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Abstract. A reliable and precise classification of schizophrenia is significant 

for its diagnosis and treatment of schizophrenia. Functional magnetic resonance 

imaging (fMRI) is a novel tool increasingly used in schizophrenia research. 

Recent advances in statistical learning theory have led to applying pattern 

classification algorithms to access the diagnostic value of functional brain 

networks, discovered from resting state fMRI data. The aim of this study was to 

propose an adaptive learning algorithm to distinguish schizophrenia patients 

from normal controls using resting-state functional language network. 

Furthermore, here the classification of schizophrenia was regarded as a sample 

selection problem where a sparse subset of samples was chosen from the 

labeled training set. Using these selected samples, which we call informative 

vectors, a classifier for the clinic diagnosis of schizophrenia was established. 

We experimentally demonstrated that the proposed algorithm incorporating 

resting-state functional language network achieved 83.6% leave-one-out 

accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal 

controls. In contrast with K-Nearest-Neighbor (KNN), Support Vector Machine 

(SVM) and l1-norm, our method yielded better classification performance. 

Moreover, our results suggested that a dysfunction of resting-state functional 

language network plays an important role in the clinic diagnosis of 

schizophrenia. 
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1   Introduction 

Previous studies have shown that schizophrenia is associated with deficits in 

language function, as well as structural and functional abnormalities in brain regions 

that are involved with language perception and processing[1-4]. Individuals with high 

genetic risk for schizophrenia also have structural and functional deficits in brain 

pathways for language processing[1]. In this paper, we investigated resting-state 

functional disintegration in language network to classify the schizophrenia patients 

and normal controls. 

Given a training set X of a number of samples {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ 𝐑𝑚×𝑛  with 

known labels {𝑦1, 𝑦2, … , 𝑦𝑛}, the goal of a classification algorithm is to infer a 

decision function 𝑦 = 𝐷(𝑥) from the labeled training set. The decision function 

should predict the correct output value for any valid input object x. In order to 

measure the quality of the decision function, a loss function 𝐿(𝑥) is defined. In the 

current paper, we limit ourselves to the least square function: 

 

𝐿(𝑥, 𝑋) = Min
𝑤∈𝑅𝑛

‖𝑋 ∗ 𝑤 − 𝑥‖                                        (1) 

                                                        

=  Min
𝑤𝑖∈𝑤

∑‖𝑤𝑖
∗𝑥𝑖 − 𝑥‖

𝑛

𝑖=1

                         

Where w=[w1,…,wn], is the weight vector of all training samples in the sample 

space and x is a test sample. It is known that the least square often yields a poor 

generalization performance because the solution w overfits the data. To solve this 

issue, a small group of samples could be selected from the training set to build a 

sparse decision function. A celebrated instantiation is in learning the prediction 

function of Support Vector Machine (SVM) [5], which only utilizes a limited subset 

of support vectors to characterize the decision boundary between two classes, rather 

than directly use all training examples. However, since we may not always be able to 

unravel the essence of every model, sometimes it is difficult to establish a sparse 

decision function from training examples. 

The standard remedy for this problem is to impose a regularization condition of w 

to obtain a well posed problem. A good regularization method is l0-norm 

regularization, which corresponds to the non-convex function, where we let  ‖𝑤‖0 =
|{𝑖: 𝑤𝑖 ≠ 0}|: 

𝐿(𝑥, 𝑋) = Min
𝑤𝑖∈𝑤

∑‖𝑤𝑖
∗𝑥𝑖 − 𝑥‖

𝑛

𝑖=1

+ 𝜆‖𝑤‖0                                          (2) 

However, a fundamental issue with this method is the computational cost, as the 

number of subsets of {1, 2, … , 𝑛} of cardinality 𝑘 (corresponding to the nonzero 

components of 𝑤) is exponential to 𝑘, It can be shown that the solution of this 

http://en.wikipedia.org/wiki/Loss_function
http://dict.youdao.com/search?q=generalization&keyfrom=E2Ctranslation
http://dict.youdao.com/w/performance/


method is NP-hard[6], where no efficient algorithms are present. Due to 

computational difficulty, l1-norm regularization, the closest convex approximation 

which often leads to sparse solutions, is proposed. A promising technique called 

LASSO was introduced by Tibshirani [7] as follow: 

𝐿(𝑥, 𝑋) = 𝑀𝑖𝑛
𝑤𝑖∈𝑤

∑‖𝑤𝑖
∗𝑥𝑖 − 𝑥‖

𝑛

𝑖=1

+ 𝜆‖𝑤‖1                                            (3) 

L1-norm regularization is often exploited for feature selection. John et al. 

employed l1-norm regularization to select the relevant training samples for the 

recognition of face images[8]. In order to generate a sparse solution, a large 

regularization parameter is required. However, the l1 penalty not only shrinks the 

irrelevant variable to zero, but shrink relevant variables to zero[9]. Instead, greedy 

search strategies are known by experimentalists to be computationally advantageous 

and less prone to overfit [10]. In the current paper, we designed an adaptive learning 

algorithm incorporating resting-state functional language network to select a sparse 

subset of informative vectors that together were used to build a reliable classifier to 

classify schizophrenia patients from normal controls. 

2   Materials 

2.1   Subjects 

Twenty-seven schizophrenia patients and 28 normal controls participated in this 

study. The control participants were group matched to the patients on age, handedness 

and sex (see Table 1). All schizophrenic patients were recruited from Peking 

University Sixth Hospital, China, and diagnosed with Diagnostic and Statistical 

Manual-IV criteria. Patients were free of any concurrent psychiatric disorders and had 

no history of major neurological or physical disorders leading to altered mental state. 

All patients accepted atypical psychotropic drugs at the time of scanning. Twenty-

nine healthy subjects were recruited by advertisements as control group.  

 
Table 1. Demographic and clinical details of the subjects 

 Schizophrenia (N=27) Control (N=28) P value 

Gender(Male/Femal) 12/15 12/16 >0.99** 

Age 22.9±3.2 22.3±3.8 0.80* 

Handdeness (Right/Left) 27/0 28/0  

Education 9.8±5.0 10.1±4.1  

PNASS 64.6   

*no significant between-group difference confirmed by chi square test (p>0.05). 

**no significant between-group difference confirmed by two sample t test (p>0.05). 



2.2   fMRI data acquisition and prepossessing 

Imaging data was collected on a 3-Tesla SIEMENS scanner. Echo planar imaging 

blood oxygen level-dependent images of the whole brain were acquired in 30 axial 

slices (TR/TE = 2000/30 ms, flip angle = 90°, FOV = 22 cm, Slice Thickness = 4 mm 

and resolution = 3.44 × 3.44 × 4.8 mm3). The fMRI scanning was carried out in 

darkness, and the participants were instructed explicitly to keep their eyes closed and 

move as little as possible. For each participant, the fMRI scanning lasted for 6 

minutes, during which 210 volumes were obtained. 

We discarded the first 10 images and performed motion correction by rigid body 

alignment and slice timing correction using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). 

In the next, the realigned images are spatially normalized to the standard echo-planar 

imaging template and resampled to 3 × 3 × 3 mm3. Subsequently, the functional 

images were spatially smoothed with a Gaussian kernel of 6 × 6 × 6 mm3 full-width 

at half maximum to decrease spatial noise, temporally band-pass filtered (0.01 Hz < f 

< 0.1 Hz) using the AFNI (http://afni.nimh.nih.gov/), and motion corrected via linear 

regression. Finally, we removed global contributions to the time courses from the 

white matter, ventricles and the whole brain. 

3   Methods 

3.1   Adaptive learning algorithm 

The selected samples, called informative vectors henceforth, are used to establish 

a classifier. Based on square error, we designed an adaptive learning algorithm that 

combines forward searching steps and backward adjusting steps. Unlike SVM, instead 

of choosing support vectors for all the test samples at once, a group of informative 

vectors for each test example were drawn in the current algorithm. 

Starting with the null model without any training example, a pattern 𝑥𝑖, for which 

𝐿(𝐹 ∪ {𝑥𝑖}) is the smallest (i.e., 𝑥𝑖 decreases squared error the greatest), is added to 

the current set 𝐹 by forward step in order to aggressively reduce the squared error at 

each step. This procedure keeps going on until the decrement of squared error falls 

below a given threshold 𝜀 (0.001 in this study). However, such procedure has a main 

shortcoming, that the selected subsets of samples are nested, where the subset 𝐹𝑘 

selected in kth step is always included by the subset 𝐹𝑘+1. This implies that the errors 

caused in earlier forward steps would never have a chance to be removed. 

Consequently, backward steps that aim to rectify these errors should be carried out. 

The key design of this combination is to balance the forward and backward steps. The 

backward steps should not only fix the errors induced by earlier forward steps, but 

also keep as many achievements as possible. The pseudocode of the adaptive 

algorithm is listed as follows. 

 

Input:        𝑋 = [𝑥1, … , 𝑥𝑛] ∈ 𝑅𝑚×𝑛 for 𝑙 classess  

                    a test sample 𝑥 

Initialize: Each attribute of all dataset was linearly scaled to [0, 1] 

http://afni.nimh.nih.gov/


                     𝑆 = [1, … , 𝑛], 𝐹 = ∅, 𝑤 = ∅, 𝑘 = 0, 
                     𝜀 = 0.001 and 𝐽0 = ∞ 

Output: 𝐹, 𝑤 

while lengh(𝑆) > 0 

{ 

  𝑘 = 𝑘 + 1; 
    [𝑖𝑘, 𝑤𝑘, 𝐽𝑘] = argmin𝑖∈𝑆||𝑥, 𝑋(: , 𝐹 ∪ {𝑖})||2; 

    𝛿+ = 𝐽𝑘 − 𝐽𝑘−1; 

    if (𝛿+ < 𝜀) 

    { 

        𝑘 = 𝑘 − 1; 
        break; 
    } 

    𝐹 = 𝐹 ∪ {𝑖𝑘}; 
    𝑆 = 𝑆 − {𝑖𝑘}; 
    𝑤 = 𝑤𝑘; 
    while (𝑘 > 1) 

    { 

        [𝑗𝑘, 𝑤𝑘
−, 𝐽𝑘

−] = argmin𝑗∈𝐹||𝑥, 𝑋(: , 𝐹 − {𝑗})||2 

        𝛿− = 𝐽𝑘
− − 𝐽𝑘; 

        if (𝛿− < 0.5 ∗ 𝛿+) 

        { 

            𝑆 = 𝑆 ∪ {𝑗𝑘}; 
            𝐹 = 𝐹 − {𝑗𝑘}; 

            𝑤 = 𝑤𝑘
−; 

            𝑘 = 𝑘 − 1; 
        } else 

            break; 
  } 

} 

 

Note that backward steps were only carried out when the squared error increment 

𝛿− is no more than half of the squared error decrement in the earlier corresponding 

forward step 𝛿+. This means that as long as 𝑛 forward steps have been performed, 

no matter how many backward steps were involved, the square error will always 

decrease by at least 𝑛𝜀/2, suggesting that the algorithm will automatically terminate 

after finite forward steps.  

The selected informative vectors F=[F1 ,…, Fk] and weight w=[w1,…,wk] were 

used to build a decision function D(x) for each test sample x as follow: 

𝑦 = 𝐷(𝑥)

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑗∈{1,…,𝑘}‖𝑥, 𝐹𝑗
∗𝑤𝑗‖                                                (4) 

Where 𝐹𝑗 is the subset of informative vectors that belong to the jth class, and 𝑤𝑗 

corresponds to their weights, respectively. The decision function D(x) assigned a test 



sample 𝑥  into the object class that minimizes the residual between 𝑥  and all 

informative vectors from this class. 

3.1   Feature extraction 

To build a classifier that could distinguish schizophrenia patients and normal 

controls, blood oxygen level–dependent (BOLD) time courses were generated for 23 

regions of interest (ROIs) that are believed to play an important role in language 

comprehension and production[12]. We defined the cubic region of 125 voxels 

(volume = 3.375 cm3) centered at the coordinates of each ROI. The mean time series 

of each of 23 regions was obtained by simply averaging the fMRI time series over all 

voxels in this region. Correlation coefficients were then computed between each pair 

of these regions. For each subject, a 23-node, undirected graph of the functional 

language network with 253 edges was constructed. 

 
Table 2. 23 ROIs MNI coordinates (BA: Brodmann area) 

ROI BA x[mm] y[mm] z[mm] 

Wernicke’s area 39/40 -51 -51 30 

Inferior parietal 40 57 -51 36 

Broca’s area 45 -51 27 18 

Pars triangularis 45 51 30 18 

Middle frontal 46 -39 18 45 

Pars opercularis 44 42 21 42 

Pars orbitalis 47 -45 39 -12 

Pars orbitalis 47 45 39 -15 

Inferior temporal 21/20 -57 -30 -15 

Inferior temporal 21/20 63 -30 -12 

Superior frontal 8 -3 36 45 

Caudate  -12 9 15 

Caudate  12 12 12 

Putamen/globus pallidus  -18 0 9 

Ventral thalamus  -9 -9 0 

Cerebellum crus  15 -81 -30 

Striate 17 6 -75 -6 

Extrastriate 18 21 -69 -15 

Posterior parietal 7 6 -81 45 

Superior parietal 5 3 -51 57 

Superior temporal 42 -63 -18 9 



Superior temporal 42 60 -21 12 

Cingulate 24 0 0 48 

4   Experiment Results 

A number of classification experiments were implemented with resting-state fMRI 

data to estimate the efficacy of the proposed classification algorithm and meanwhile 

compared with other machine learning algorithms. 

Separating data into training and testing sets is crucial for evaluating prediction 

models. Typically, when partitioning a data set into a training set and testing set, most 

of the data is used for training, and a smaller portion of the data is used for testing. In 

order to avoid the possible bias introduced by relying on any one particular division 

into test and train components, a leave-one-out cross-validation (LOOCV) is used to 

split the 𝑝 patterns into a training set of size (𝑝 − 1) and a test of size 1, and average 

the classification error on the left-out pattern over the 𝑝 possible ways of obtaining 

such a partition. The merit of LOOCV is that all the data can be used for training—

none has to be held back in a separate test set. The results in Table 3 demonstrated 

that our method outperformed SVMs and k-nearest-neighbor algorithm (KNN). 

 
Table 3. Comparison of different learning algorithm 

Methods Classification accuracy Sensitivity Specificity 

KNN 58.2% 59.3% 57.1% 

SVM (linear kernel) 74.5% 70.4% 78.6% 

SVM (RBF kernel) 80% 77.8% 82.1% 

l1-norm  74.5% 74.1% 75% 

Our method 83.6% 81.5% 85.7% 

 

Dataset scaling, which avoids attributes in greater numeric ranges dominate those 

in smaller numeric ranges, is quite crucial before subsequent procedures. Scaling also 

minimizes the numerical difficulties involved in the algorithm, where the least square 

errors heavily depend on the inner products of feature vectors[12]. Therefore, each 

attribute of all dataset were linearly scaled to the range [0, 1]. 

5   Conclusion 

In this study, we demonstrated that an adaptive learning algorithm incorporating 

resting-state functional language network dramatically increased positive predictive 

power for the clinical diagnosis of schizophrenia. Different from SVMs, the proposed 

algorithm is instance-based learning that, instead of performing explicit generalization, 

compares new problem instances with instances seen in training, which have been 

stored in memory. One advantage of this algorithm is that it has zero empirical risk 

and infinite VC dimension. Compared with KNN that requires the orthogonality 

assumptions about samples, our algorithm massively utilizes mutual information 



between samples. Experimental results have suggested that taking into account of 

interactions among examples in the informative vectors selection process could have a 

great impact on classification performance. Our results also implied that a dysfunction 

of the language network plays a cardinal role in the clinic diagnosis of schizophrenia. 

Beyond classifying schizophrenia from control, an intriguing question for future work 

is whether this model can be applied for pinpointing robust differences in functional 

connectivity between a control and a clinical population. 
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