. Further-
more,  we compare the algorithm with the exact  algorithm on
trees. It turns out that the output of BRDDLA is close to opti-
mal  solutions.  Furthermore,  the  number  of  rounds  of
BRDDLA is  less  than  those  of  reference  algorithms,  espe-
cially on the random tree graphs. It is also interesting to note
that when testing the effect of decision priority on the perfor-
mance  of  the  algorithm  in  a  Barabasi-Albert  (BA)  graph,  a
better performance can be reached if we let players decide in
the  order  that  the  vertices  are  generated  by  the  BA  model.
This  might  suggest  that  the  earlier  a  vertex  is  generated  in  a
BA graph, the more important it might be.

The remaining parts  of  the  paper  are  organized as  follows.
Section  II  introduces  preliminaries  in  game theory  which  are
used in this paper. Section III designs the security domination
game.  Section  IV  provides  strict  theoretical  analysis  for  the
game. Section  V  describes  the  algorithm  in  details  and  pro-
vides theoretical analysis on its convergence. Section VI eval-
uates  the  performance  and  complexity  of  the  algorithm
through extensive simulation. Section VII concludes the paper
with some discussions on future work.  

II.  Preliminaries

In  this  section,  we  give  the  formal  definition  of  SDS,  and
some  basic  terminologies  and  notations  of  graph  theory  and
game theory. Main notations are summarized in Table I.

G = (V,E)
vi v j (vi,v j) ∈ E

vi v j

Let  be a graph with vertex set V and edge set E.
We say that two vertices  and  are adjacent if ,
in  this  case,  we also say that  and  are  neighbors  of  each
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vi N(vi)
vi vi

deg(vi) = |N(vi)| vi N[vi] =
N(vi)∪{vi} vi v j
d(vi,v j) vi v j

vi Nk
i

vi vi

Nk
i N1

i = N[vi]

other. The open neighbor set of ,  denoted as ,  consists
of  those  neighbors  of  in G.  The  degree  of  vertex  is

.  The  closed  neighbor  set  of  is 
.  The  distance  between  and ,  denoted  as

,  is  the  length of  a  shortest  path  between  and  in
G. The k-hops neighborhood of , denoted as , consists of
all those vertices at distance at most k from . Clearly,  also
belongs to  and .

C ⊆ V v ∈ V \C

V \C
C ⊆ V

V \C

For  a  vertex  subset ,  a  vertex  is  dominated
by C if v has a neighbor in C. Vertices in C are called domina-
tors and vertices in  which are dominated by C are called
dominatees.  A  dominating  set  of G is  a  subset  which
dominates every vertex of . If C is not a dominating set,
those  vertices  which  are  not  dominated  by C are  called
orphans.

G =
(V,E) C ⊆ V
v ∈ V \C u ∈C

Definition  1  (Dominating  Set  (DS)): Given  a  graph 
, a subset  is a dominating set of G if every vertex

 is adjacent to at least one vertex .
G = (V,E)

C ⊆ V
u ∈ V \C v ∈C uv ∈ E
(C \ {v})∪{u}

Definition 2 (SDS): Given a graph , a dominating
set  is  a  secure  dominating  set  of G if  for  each  vertex

,  there  exists  a  vertex  such  that  and
 is also a dominating set of G.

G = (V,E)
S S DS

C∗ = argminC∈S S DS |C|

Definition  3  (MinSDS Problem): Given  a  graph ,
let  be the set of all SDSs of G. The goal of the MinSDS
problem is to find an SDS with the minimum cardinality, that
is,  .

Γ = (V; {S i}ni=1; {ui}ni=1)
V = {v1,v2, . . . ,vn} S i vi

ui vi
Σ = S 1×S 2× · · ·×S n C = (c1,

c2, . . . ,cn) ∈ Σ vi C = (ci,

C−i) C−i = (c1, . . . ,ci−1,ci+1, . . . ,cn)
vi ui(C)

vi

A  game  Γ  can  be  written  as ,  where
 is  the set  of  players,  is ’s  strategy set,

and  is ’s utility function. The strategy space of the game is
. A strategy profile is an n-tuple 

.  For  player ,  we  may  express C as 
, where  indicates the strate-

gies of those players except . Function  is the utility of
 under strategy profile C. Players are assumed to be selfish,

intelligent  and  rational,  which  means  that  the  goal  of  every
player  is  to  maximize  his  own  utility.  The  best  response  of

viplayer  to current strategy profile C is
 

BR(vi,C) = argmax{ui(c′i ,C−i) : c′i ∈ S i}.
A Nash equilibrium (NE) is a strategy profile C such that no

player wants to deviate from C unilaterally. The formal defini-
tion of NE is as follows.

Γ = (V; {S i}ni=1; {ui}ni=1)
C∗ = (c∗1,c

∗
2, . . . ,c

∗
n)

Definition 4 (NE [32]): Given a game ,
a strategy profile  is an NE if
 

ui(c∗i ,C
∗
−i) ≥ ui(ci,C∗−i) for any vi ∈ V and any ci ∈ S i.

Note that an NE is not necessarily a global optimal solution.
Especially for an NP-hard problem, in many cases, people are
satisfied with minimal solutions or Pareto-optimal solutions.

v ∈C C \ {v}
Definition 5 (MSDS): A secure dominating set C of graph G

is an MSDS if for any vertex , the vertex set  is no
longer a secure dominating set of G.

Γ = (V; {S i}ni=1; {ui}ni=1) C′ = (c′1, . . . ,c
′
n)

C = (c1, . . . ,cn) ui(C′) ≥
ui(C) i ∈ {1, . . . ,n}

j ∈ {1, . . . ,n} u j(C′) > u j(C)
C∗ = (c∗1, . . . ,c

∗
n)

C∗

Definition  6  (Pareto-Optimal  Solution): Given  a  game
,  a  strategy  profile 

strictly  dominates  strategy  profile  if 
 holds  for  any  index  and  there  exists  an

index  with .  A  strategy  profile
 is  a  Pareto-optimal  solution  if  there  is  no

strategy profile which strictly dominates .  

III.  Security Domination Game

In this section, we design a game framework for the secure
dominating set problem.

vi ci = 1 vi

Nk
i vi

vi v j ∈ Ñ1
i (C) v j

vi vi
v j

Di(C)
vi

For a vertex , its c-value  indicates that  is a domi-
nator. Denote by  the k-th closed neighborhood of vertex ,
including  itself. A vertex  means that  is in the
closed neighborhood of  such that  is the only vertex in the
closed  neighborhood  of  that  is  possibly  a  dominator.  The
set  contains  those  vertices  in  the  closed  neighborhood
of  which are dominators.

v j ∈ V \C ∃vk ∈C vkv j ∈ E
Ñ1

k ⊆ N1
j v j

Definition  7  (Secure  Vertex): For  a  vertex  set C (which
might  not  necessarily  be  a  dominating  set),  we  call  a  vertex

  to  be secure if  such  that  and
. Otherwise we say that  is insecure.

vk

v j
vk (C \ {vk})∪{v j}

Note  that  a  secure  vertex  must  be  a  dominatee  because  of
the existence of a neighbor  in C.  Insecure vertices include
both insecure dominatees and orphans. The idea behind such a
terminology is  based on the observation that  if  is  a  secure
vertex and  satisfies Definition 7, then  is still
a dominating set.

Assume that  all  players  are  selfish,  intelligent  and rational,
in the sense that they will not consider the benefit of the other
players  while  seeking  to  maximize  their  own  benefits.  The
most critical  part  of  the  game  is  to  design  good  utility  func-
tions  for  the  players  such  that  a  stable  and  reasonable  social
status  can  be  reached  through  cooperation  and  competition
among players. The following are some preferred features of a
game.

1)  Self-Stability: Starting  from  any  initial  state,  the  game
can end up in an NE which corresponds to a secure dominat-
ing set.

2) Small Size: The cardinality of the SDS corresponding to
an NE should be reasonably small. Since the computation of a

 

TABLE I 

List of Notations

Notation Meaning

Γ The game

n The number of vertices, and also the number of players
vi Both the vertex in the graph and the player in the game

V V = {v1,v2, . . . ,vn}The set of players or vertices 
S i S i = {0,1} vi is the strategy set of player 
Σ Σ = S 1 × · · ·×S n is the strategy space
C C = (c1,c2, . . . ,cn) ∈ Σ is a strategy profile

{vi : ci = 1}C also denotes the vertex set 
d(vi,v j) vi v jThe length of shortest path between vertex  and 

Nk
i Nk

i = {v j ∈ V : d(i, j) ≤ k}

Ñ1
i (C) Ñ1

i (C) = {v j ∈ N1
i :

∏
vk∈N1

j \{vi}
(1− ck) = 1}

Di(C) Di(C) = {vk ∈ N1
i : ck = 1}

deg(vi) viThe degree of vertex  in graph G

ui(C) vi ’s utility with respect to strategy profile C
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minimum SDS is NP-hard even using centralized algorithms,
we  cannot  hope  for  a  minimum SDS in  reasonable  time.  An
alternative  requirement  is  that  the  computed  SDS  should  be
minimal,  that  is,  removing  any  vertex  will  no  longer  be  an
SDS.

3)  Time  Efficiency: The  time  for  the  game to  reach  an  NE
should be polynomial in the size of the instance.

C = (c1,c2, . . . ,cn) vi

We define utility functions as follows. For a strategy profile
, the utility function of  is defined as

 

ui(C) = gi(C)+qi(C) (1)
gi(C) qi(C)where  and  are defined to be

 

gi(C) = −λ1ci (2)
 

qi(C) = −λ2

∑
v j∈N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C) (3)

mk, j(C)where  is an indicator function defined as
 

mk, j(C) =

1, |Ñ1
k (C) \N1

j | , 0

0, |Ñ1
k (C) \N1

j | = 0
(4)

λ1, λ2 0 < λ1 < λ2 D j(C) =
∅ ∏

vk∈D j(C) mk, j(C) v j ∈ N3
i

−λ2 qi(C)

and  are constants satisfying . When 
, we regard  to be 1. So, an orphan 

always contributes  to .
mk, j(C)

v j

vk ∈ D j(C) Ñ1
k (C) \N1

j =

∅ mk, j(C) = 0 v j
qi(C) v j

vk ∈ D j(C) Ñ1
k \N1

j , ∅∏
vk∈D j(C) mk, j(C) = 1

N3
i −λ2 qi(C)

qi(C)

The  idea  behind  the  definition  of  comes  from  the
observation that if  is a secure vertex, then there exists a ver-
tex  satisfying Definition 7, which has 
 and  thus .  Therefore,  secure  vertex  con-

tributes 0 to . On the other hand, if  is an insecure dom-
inatee,  then  for  any  vertex ,  we  have ,
and  thus .  Hence  an  insecure  dominatee
in  will  contribute  to .  Notice  that  a  dominator
also contributes 0 to  since its c-value equals 1. Combin-
ing these  observations  with  the  comment  in  the  last  sentence
of the last paragraph, we have proved the following property.

vi N3
i

−λ2 qi(C)
qi(C) = −λ2|IS i(C)|

IS i(C) N3
i

Property  1: For  any  vertex ,  a  vertex  in  contributes
 to  if and only if it is an insecure vertex, otherwise,

the  contribution  is  0.  Hence, ,  where
 is the set of insecure vertices in .

N3
i qi(C)The  reason  why  we  use  in  the  definition  of  is

because of the following property:
vi

mk, j(C) v j < N3
i vk ∈ D j(C)

Property 2: The status of vertex  does not affect the value
of  for any  and .

mk, j

mk, j(C) = 1 Ñ1
k (C) = {vl,vk,v j} ⊈ N1

j

mk, j(C′) = 0 Ñ1
k (C′) = {vk,v j} ⊆ N1

j
vi v j

vi

Property 2 follows from the definition of , and an intu-
ition  can  be  gained  by  considering  the  example  in Fig. 1.
Notice  that  since ,  while

 since .  This  is  because  of
the  influence  of  vertex .  But  if  is  at  least  4  hops  away
from , such an influence will not occur.

ui
v1, v2, v4 v3

v5, v6 D5(C) = {v4}
Ñ1

4 = {v5,v6} Ñ1
4 \N1

5 = {v6} , ∅ v5

v7

To gain some intuition about , consider the example in Fig 2,
in  which  are  dominators,  is  a  secure  dominatee,

 are insecure dominatees (for example,  and
, so ,  and thus  is an insecure

dominatee), and  is an orphan.
1) vi ci = 1
λ1 gi(C) g1(C) = g2(C) = g4(C) = −λ1

 A dominator  has , and thus gets a punishment of
 from . For this instance, .

2) vi

v5
u5(C) = −3λ2 v5

u5(c′5 = 1,C−5) = −λ1 0 <
λ1 < λ2 u5(c′5 = 1,C−5) > u5(c5 = 0,C−5) u5

v6 v7

 If  is an insecure dominatee, then it will encourage him-
self to be a  dominator,  and at  the same time help some inse-
cure neighbors become secure. For example,  is an insecure
dominatee with . If we change the status of  to
be  a  dominator,  then .  Because 

,  we  have .  Thus, 
has  an  incentive  to  change  his  strategy  from 0  to  1,  while  at
the same time, both  and  become secure dominatees.

3) vi

v3
u3(C) = −3λ2 v3

v5,v6,v7 u3(c′3 = 1,C−3) = −λ1−
3λ2 < u3(C) v3

 If  is a  secure  dominatee  which  cannot  help  any  inse-
cure dominatee to become secure, then he has no incentive to
change his current strategy. For example,  is a secure domi-
natee with . If  changes from 0 to 1, then ver-
tices  are  still  insecure,  and 

. So,  prefers to stay 0.
4) 2) 3)

v2
v2 c2 = 1 c′2 = 0

u2(C) = −λ1−3λ2 < u2(c′2 = 0,C−2) = −3λ2 v2

 The  above  and  show  that  the  designed  utility  can
stimulate  an  evolution  towards  a  feasible  solution.  We  can
show that the designed utility can also provide an incentive for
redundant players to leave C. For example,  is redundant in
the sense that if  changes his strategy from  to ,
then he becomes a secure domiantee and does not cause other
secure  dominatees  to  become  insecure.  In  view  of  utility,

.  Thus,  is will-
ing to retreat from the dominating set.  

IV.  Theoretical Analysis

(c1, . . . ,cn) ∈ Σ {vi : ci = 1}

In  this  section,  we analyze  the  theoretical  properties  of  the
security  domination  game  designed  in  the  above  section.  In
the following, we shall use C to denote both a strategy profile

 and the vertex set  it corresponds to.
We assume that a player is willing to change his strategy only
when he can be strictly better off.  

A.  Nash Equilibrium Solution
In this subsection, we show that an NE of the game always

corresponds  to  a  minimal  secure  dominating  set.  The  proof
makes use of the following property and Lemma 1.

vi ∈ V C ⊆C′

mk, j(C) ≥ mk, j(C′) v j ∈ V vk ∈ D j(C)
Property  3: For  any player  and two profiles ,

we have  for any  and .

 

vi vl vk vj

(a) C

(b) C′

vi vl vk vj

 
Fig. 1.     An example illustrating Property 2.
 

 

v1 v4 v7

v2 v5

v3 v6 

ui

Fig. 2.     An  example  illustrating  the  ideas  behind  the  definition  of  utility
function . Blackened vertices are selected vertices in strategy profile C.
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vl ∈ Ñ1
k (C′)

(N1
l \ {vk})∩C′ = ∅ C ⊆C′ (N1

l \ {vk})∩C′ = ∅
(N1

l \ {vk})∩C = ∅ vl ∈ Ñ1
k (C)

Ñ1
k (C′) ⊆ Ñ1

k (C)
mk, j

Proof: Notice  that  a  vertex  if  and  only  if
.  Since ,  implies

, which is equivalent to say that .
Thus, . Then the observation follows from the
definition of . ■

V \C
Lemma 1: Vertex set C is an SDS if and only if all vertices

in  are secure.

V \C
vi ∈ V \C v j vi

Ñ1
j \N1

i , ∅ vk ∈ Ñ1
j \N1

i
C \ {v j}∪ {vi} C \ {v j}∪ {vi}

v j

Proof: To  prove  the “only  if ” part,  consider  an  SDS C.
Then  all  vertices  in  are  dominatees.  If  there  exists  an
insecure dominatee , then for any dominator  of ,

. In such a case, any vertex  must be an
orphan with respect to ,  and thus  is
not a DS. By the arbitrariness of , C is not an SDS, which is
a contradiction.

V \C

vi

v j ∈ N1
i ∩C C \ {v j}∪ {vi}

Ñ1
j \N1

i , ∅ vi

To  prove  the “if ” part,  suppose  all  vertices  in  are
secure. Since secure vertices are dominatees, vertex set C is a
DS. If C is not an SDS, then there exists a vertex  such that
for  any  vertex ,  is  not  a  DS.  This
implies  that ,  and  thus  is  not  a  secure  vertex,
which is a contradiction. ■

Theorem 1: Every Nash equilibrium of the security domina-
tion game is a minimal secure dominating set.

vi ∈ V \C
vi vi

−λ2 qi(C)

Proof: We  first  prove  that  every  Nash  equilibrium C is  a
secure  dominating  set.  By  Property  1,  this  is  equivalent  to
showing  that  any  player  is  secure.  Suppose  this  is
not true and consider an insecure vertex .  By Property 1, 
contributes  to , and thus
 

ui(C) = −λ2−λ2

∑
v j∈N3

i \{vi}

(1− c j)
∏

vk∈D j(C)

mk, j(C).

C′ = (c′i = 1,C−i)Let , where we have
 

ui(C′) = −λ1−λ2

∑
v j∈N3

i \{vi}

(1− c j)
∏

vk∈D j(C′)

mk, j(C′).

D j(C) ⊆ D j(C′)By Property 3 and because , we have
 ∏

vk∈D j(C′)

mk, j(C′) ≤
∏

vk∈D j(C)

mk, j(C′) ≤
∏

vk∈D j(C)

mk, j(C).

0 < λ1 < λ2
ui(C′) > ui(C)

Combining  this  with  the  assumption ,  we  have
,  which  contradicts  the  fact  that C is  a  Nash

equilibrium. Thus, C is a secure dominating set.

vi ∈C C′ =C \ {vi}
V \C′

V \C ui(C) = −λ1 ui(C′) = 0 vi
ci = 1 c′i = 0

Next we show that C is a minimal SDS. Otherwise, there is
a vertex  such that  is still an SDS. Then any
vertex in  is secure, and the same holds for any vertex in

.  By  Property  1,  and .  Thus,  is
willing to change from  to , which contradicts that
C is an NE. ■  

B.  Potential Game and Existence of NE
Note that a game in strategic form does not necessarily have

a  pure  Nash  equilibrium  [32].  However,  a  potential  game
always  has  a  pure  Nash  equilibrium  [33].  In  this  subsection,
we prove the existence of NE for our game by showing that it
is  a  potential  game,  and  show  that  an  NE  can  be  reached  in
linear rounds of interactions among the players.

Definition  8  (Exact  Potential  Game): We  call  a  game

Γ = (V; {S i}ni=1; {ui}ni=1)
π : Σ 7→ R vi ∈ V
ci,c′i ∈ S i c−i ∈ S −i

 an exact potential game if there exists a
potential  function  such  that  for  any  player 
and any strategies , ,  the following equality
holds:
 

π(ci,C−i)−π(c′i ,C−i) = ui(ci,C−i)−ui(c′i ,C−i).

Lemma  2: The  proposed  security  domination  game  is  an
exact potential game.

Proof: We  prove  that  the  following  function  is  a  potential
function:
 

π(C) = −λ1

n∑
j=1

c j−λ2

n∑
j=1

(1− c j)
∏

vk∈D j(C)

mk, j(C).

π(C) π(1)(C) π(2)(C)Denote the two terms of  as  and , respec-
tively.

C = (ci,C−i) C′ = (c′i ,C−i)
vi ci c′i

ci = 0 c′i = 1

Let  and  be  two  strategy  profiles
before and after some  changes its strategy from  to . We
may assume, without loss of generality, that  and .
It can be calculated that
 

π(1)(C)−π(1)(C′) = λ1 = gi(C)−gi(C′) (5)
and
 

π(2)(C)−π(2)(C′)

= −λ2

∑
v j∈N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C)

−λ2

∑
v j<N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C)

+λ2

∑
v j∈N3

i

(1− c′j)
∏

vk∈D j(C′)

mk, j(C′)

+λ2

∑
v j<N3

i

(1− c j)
∏

vk∈D j(C′)

mk, j(C′)

= −λ2

∑
v j∈N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C)

+λ2

∑
v j∈N3

i

(1− c′j)
∏

vk∈D j(C′)

mk, j(C′)

= qi(C)−qi(C′) (6)
where  the  second  equality  holds  because  of  Property  2  and
thus the  second  and  the  fourth  terms  are  cancelled.  Combin-
ing (5) and (6), we have
 

π(C)−π(C′) = ui(C)−ui(C′).
■

(λ1+λ2)n
min{λ2−λ1,λ1} = O(n)

Theorem 2: The secure domination game always has an NE.
Furthermore, starting from any initial state, the number of iter-
ations  needed  for  the  security  domination  game  to  reach  an
NE is at most .

vi ci
c′i C = (ci,C−i)

C′ = (c′i ,C−i)

Proof: We consider  the  minimum benefit  that  a  player  can
achieve in each round. Suppose  changes his strategy from 
to  to  achieve  a  positive  profit.  Let  and

.
ci = 0 c′i = 1If  and , by the definition of utility functions and
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vi

qi(C′)−qi(C) = λ2(|IS i(C)| − |IS i(C′)|) ≥ λ2
gi(C′) = −λ1 gi(C) = 0 ui(C′)−

ui(C) ≥ λ2−λ1 > 0

Property 1, the incentive for player  to change from 0 to 1 is
that he can help some insecure vertex become a secure vertex,
hence . Combin-
ing  this  with  and ,  we  have 

.
ci = 1 c′i = 0

qi(C′)−qi(C) ≤ 0 qi(C′)−qi(C) < 0 qi(C′)−qi(C) ≤
−λ2 vi

vi
qi(C′) = qi(C) ui(C′)−ui(C) = gi(C′)−gi(C) = 0− (−λ1) =
λ1

In the case  and , changing a vertex from 1 to 0
cannot  reduce  the  number  of  insecure  vertices,  and  thus

.  If ,  then 
,  the  decrease  is  too  large  for  to  be  willing  to  change.

Thus,  has  an  incentive  for  such  a  change  only  when
 and 

.
π(C′)−π(C) = ui(C′)−ui(C) ≥min{λ2−λ1,

λ1} −(λ1+λ2)n ≤ π(C) ≤ 0
0−(−(λ1+λ2)n)
min{λ2−λ1,λ1} O(n) λ1 λ2

0 < λ1 < λ2
λ2 = 2λ1 3n

By  Lemma  2, 
.  Notice that .  Hence the number of

iterations is at most , which is  since  and 
are  constants  satisfying .  For  example,  if  taking

, then the number of iterations is no more than . ■  

C.  Pareto Optimality
Note that an NE is a stable state from the view of individual

players, in which no single player can be strictly benefited by
unilateral deviation.  While a  Pareto optimal solution is  a  sta-
ble state  in  which  a  strict  benefit  for  some players  will  defi-
nitely harm the interest of some others, which is from the view
of  social  welfare.  This  subsection  shows  that  any  NE  of  the
game is also Pareto optimal.

Theorem 3: Every NE of the security domination game is a
Pareto-optimal solution.

C ∈ 2V

ui(C) ≤ −λ1 < 0 vi ∈C ui(C) ≤ 0
vi ∈ V \C

Proof: First,  notice  that  for  any  strategy  profile ,
 for  any  player ,  and  for  any

player .
C = (c1, . . . ,cn)

C′ = (c′1 . . . ,c
′
n)

ui(C′) ≥ ui(C) i ∈ {1,2, . . . ,n} ∃ j ∈
{1,2, . . . ,n} u j(C′) > u j(C)

Suppose  is  an  NE  but  not  a  Pareto-optimal
solution.  Then there  is  a  strategy profile  such
that  holds  for  any ,  and 

 with .
qi(C) = 0

vi ui(C) = −λ1 vi ∈C
ui(C) = 0 vi ∈ V \C vi ∈ V \C
0 ≥ ui(C′) ≥ ui(C) = 0 ui(C′) = 0
vi ∈ V \C′ V \C ⊆ V \C′ C′ ⊆C

C′ C′

By Theorem 1, C is an SDS. Then by Property 1, 
for  any  player .  Thus,  for  any  and

 for any . As a consequence, for ,
 leads  to ,  which  implies

.  Hence, ,  or  equivalently, .
Because  and C are different,  is a proper subset of C.

ui(C′) ≥ ui(C) = −λ1 > −λ2
vi ∈C ui(C′) = 0 −λ1

qi(C′) = 0 IS i(C′) = ∅ C′

On the  other  hand,  implies  that
any player  has  or .  This is possible only
when , in other words, . Then,  is also
an SDS, contradicting the fact that C is a minimal SDS. ■  

D.  Relation of the Solutions
S S DS S MS DS S NE S POS

S NE ⊆ S MS DS ∩S POS

Let , ,  and  be the set of secure domi-
nating  sets,  minimal  secure  dominating  sets,  Nash  equilibria
of  the  secure  domination  game,  and  Pareto-optimal  solutions
of  the  SDS  problem,  respectively.  According  to  Theorems  1
and  3,  we  have .  The  relations  between
these sets are illustrated by Fig. 3  

V.  Algorithm Design and Analysis

To realize the above SDS game, one may let  players make
their decisions in order until no player can improve his utility.

O(n)
Theorem 2  guarantees  that  in  this  way,  the  algorithm  con-
verges  to  an  NE  in  rounds.  However,  this  algorithm  is
not  distributed  and  is  quite  time  consuming  (since  every
player has to wait for the decisions of the other players).

G = (V,E) C = (0, . . . ,0)
vi ui(c′i = 1,C−i)−ui(C) ≥ λ2−λ1 > 0

C′ = (1, . . . ,1)
vi ui(c′′i = 0,C′−i)−ui(C′) = λ1 > 0

C = (0, . . . ,0)

To design a distributed algorithm, an idea is to let all play-
ers  make  decisions  simultaneously.  However,  such  a  method
may cause a failure of convergence, and may even be trapped
in  an  infinite  loop.  For  example,  given  a  connected  graph

, if the current strategy profile is , then
for  every  player ,  since ,
he  is  inclined  to  change  his  strategy  from  0  to  1.  Thus,  the
next  strategy  profile  becomes .  Then  for  every
player , ,  and  thus  he  is
inclined to  change his  strategy back to  0,  leading to  the  next
strategy  profile  back  to .  Thus,  simultaneous
decisions  may  cause  the  algorithm  to  be  stuck  in  an  infinite
loop.

The reason why a mess might be created by a simultaneous
decision is as follow: A best response of a player is based on
the assumption that all the other players keep their strategies;
thus, if two correlated players change their strategies simulta-
neously,  then  their  best  responses  for  the  previous  strategy
profile  are  no  longer  best  responses  for  the  strategy  profile
after the simultaneous change.

ui(C) vi

vi

An idea to avoid such a mess is to let only a set of indepen-
dent players make decisions simultaneously. By the definition
of  utility  function ,  it  is  easy  to  see  that  player  can
make  his  decision  on  local  information  which  is  at  most  six
hops away from . The following argument shows that a lit-
tle more storage space may further reduce the dependence on
local information to at most three hops.

Ñ1
k (C) N2

k
v j vk ∈ D j(C) mk, j(C)

N2
k

v j
∏

vk∈D j mk, j(C)
N3

j v j

Notice that  only uses c-values of players in . Thus,
for  any  player  and ,  the  value  of  only
depends on information in . As a consequence, every player

 can  compute  locally  using  information  in
. Suppose every  stores information

 

S S j = (c j,
∏

vk∈D j

mk, j)

S S j

N3
j vi

gi(C) qi(C) N3
i

with  respect  to  current  solution C.  Then  can be  com-
puted  using  local  information ,  and  player  can  compute

 and  by accessing local information in .

BR(vi,CN3
i
)

N3
i vi

The  distributed  algorithm  is  described  in  Algorithm  1.  To
emphasize the range of information needed for a computation,
we  use  a  subscript.  For  example,  indicates  that
only  information  in  is  needed  for  to  compute  a  best
response.  The  details  for  the  execution  of  the  algorithm  are

 

SSDS

SMSDS SNE SPOS

 
S S DS S MS DS S NE S POSFig. 3.     Relations between solution sets , ,  and .
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explained as follows.

T = (λ1+λ2)n
min{λ2−λ1,λ1}n

vi mui(C) = ui(BR(vi,CN3
i
),C−i)−ui(ci,C−i)

vi

Algorithm  1  is  a  distributed  realization  of  the  SDS  game
presented  in  Section  II,  where  parameter ,
the reason of which will be clear after proving Lemma 4. For
current  strategy  profile C,  we  denote  the  marginal  utility  of
player  by .  All
players compute their marginal utility simultaneously, but not
all of them change their strategy at the same time. A player 
decides to change his strategy only when
 

i = argmin{ j : v j ∈ N6
i and mu j(C) > 0}. (7)

Algorithm  1 Best Response  Dynamic  Distributed  Local  Algo-
rithm (BRDDLA)

C(0) = (c(0)
1 , . . . ,c

(0)
n )Input: An initial strategy profile 

C′Output: A minimal SDS 
C←C(0)1: 

t = 1,2, . . . ,T2: for  do
vi3: 　for every player  (this is done simultaneously) do

c′i ← BR(vi,CN3
i
) S S j v j ∈ N3

i4: 　　  by accessing  for 
mui← ui(c′i ,C−i)−ui(ci,C−i)5: 　　

vi6: 　　if  satisfies (7) then
ci← c′i7: 　　　

8: 　　end if
9: 　end for

C =C(t−1)10: 　if  then
1611: 　　Break and go to line 

12: 　else
C(t)←C13: 　　

14: 　end if
15: end for

C′←C16: Output 

vi

N6
i

That is, the player  has the priority to change his strategy
only when he has the smallest ID among players in  with a
strictly positive marginal utility.

The  reason  why  we  use  (7)  to  determine  who  can  change
strategy is based on the following property.

H

H

Property  4: Suppose  is  the  set  of  players  who  have
changed  their  strategies  simultaneously  in  one  execution  of
the inner for loop of Algorithm 1; then  is a 3-hop indepen-
dent set in the SDS game, that is,
 

N3
i ∩N3

j = ∅, ∀vi, v j ∈ H .
C′

vi
C′

As  a  consequence,  if  a  strategy  profile  C  changes  into ,
then  for  any  player  who  has  changed  his  strategy  by  rule
(7), his best response to C is also a best response to .

Intuitively,  since decisions are  made locally,  only allowing
players  who  are  somewhat  distant  to  change  strategies  can
effectively  decouple  mutual  influences,  and  thus  leads  to  a
guaranteed convergence rate. We give a strict analysis for this
intuition in the following.

C′ = (C′H ,C−H ) H

Lemma 3: Suppose C is the current strategy profile. After a
round of  the  inner  for  loop of  Algorithm 1,  the  new strategy
profile is , where  is the set of players who
have their strategies changed in this round. Then, 

π(C′)−π(C) =
∑
vi∈H

(ui(c′i ,C−i)−ui(ci,C−i)).

H = {vi1 ,vi2 , . . . ,vit }
H

V = N3
i1
∪N3

i2
∪ · · ·

∪N3
it
∪Vt Vt = V \∪t

l=1N3
il

π(C)

Proof: Suppose . According to Property 4,
 is  a  3-hop  independent  set,  thus  the  player  set V can  be

decomposed  into  disjoint  union  of  sets 
,  where . Hence,  the  potential  func-

tion  can be rewritten as
 

π(C) = −λ1

∑
vi∈H

ci−λ1

∑
vi<H

ci

−λ2

∑
vi∈H

∑
v j∈N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C)

−λ2

∑
v j∈Vt

(1− c j)
∏

vk∈D j(C)

mk, j(C).

π(C′)Similarly,  can be rewritten as
 

π(C′) = −λ1

∑
vi∈H

c′i −λ1

∑
vi<H

ci

−λ2

∑
vi∈H

∑
v j∈N3

i

(1− c′j)
∏

vk∈D j(C′)

mk, j(C′H ,C−H )

−λ2

∑
v j∈Vt

(1− c′j)
∏

vk∈D j(C′)

mk, j(C′H ,C−H ).

ℓ ∈ {1, . . . , t}
v j ∈ N3

iℓ
viℓ′ ℓ′ , ℓ

mk, j(C) vk ∈ D j(C)
mk, j(C′H ,C−H ) = mk, j(c′i ,C−i) D j(C′) = D j(c′i ,C−i)

v j ∈ Vt
D j(C′) = D j(C) mk, j(C′) = mk, j(C) vk ∈ D j(C′)

By  the  partition  of V and  Property  2,  for  any 
and  any ,  the  status  of  vertex  with  will  not
affect  the  value  of  for  any ,  and  thus

 and . Simi-
lar  argument  shows  that  for  any ,  we  have

 and  for any . It
follows that:
 

π(C′)−π(C)

=−λ1

∑
vi∈H

c′i +λ1

∑
vi∈H

ci

−λ2

∑
vi∈H

∑
v j∈N3

i

(1− c′j)
∏

vk∈D j(c′i ,C−i)

mk, j(c′i ,C−i)

+λ2

∑
vi∈H

∑
v j∈N3

i

(1− c j)
∏

vk∈D j(C)

mk, j(C)

=
∑
vi∈H

(ui(c′i ,C−i)−ui(ci,C−i)).

■
C(0)

(λ1+λ2)n
min{λ2−λ1,λ1}n

O(n)

Lemma  4: Starting  from  any  initial  strategy  profile ,
Algorithm 1 converges in at most  rounds, which
is .

min{λ2−λ1,λ1}

Proof: Based on Lemma 3 and the assumption that a player
is willing to change his strategy only when he can be strictly
better off, which is similar to the proof of Theorem 2, in every
round  of  Algorithm  1,  the  potential π is  reduced  by  at  least

. Then, the lemma follows.
The following theorem shows the quality of the solution.

C′Theorem 4: The output  of algorithm BRDDLA is a mini-
mal secure dominating set and a Pareto-optimal solution.
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C =C(t−1)

C =C(t−1)

C(t−1)

Proof: We claim that when , C must be an NE. In
fact, C stops  being  updated  only  when  no  player  can  be
strictly better off.  Thus, the reason why  is because

 consists  of  best  responses  for  every player,  and thus is
an NE. Then, the theorem follows from Theorems 1 and 3. ■  

VI.  Simulation Results

In  this  section,  we  experiment  on  the  performance  of  our
algorithm BRDDLA. All experiments are coded in Python and
run  with  an  identical  configuration:  AMD  Ryzen  5  3500U
with Radeon Vega Mobile Gfx and 16 GB of RAM.  

A.  Comparison With a Greedy Algorithm

IS (C)

Although  there  are  some  polynomial-time  algorithms  for
MinSDS  on  special  classes  of  graphs  [4],  [8]–[15],  we  have
not  found  any  algorithm  on  MinSDS  designed  for  a  general
graph.  Hence,  we  compare  our  algorithm  with  a  natural
greedy algorithm (GA) described in Algorithm 2, where 
denotes  the  set  of  insecure  vertices  in V with respect  to  cur-
rent  solution C.  The algorithm iteratively selects  a  vertex the
addition  of  which  reduces  the  number  of  insecure  vertices
most. By Lemma 1, the whole vertex set V is an SDS, and thus
GA terminates in at most n rounds.

Algorithm 2 Greedy Algorithm (GA)

Input: graph G
Output: an SDS C

IS (C) , ∅1: while  do
vi← argmaxvi∈V\C{|IS (C)| − |IS (C∪{vi})|}2: 　
C←C∪{vi}3: 　

4: end while

Graphs  for  the  experiments  are  generated  randomly  using
the following two models.

1)  The  Barabási-Albert  Graph  (BA)  [34]: Starting  from  a

m0

m ≤ m0

graph  with  a  small  number  of  vertices,  new  vertices  are
iteratively added. When a new vertex is added, it is connected
to m existing vertices, where , and the probability that
an existing vertex is linked with the new vertex depends on its
current degree.

ö2)  The  Erd s-Rényi  Graph  (ER)  [35]: In  this  graph,  every
edge is  presented with probability p independent of the other
edges.

m = m0 = 5
p = 0.2 m0

In Fig. 4, the horizontal axis is the number of vertices n. For
each n, 1000 sampled graphs are generated. The vertical axis
is  the  average  size  of  computed  solutions.  It  turns  out  that
BRDDLA  is  superior  to  GA,  especially  in  BA,  where  the
average  sizes  of  the  solutions  computed  by  BRDDLA  are
roughly 59% of those computed by GA. For clarity of figures,
we  only  show  the  case  when  for  the  BA,  and

 for the ER. In fact, when we tested on other m,  and
p, all experiments support the same results.  

B.  Comparison With an Exact Solution on Trees
To  see  the  accuracy  of  our  algorithm,  we  compare

BRDDLA with  the  exact  algorithm DefendTree  proposed  by
Burger et  al. [4] for  MinSDS  on  trees.  Trees  for  the  experi-
ments are constructed in the following two manners.

m0 = 2 m = 1
1) Barabási-Albert Tree (BAT): A tree is constructed by the

Barabási-Albert model with  and .
2)  Random  Tree  (RT): Let V be  a  vertex  set  on n vertices

and F be  the  edge  set  consisting  all  possible  edges  between
vertices  of V.  Starting  from an  empty  graph  on  vertex  set V,
iteratively  add  an  edge e from F randomly  and  uniformly  as
long as no cycle is created, until we obtain a spanning tree on V.

Again,  for  each n, 1000 trees  of  size n are  sampled. Fig. 5
shows the  average  sizes  of  solutions  computed by BRDDLA
(red line) and the average sizes of optimal solutions computed
by DefendTree (blue line). It can be seen that these two lines
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m0 = 5 p = 0.2Fig. 4.     Comparison between BRDDLA and GA. (a) BA, ; (b) ER, .
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Fig. 5.     Comparison of BRDDLA and DefendTree on trees. (a) BAT; (b) RT.
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γ = |C
′ |−|C∗ |
|C∗ |

C′ C∗
are very close. We use  to measure relative error of
BRDDLA, where  is the output of BRDDLA and  is the
optimal  solution  computed  by  DefendTree.  It  can  be  seen
from Table II that γ is around 1% for BAT and 6% for RT.
 

TABLE II 

Relative Error of Brddla Measured By γ

Graph |V | = 100 200 300 400 500 600

BAT 0.95% 1.03% 0.98% 1.04% 0.99% 1.11%

RT 6.05% 6.27% 6.14% 6.22% 6.31% 6.25%
  

C.  Effect of Decision Priority
Theoretical analysis guarantees that BRDDLA could always

find a minimal SDS, but different minimal solutions may have
different  sizes.  According  to  decision  rule  7,  a  player  with  a
smaller ID has a higher priority to make a change. So, a ques-
tion is: will different ID of players lead to solutions with much
difference?

C C

C′

(1,2, . . . ,n)

ω =
|C|−|C|
|C′ |

η =
|C|−|C′ |
|C′ |

(1,2, . . . ,n)

To test the effect of decision priority, for a randomly gener-
ated graph, we randomly and uniformly generate 1000 permu-
tations  of  the  players  which  are  used  as  players’ ID  used  by
BRDDLA.  Denote  by  and  the solution  with  the  maxi-
mum  size  and  the  solution  with  the  minimum  size  among
these 1000 solutions,  respectively.  Still  use  to  denote  the
solution  computed  using  ID .  Then  parameter

 can be used to measure the relative gap between the
worst  solution  and  the  best  solution  influenced  by  different
ID,  and  parameter  can  be  used  to  measure  the
improvement on the natural ID .

Tables III and IV show  the  values  of ω and η in  various
types of experimental graphs.

From Table III, it can be seen that for a general graph, there
is a  big  difference  between  the  best  solution  and  worst  solu-
tion,  and  the  difference  is  relatively  smaller  for  ER  than  for
BA.  This  indicates  that  sizes  of  different  minimal  solutions
might  vary  greatly,  and  the  variance  is  smaller  in  an  evenly
distributed graph than in a power-law graph. While for trees,
the  difference  is  much  smaller,  and  smaller  for  BA  than  for
ER.  This  might  be  because  our  algorithm  is  already  fairly
accurate  for  trees,  especially  for  power  law  graphs.  These
experiments  certify  that  different  IDs  of  players  do  make  a
difference  in  the  quality  of  the  solution  obtained  by
BRDDLA, which also suggests that in order to obtain a better
solution, one may repeat the algorithm several times based on
different ID arrangements.

(1,2, . . . ,n)

What  is  most  interesting  is  to  observe  from Table IV that
the improvement brought about by decision priority is signifi-
cantly  smaller  for  BA  than  for  ER.  The  reason  might  be
explained as follows. For BA,  is the order of ver-
tices added in the construction of the graph. A vertex which is
added earlier  has  a  larger  chance  to  be  an  important  individ-
ual, and thus letting such the vertex to make a decision earlier
may have a better chance to create a good result. While in ER,
importance  of  vertices  is  distributed  evenly,  and  thus  trying
different  players’ IDs might  result  in  more  diversified  solu-
tions.  In  summary,  changing  players’ ID  might  improve  the

performance  of  the  algorithm  for  evenly  distributed  random
graphs,  while  for  BA,  letting  players’ IDs  be  equivalent  to
construction order might be good enough.  

D.  Effect of Initial Solution

C(0) = (0, . . . ,0)
In  the  above  experiments,  the  initial  strategy  profile  is

always taken to be . Although Lemma 2 guar-
antees that  BRDDLA could converge to an NE starting from
any initial  strategy  profile,  we  would  like  to  know the  influ-
ence of initial strategy profile on the final output. For this pur-
pose, we use a simple method: restart.

(0, . . . ,0)

The results are shown in Fig. 6. For each type of graphs, 10
sample-graphs are generated. For each graph, 100 initial strat-
egy profiles are taken uniformly and randomly, and the small-
est  size  of  these  100  solutions  is  recorded  as  the “result  of
restart”.  In Fig. 6,  the  green  lines  mark  the  results  of  restart,
and  the  red  lines  mark  the  sizes  of  those  solutions  starting
from  strategy  profile .  It  turns  out  that  the  effect  of
restart  is  obvious  on  ER  and  RT,  but  not  so  obvious  on  BA
and BAT.  The  reason  might  be  similar  as  before:  our  algo-
rithm is already good enough for the BA model, which leaves
only a little space for improvement.  

E.  Convergence Rate

O(n)

In this subsection, we test on the number of rounds needed
by DefendTree, GA and BRDDLA on BA, ER, BAT and RT.
The  number  of  vertices  is  1000.  The  results  are  shown  in
Table V.  As  Lemma  4  shows,  BRDDLA  converges  in 
rounds,  where n is the number of  vertices.  This is  a  theoreti-
cal  result.  It  turns  out  that  in  a  practical  setting,  BRDDLA
converges in much less rounds than n. Furthermore, BRDDLA
converges  faster  than  the  reference  algorithms,  especially  on
BAT and RT. The reason might be that both BAT and RT are
sparse,  and  thus  more  players  can  change  their  strategies
simultaneously.  

VII.  Conclusion

In this paper, we use the game theoretic method to solve the
MinSDS problem in a multi-agent system. An SDS game was
proposed and proven to be an exact potential game, converg-
ing  to  an  NE  in  linear  rounds  of  interactions.  Moreover,  we
proved that every NE of the game is a minimal secure domi-
nating  set  and  a  Pareto  optimal  solution.  Then,  a  distributed
algorithm was designed to simulate the game process. In each
round of the algorithm, every player only uses local informa-
tion at most three hops away to make his decision. The perfor-
mance  of  our  algorithm  was  tested  through  experiments  on
randomly generated graphs using both ER and BA. We com-
pare  its  performance  with  a  natural  greedy  heuristic,  and  it
turns out  that  our  algorithm out-performs the greedy strategy
by a  large  amount.  Compared  with  an  existing  exact  algo-
rithm for MinSDS on trees, our algorithm turns out to be fairly
accurate.  Furthermore,  our  algorithm  is  not  only  better  in
accuracy, but also faster in convergence.

There  might  be  a  lot  of  interesting  topics  to  be  further
explored,  such  as  price  of  anarchy  (PoA)  [36],  allocation
games  [37],  evolutionary  games  [38]  and  networked  games
[39], [40].
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