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Abstract: Bionic robots possess inherent advantages for underwater operations, and research on
motion control and intelligent decision making has expanded their application scope. In recent years,
the application of reinforcement learning algorithms in the field of bionic underwater robots has
gained considerable attention, and continues to grow. In this paper, we present a comprehensive
survey of the accomplishments of reinforcement learning algorithms in the field of bionic underwater
robots. Firstly, we classify existing reinforcement learning methods and introduce control tasks and
decision making tasks based on the composition of bionic underwater robots. We further discuss the
advantages and challenges of reinforcement learning for bionic robots in underwater environments.
Secondly, we review the establishment of existing reinforcement learning algorithms for bionic
underwater robots from different task perspectives. Thirdly, we explore the existing training and
deployment solutions of reinforcement learning algorithms for bionic underwater robots, focusing on
the challenges posed by complex underwater environments and underactuated bionic robots. Finally,
the limitations and future development directions of reinforcement learning in the field of bionic
underwater robots are discussed. This survey provides a foundation for exploring reinforcement
learning control and decision making methods for bionic underwater robots, and provides insights
for future research.

Keywords: bionic underwater robot; reinforcement learning; robotic fish; intelligent control

1. Introduction

With the development of technology, the demand for developing underwater resources
is increasing. The application of bionic underwater robots, characterized by low power
consumption, high maneuverability, and environmental friendliness, has become a rapidly
developing research field. In the past decades, research into bionic underwater robots,
by imitating the shape, swimming patterns, and behaviors of fish, has achieved promis-
ing results concerning propulsion mechanisms [1,2], bionic propulsion design [3–8], high
performance optimization [9–12], and other aspects. Furthermore, extended research in-
volving motion control, target tracking, and underwater navigation has been conducted for
bionic underwater robots. In 2015, Ren et al. [13] developed a data-driven motion control
framework for a two-jointed robotic fish, and achieved the desired motion. Wang et al. [14]
explored the path-following control for a bionic underwater vehicle propelled by a ribbon
fin. Additional, Travis et al. [15] investigated a visual and goal-conditioned navigation
strategy for autonomous underwater vehicles to conduct underwater navigation tasks
without any prior map training. However, the control of bionic underwater robots still
faces two challenges. First, bionic robots are typically underactuated systems with highly
nonlinear dynamics, and the hydrodynamic analysis of their dynamics modeling is com-
plex [16]. Second, the underwater environment is much more unstable, and not only is it
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susceptible to interference with the swing of the robot’s body and fin, it is also not easily
modeled [17]. Under the disturbances of the aquatic environment and the influence of
strong nonlinearities, achieving satisfactory control performance for bionic robots remains
challenging [18].

In 2015, reinforcement learning (RL) demonstrated impressive results in Go AI [19,20].
Since then, the performance and computational efficiency of reinforcement learning algo-
rithms have been continuously iterated and optimized, making it a promising approach for
intelligent control in robotics. Reinforcement learning promotes the natural evolution of
control policies with minimal effort [21]. Based on reinforcement learning, robots interact
with the environment and update their control policies, learning to solve sequential decision
making problems. Reinforcement learning is a dynamic learning process that continuously
interacts with the environment to obtain policy optimization, making it suitable for robot
tasks that require solving sequential decision making problems.

There have been numerous studies on the application of reinforcement learning in
robot control. In 2017, Cui et al. proposed an actor–critic network (AC) and RL-based trajec-
tory tracking control method for an AUV that considers external disturbances, control input
nonlinearities, and model uncertainties [22]. In 2020, Lee et al. studied agile and dynamic
motor skills [21] and locomotion control over challenging terrain [23] in legged robots,
and achieved effective transfer from simulation training to real environments. In 2020,
in-hand manipulation skills learned with RL demonstrated a high level of dexterity on
a physical five-fingered hand [24]. Reinforcement learning has shown great superiority in
solving nonlinear control problems, and has generated excitement in the robotics commu-
nity. Moreover, the notion of reinforcement learning has similarities with animal learning
progress, inspiring research on bionic robots. In the field of underwater robots, bionic
robots are mainly applied in resource exploration, environmental monitoring, search and
rescue, and other tasks that require motion control, sensor fusion, planning, and decision-
making abilities, all of which can be further addressed by reinforcement learning. Due to
the difficulties in modeling the underactuated bionic robot and the complex underwater
environment, reinforcement learning is advantageous as it does not depend on the precise
model of the robot. The innovation of RL techniques brings new opportunities for the
research and development of bionic underwater robots.

Faced with different application scenarios, reinforcement learning algorithms have
been extensively studied in terms of model-based methods, e.g., value iteration [25], policy
iteration [26], and generalized policy iteration [27]; model-free methods, e.g., Monte Carlo
methods [28] and temporal difference methods [29]; on-policy methods, e.g., TD and
Sarsa [25]; off-policy methods, e.g., Q-learning [30] and Double Q-learning [31]; value
function approximation methods, e.g., Fitted Q Iteration [32], LSMC [33], and LSTD [34];
policy function approximation methods, e.g., REINFORCE [35]; and so on. In addition,
updates and improvements in deep reinforcement learning algorithms (DRL) [36] provide
important support for establishing a complete intelligent control framework for bionic
underwater robots.

The application of reinforcement learning to bionic robots has become a research
hotspot, with the goal of enhancing autonomy and motion performance. In recent years,
there has been significant progress in the cross-field of bionic underwater robots and
reinforcement learning, with a particularly significant increase in related research since
2019. However, the research focus varies among the published work, and there are still
certain barriers that researchers in the field of bionic underwater robots face when studying
reinforcement learning methods. Therefore, taking into account the latest research progress,
it is necessary to summarize the recent achievements of reinforcement-learning-based
methods in the field of bionic underwater robots, and to indicate the challenges and future
directions of reinforcement learning in this field.

This paper focuses on the application of RL-based methods in the field of bionic
underwater robots, including the development of reinforcement learning algorithms, typ-
ical task scenarios of bionic fish, implementation methods for different bionic robot task
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scenarios, and deployment and training strategies on bionic underwater robot platforms.
The remainder of this paper is organized as follows. In Section 2, the classification of typical
reinforcement learning algorithms is introduced, and the latest reinforcement learning al-
gorithms are listed. From the perspective of bionic underwater robots, Section 3 introduces
the basic structures and task scenarios of bionic underwater robot platforms. In Section 4,
reinforcement-learning-based methods for different task scenarios of bionic underwater
robots are discussed specifically. Considering the distinctive characteristics of underwater
environments and bionic robots, Section 5 summarizes the training and deployment strate-
gies of reinforcement learning for bionic underwater robots. Finally, based on the latest
research progress, Section 6 discusses the challenges and future directions of reinforcement
learning in the field of bionic underwater robots.

2. Overview of Reinforcement Learning

In this section, we first introduce the basic concepts and principles of reinforcement
learning, and then discuss some typical classifications of reinforcement learning algorithms
from different perspectives, such as whether they are based on models, learning objectives,
policy update methods, or approximator function types. We also specifically discuss reverse
reinforcement learning and imitative learning when applied to complex practical tasks for
which it is difficult to obtain reward functions. In addition, we summarize some advanced
reinforcement learning algorithms that have demonstrated efficient learning frameworks
and excellent training effects. Finally, we compare reinforcement learning with other
learning-based methods and discuss its advantages when applied to robots.

2.1. Statement of Reinforcement Learning

The theory of reinforcement learning is inspired by natural animal behaviors. Through
performing actions and interacting with the environment, organisms can transition from
their current state to the next state, and receive feedback in the form of rewards. Or-
ganisms are capable of evaluating the quality of rewards, with positive rewards leading
to the same action in similar situations, while negative rewards prompt exploration of
alternative actions. This learning behavior observed in nature forms the theoretical basis
for reinforcement learning, whereby better policies are learned through interactions with
the environment.

2.2. Taxonomy of the Reinforcement Learning Algorithm
2.2.1. Model-Based and Model-Free Algorithms

Reinforcement learning can be divided into model-based and model-free methods
based on whether they rely on models. It is worth noting that both of these two methods
obtain trajectory information by interacting with the environment. Model-based rein-
forcement learning methods use a complete state transition model and reward function
to iteratively compute or solve the optimal policy; the most typical method is dynamic
programming, which includes value iteration and policy iteration. When a complete model
of the environment is known, dynamic programming can be used to iteratively find the op-
timal policy or value function; however, this approach may encounter issues such as a large
state space and high computational complexity. Therefore, obtaining the optimal policy
based on trajectory experience is necessary. On the other hand, model-free reinforcement
learning methods can directly utilize the information obtained through interactions with the
environment to continuously improve their policies without the need for modeling; typical
algorithms include Monte Carlo (MC) and temporal difference methods (TD) [25]. These
methods are more versatile and generalizable.

2.2.2. Algorithms for Prediction Tasks and Control Tasks

Based on their learning objectives, reinforcement learning can be divided into pre-
diction problems and control problems. For prediction problems, the value function of
states is learned through value iteration, and the optimal policy is obtained by selecting the
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action set that maximizes the value for each state. In other words, at each state, the agent
selects the action set with the highest value to obtain the optimal policy. For control prob-
lems, the goal is to obtain the optimal policy or value function in a Markov process, that
is, an approximately optimal policy. The essence of reinforcement learning methods for
control problems is the combination of prediction methods and policy iteration, where the
prediction methods replace the policy evaluation step in policy iteration. Control problems
are solved by estimating state values from trajectories and improving policies based on the
estimated values to obtain the optimal policy. Typical algorithms include generalized policy
iteration (GPI), Monte Carlo control, sequential differential control (Sarsa), and discrete
strategy sequential differential control (Q-learning) [25,30].

2.2.3. On-Policy and Off-Policy Algorithms

According to whether the policy updates and trajectory generation come from the
same policy, reinforcement learning can be divided into on-policy learning and off-policy
learning. On-policy learning essentially updates the policy π based on trajectory samples
generated by the same policy π, which can guarantee the accuracy of the policy results. Off-
policy learning, on the other hand, updates another policy µ based on trajectory samples
generated by policy π, combining two different policies to make use of more unrelated
data and improve training efficiency. For example, by pooling trajectory data produced
in parallel by multiple robots with policies, π1, π2, etc., asynchronous policy updates can
be achieved for the same task [37]. Common off-policy methods include Q-learning [30],
Q(λ), and Double Q-learning [31].

2.2.4. Approximator-Based Reinforcement Learning Algorithms

The methods described above have a basic premise that state space and action space
are discrete, and the dimensions of these are not large. However, when faced with tasks
with a large dimension of state space or a continuous state space, it can lead to prob-
lems such as excessive computational resource requirements and long computational time.
Therefore, a function approximator is introduced to solve large-scale reinforcement learning
problems. The value function is represented using function approximation, and then the
reinforcement learning framework is constructed through strategy iteration and value iter-
ation. By leveraging function approximation methods, agents can make predictions about
unobserved states and take appropriate actions to maximize rewards, thereby improving
their decision making in partially observable environments. According to the different
approximation targets, these can be divided into value function approximators, strategy
function approximators, and actor–critic algorithms [35].

Deep reinforcement learning (DRL) [36,38] utilizes artificial neural networks as func-
tion approximators, and leverages the advantages of deep neural networks in feature
extraction to extract key features required for decision making in reinforcement learning,
thereby addressing Markov decision making problems with complex high-dimensional
inputs. DRL is currently a hot topic in reinforcement learning research. According to the dif-
ferent types of approximation functions, RL can be divided into value approximator-based
algorithms, such as DQN, Double DQN, and Dueling DQN [25,36,39,40], and strategy
approximator-based deep reinforcement learning, such as A3C [41], TRPO [42], PPO [43],
DPG [44], and deep deterministic policy gradient (DDPG) [45]. It is worth noting that
deep learning and reinforcement learning have different requirements for samples. In deep
learning, it is assumed that the samples satisfy the independent and identically distributed
condition, while reinforcement learning deals with Markovian temporal problems, where
each sample {si, ai, si+1, ri} at time ti and ti+1 has strong temporal correlation. Simply
combining deep learning and reinforcement learning can have a certain impact on the
convergence and stability of training. Therefore, deep reinforcement learning methods
need to introduce techniques, such as experience replay and target networks, to reduce the
temporal correlation between trajectory data [36,46], and thus achieve the integration of
deep learning and reinforcement learning methods.
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2.2.5. Inverse Reinforcement Learning and Imitative Learning

While general reinforcement learning requires a known reward function, designing
rewards for complex tasks can be challenging in real-world scenarios, hindering the direct
application of reinforcement learning methods. Instead, expert data that do not rely on
rewards are often easier to obtain in actual scenarios involving complex tasks. To address
this challenge, this section introduces inverse reinforcement learning and imitation learning,
which can avoid the need for manual reward setting and are worth discussing.

Reinforcement learning can be classified into forward reinforcement learning and
inverse reinforcement learning based on whether the reward R is known. Forward re-
inforcement learning usually relies on a manually designed reward function, but there
may be biases between the reward function and the optimal policy. Moreover, the reward
function is often difficult to determine for complex tasks. In contrast, inverse reinforcement
learning learns the implicit reward (i.e., the underlying objective function) from expert data
samples, and then uses these rewards to train the reinforcement learning policy, thereby
avoiding the limitations of manually designed reward functions [47–49]. Typical inverse re-
inforcement learning methods include maximum marginal inverse reinforcement learning,
maximum entropy inverse reinforcement learning, and generative adversarial imitation
learning [50–52].

Considering the limitations of reward function design, imitation learning is a technique
that does not rely on environment reward. It utilizes supervised learning to directly train
policies from observed data, thereby avoiding the reliance on models and environments.
Specifically, in the presence of expert data, imitation learning obtains the desired agent
policy through supervised learning, making the state–action trajectory distribution under
this policy match the state–action trajectory distribution of expert data as closely as possible.
The key techniques of imitation learning comprise of behavioral cloning, data augmentation,
and dataset aggregation (DAGGER) [47,49,53].

2.3. Advanced Version of Reinforcement Learning Algorithms

With continued investment and research, reinforcement learning algorithms have
achieved continuous iterative updates. In 2017, Haarnoja et al. proposed a soft Q-learning
algorithm that represents strategies in the form of the value function softmax, enhancing
the expressiveness of the strategy and ensuring complete exploration of the state-action
space [54]. In 2016, Tamar et al. proposed the value iteration network (VIN), which
considers the relationship between convolutional neural networks (CNNs) and value
iteration, enabling the learned policy to focus more on long-term planning instead of just
memorizing the one-step correspondence between states and actions in the short term [55].
VIN provides a solution to long-term decision making problems. In 2017, Van Seijen et al.
proposed the hybrid reward architecture (HRA) method, which decomposes the reward
of the environment and uses different action value functions to estimate the reward of
different parts [56]. By decomposing the complex problem into several sub-problems,
it addresses the issue of the total reward function being overly complex for learning.
In 2017, Andrychowicz et al. proposed the hindsight experience replay (HER) algorithm,
which addresses the challenge of exploration failures in scenarios with sparse rewards.
The algorithm achieves this by adding failed explorations into an experience pool and then
leveraging them to improve subsequent explorations [57].

The typical reinforcement learning methods are summarized in Table 1, providing
specific category information for reference. In addition, Raffin et al. proposed stable-
baselines3 [58], which established a well-encapsulated reinforcement learning algorithm
repository and provided engineering significance for research based on RL methods.
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Table 1. Typical reinforcement learning algorithms.

Algorithms Model-Based/Model-Free Learning Task On-Policy/Off-Policy

Policy iteration Model-based State value —
Value iteration Model-based State value —

Monte Carlo method (MC) Model-free State value On-policy
Temporal difference method (TD) Model-free State value On-policy

Sarsa Model-free Optimal value function On-policy
Q-learning Model-free Optimal value function Off-policy

Q(λ) Model-free Optimal value function Off-policy
Double Q-learning Model-free Optimal value function Off-policy

DQN Model-free Optimal value function Off-policy
A3C Model-free Optimal policy On-policy

TRPO Model-free Optimal policy On-policy
PPO Model-free Optimal policy On-policy

DPG Model-free
Interpolating between policy

optimization and optimal
value function

Off-policy

DDPG Model-free
Interpolating between policy

optimization and optimal
value function

Off-policy

2.4. Advantages of Reinforcement Learning

In the broader context of learning strategies, it is necessary to compare reinforce-
ment learning with other learning methods, such as evolutionary algorithms and neural
networks, to clarify the characteristics of reinforcement learning methods. Evolutionary
algorithms (EAs) are a class of optimization algorithms inspired by the principles of biolog-
ical evolution in nature. The basic idea is to start from a group of initial solutions generated
randomly, which is referred to as the initial population, and gradually refine the solutions
in the population through an iterative process. Common evolutionary algorithms include
genetic algorithms (GAs), particle swarm optimization (PSO), differential evolution (DE),
and others. Compared with reinforcement learning algorithms, evolutionary algorithms
focus more on solving optimization problems, and are less suitable for sequential decision
making problems. Additionally, the computational complexity and solution process of
evolutionary algorithms make it difficult to achieve online decision making. The neural
network algorithm is inspired by the biological nervous system, and learns to represent and
process information by adjusting the connection weights between neurons. Neural network
methods can handle highly nonlinear problems, but to some extent, they rely on supervised
learning and require high computational resources, making them less suitable than rein-
forcement learning for online sequential decision making problems. Therefore, combining
the two methods into deep reinforcement learning provides an effective approach for
solving complex problems.

Overall, although there are still some limitations in terms of computational complexity,
sample efficiency, and transferability, reinforcement learning algorithms have the following
advantages for bionic underwater robots. First, reinforcement learning has online learning
and real-time decision making capabilities, which are advantageous in robot control and
policy adjustment. Second, deep reinforcement learning focuses more on the interaction
between robot states, actions, and rewards, making it more advantageous for sequential
decision making problems in robot control and planning tasks. Third, reinforcement
learning methods do not rely on explicit labels, avoiding the problem of high cost in
obtaining data during robot training. Fourth, deep reinforcement learning combines
the advantages of neural networks and reinforcement learning, which is beneficial for
solving high-dimensional and complex decision making problems, potentially significantly
improving robot capabilities. Finally, reinforcement learning is robust to noise and uncertain
environments, and has the potential to adapt to changes in complex environments.
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3. Task Spaces of Bionic Underwater Robots

Before discussing the application of reinforcement learning algorithms in the field
of bionic underwater robots, it is essential to understand the structure and task spaces
of bionic underwater robots. This section first introduces the basic structure of bionic
underwater robots, and proposes several task spaces according to the control–perception–
decision framework. The learning tasks presented in this section face complex underwater
environments and underactuated bionic robot scenarios. Therefore, the advantages and
challenges of reinforcement learning algorithms in the field of bionic underwater robots
are discussed at the end of this section.

3.1. Common Structure of Bionic Underwater Robots

Bionic underwater robots mainly include flapping-inspired fish-like or dolphin-like
robots [7,59,60]), jet-propelled bionic robots [61,62], and so on. The classic structures of
bionic underwater robots are shown in Figure 1a. These robots are typically driven by
electric motors, magnets, and soft materials to control the linkage of multiple components
to achieve basic bionic actions [63]. The rhythmic motion achieved through the coordination
of movable structures usually needs to approximate the motion of the biomimetic object as
closely as possible in order to achieve similar high-efficiency motion performance. This
fundamentally determines the mobility of bionic robots. The motion of bionic underwater
robots is usually related to central pattern generators (CPGs) [64], and the simplified
parametric model enhances the controlling ability of the bionic structure.

On the basis of achieving bionic actions, the bionic underwater robot swims in the
water with the desired posture through the coordination of their functional structures,
achieving high motion control performance. Underwater attitude adjustment mostly
depends on the rudder-like functional structure, such as fin limb [65] and the center of
gravity/buoyancy adjustment mechanism [66,67], and attitude control is the foundation
for bionic underwater robots to complete complex tasks. Unlike mobile robots, underwater
robots typically face three-dimensional motion scenes, while bionic robots typically have
underactuated characteristics and exhibit periodic fluctuations in motion.

Bionic underwater robots usually combine five types of sensors, including motion
positioning sensors (inertial measurement unit, depth sensor, Doppler velocimeter, etc.),
environmental sensors (fish eye camera, sonar, lateral line system, etc.), communication
sensors (radio frequency communication, sonar communication, etc.), power measurement
sensors (power meter), and embedded auxiliary sensors (infrared sensor, reset sensor, force
feedback device, water leak detector, etc.). Usually, bionic underwater robots realize the
fusion perception of multi-channel data through core processors. Among them, the first
two types of perceptual data are closely related to underwater missions.

On the basis of basic motion and perceptual data, bionic underwater robots can
carry high-level algorithms, such as path planning, local obstacle avoidance, and target
tracking, to improve the autonomous decision-making ability of the robot and complete
difficult tasks. For example, bionic remoras hitchhike by attaching themselves to larger host
fish [68], and bionic soft fish perform underwater search tasks [69]. In addition, in the bionic
underwater robot swarm, decision planning algorithms are also required for formation
control and pursuit and hunting tasks.

3.2. Task Spaces

The structure of bionic underwater robots determines the uniqueness of their task.
Based on the structure of bionic underwater robots, task spaces are naturally divided into
the bionic action control task, motion control task, fusion perception task, and decision mak-
ing task. This section details the specific content of relevant research from the perspective
of these four tasks.
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Figure 1. Common structure and task spaces of bionic underwater robots. (a) Classic structures
of various bionic underwater robots and three driving methods. (b) Bionic action task. (c) Motion
control task. (d) Perception fusion task. (e) Decision making task.

3.2.1. Bionic Action Control Task

The bionic action control task is closely related to biological inspiration. Previous
research has revealed that basic animal behaviors, such as breathing, running, and so on,
are likely to originate from spontaneous rhythmic signals of central pattern generators [64].
The central pattern generator (CPG) was then designed as a mathematical model, such as
Hopf CPGs, Kuramoto CPGs, and so on, whose output is determined by a small number
of model parameters, resulting in bionic action control. Most of the existing bionic action
controls of bionic underwater robots are based on CPG, especially in multi-joint robots
such as bionic snakes [70]. Dynamic motion primitives (DMPs) [71] is another bionic
model similar to CPG, which can output various wave signals through supervised settings.
In addition, for bionic robotic fish, the fish body wave model (FBW) [72] can also be used
as a feasible model for studying bionic tail flapping motion.

Similar to the CPG model, both DMP and FBW are characterized by fewer model
parameters, so the bionic action control task is often equivalent to the optimization of
model parameters. The classical parameter optimization methods used for bionic action
control models include artificial empirical optimization, particle swarm optimization [73],
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genetic algorithms [74], etc. These methods are generally suitable for solving fixed bionic
model parameters, with better performance offline. It is difficult to adapt to changing
environments, and online optimization has high computational costs.

Reinforcement learning can solve most optimization problems in specific models,
and the optimization objectives are related to the rewards and punishments of RL. Therefore,
reinforcement learning has a natural degree of adaptability to the parameter optimization
problem of bionic action control. The framework for solving the bionic action control
problem of the bionic underwater robot based on reinforcement learning is shown in
Figure 1b.

3.2.2. Motion Control Task

Motion control is an important prerequisite for autonomous operation of bionic under-
water robots. The motion control task mainly focuses on the pose control and path tracking
of bionic underwater robots, as shown in Figure 2. Under the constraints of different speeds,
heading angle and pitch angle control jointly determine the three-dimensional motion of
the bionic underwater robot. Due to the complex underwater environment and numerous
unknown disturbances, the stable attitude control of bionic underwater robots is often
focused on. Generally, the bionic propulsion has strong control coupling, and its control
has certain difficulties.

Actual pose

Target pose

x

y

0

Actual pose

Reference path

x

y

0

Distance to 
reference path

 

 
�

(a) (b)

Figure 2. Motion control of a bionic underwater robot. (a) Path tracking. (b) Attitude control.

In the field of bionic underwater robots, proportional–integral–derivative (PID),
sliding mode control (SMC), fuzzy control, etc., are widely used in the motion control
task [13,75,76]. Adaptive control and autodisturbance rejection control are also widely
studied for the strong disturbance problem in the underwater environment [77–79]. Tra-
ditional control methods are influenced by the structure and parameters of the controller,
resulting in mixed control effects. In recent years, model predictive control (MPC) has
been used in nonlinear bionic robot motion control tasks, such as position control and
tracking control, using the idea of open-loop optimal control. At the same time, intelligent
control methods based on reinforcement learning have been tried by pioneers [80–82],
with two main frameworks (shown in Figure 1c). Firstly, the reinforcement learning algo-
rithm framework is integrated with model predictive control methods or other traditional
control methods to obtain adaptive updates of the controller through the concept of inter-
active learning. Secondly, the deep reinforcement learning algorithm framework directly
implements end-to-end control from perceptual information to control signals.

3.2.3. Perception Fusion Task

The perception of the bionic underwater robot faces two problems. Firstly, the under-
water environment has significant constraints on electromagnetic waves, light waves, etc.,
which greatly limits the perception range of GPS and visual systems. Secondly, bionic
robots typically move periodically, causing periodic disturbances to sensory data. The task
of perceptual fusion is to assess the state of a robot system or environment as accurately as
possible based on data from various sensors, as shown in Figure 1d. Typically, calibrated
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sensor data are fused and adjusted through manually set rules for use in control or decision
making tasks. The perceptual fusion task is typically considered as a subtask within the
control or decision making algorithm.

3.2.4. Planning and Decision Making Task

The decision making task of robots is closely related to the autonomous operation of
robots. The decision making task can be subdivided into navigation, planning, search, track-
ing, scheduling, and so on. For the planning task of bionic underwater robots, the flapping
range of the robot needs to be specially considered, especially in obstacle avoidance algo-
rithms. For autonomous bionic underwater robots, the existing path planning and obstacle
avoidance algorithms are relatively mature [83], but there is still a lack of a complete intelli-
gent algorithm framework that integrates multiple decision making problems. The original
intention of the deep reinforcement learning method is to deal with the decision making
problems of agents. The RL algorithm has been widely used in unmanned aerial vehicles,
autonomous vehicles, mobile robots, and other fields [84–86], which has reference value
for the intelligent decision making of bionic underwater robots. The decision making and
planning task framework of bionic underwater robots is summarized in Figure 1e.

3.3. Advantages and Challenges of RL-Based Methods

In recent years, reinforcement learning algorithms have been deeply researched, lead-
ing to new approaches to address tasks related to bionic underwater robots. Compared
to existing methods, reinforcement learning methods have three main advantages in ad-
dressing the various task spaces mentioned above. First, the trial-and-error approach
of reinforcement learning can stimulate the motion potential of bionic robots, enabling
them to learn bionic actions that are difficult to achieve through manual intervention [87]
and improve their motion performance [88]. Reinforcement learning methods support
the autonomous and efficient “learning” of stable underwater swimming methods by
robots. Secondly, conventional methods often rely on robot models, and have limited
adaptability to complex environments. However, reinforcement learning methods rely
less on models, and are expected to adapt to different underwater environments through
perception. The adaptability of reinforcement learning algorithms to different environ-
ments and their low model dependency has greatly inspired researchers’ confidence in
improving the performance of bionic underwater robots. Thirdly, reinforcement learning
algorithms can be optimized online, and can achieve multiple tasks simultaneously by ex-
panding the state vector and the action vector. Based on a complete reinforcement learning
algorithm framework, bionic underwater robots are expected to achieve the “intelligence”
of autonomy.

It is clear that reinforcement learning can cope with the task of bionic underwater
robots; however, the specific implementation of the algorithm still faces four difficulties.
First, training difficulties from simulations to the real world (sim-to-real) are conspicuous,
with large underwater environment disturbances, and there is a lack of effective deployment
methods for real environment training. While reinforcement learning based on training
in simulation environments is challenging, ensuring the migration performance from
simulations to the real world is even more difficult. Secondly, the accuracy of dynamic
models of underwater robots is difficult, and even impossible, to achieve. Even model-
free reinforcement learning methods require verification or pre-training in a simulation
environment, and the establishment of the simulation environment cannot avoid the
dependence of the dynamic model and the interaction with the underwater environment.
Thirdly, the control stability of RL algorithms cannot be fully verified, which may generate
harmful control instructions for the robot. Moreover, the communication efficiency in
the underwater environment is low, and the information feedback of the robot during
three-dimensional motion is inconsistent, and thus, the security of reinforcement learning
algorithms running on robots is difficult to ensure. Fourthly, the rewards for some tasks are
sparse, and RL algorithms converge slowly, making it difficult to achieve the desired results.



Biomimetics 2023, 8, 168 11 of 29

4. RL-Based Methods in Task Spaces of Bionic Underwater Robots

This section surveys the RL-based research for various bionic underwater robot tasks
as fully as possible, although there may still be omissions. Table 2 summarizes the re-
search motivations, RL algorithms, and performances reported by the related literature.
From Table 2, most of the existing RL-based work is related to bionic action tasks, motion
control tasks, and planning and decision making tasks, while RL-based perceptual fusion
methods are less studied. Based on the current research, perceptual fusion tasks are mostly
solved through other traditional methods, and are used as sub-processes of the other
three tasks. Therefore, the discussion of the existing work in this section will no longer
be conducted from the perspective of perceptual fusion tasks. In addition, the tasks of
bionic underwater robots are hierarchical from top to bottom, and the design of upper-level
tasks is usually related to the output of lower-level tasks. There are also some tasks that
cross task levels in the researched literature. Therefore, this section mainly introduces three
categories: bionic action control tasks, motion control tasks, and decision making tasks.
Research involving cross-tasks will be separately focused on in related discussions.

Table 2. RL-based research on bionic underwater robots.

Platform Task RL Method Performance

Fish robot (2022) [88] CPG optimization DDPG Sim,Sim Higher CPG convergence speed

µBot (2021) [89] CPG-based gait learning PGPE Real,Real Speed optimization

Five-jointed robotic fish (2022) [90] Body-wave-based control SAC Sim,Both Wave parameter optimization

Robotic tadpole (2022) [91] DMP-based motion control TRPO Sim,Real Validating method effectiveness

Robotic fish (2021) [92] Bionic control Q-learning Sim,Real Energy saving

Gliding robotic fish (2022) [93] Bionic gliding control double DQN Sim,Both Energy saving

MT1 Profile (2006) [94] Bionic control PG-RL Sim,Sim Effective steering

Tail fin (2022) [95] Bionic flapping motion On-policy RL Real,Real High hydrodynamic efficiency

Beaver-like robot (2022) [96] Bionic control Q-learning Sim,Real Multiple bionic actions control

Robotic fish (2022) [17] Attitude holding control DDPG Sim,Real Holding desired angle of attack

Fish-like robot (2022) [18] Pose, path-following control A2C Sim,Real A general learning framework

Soft robot (2021) [81] Motion control SAC Sim,Real Line tracking under disturbances

SCP fish robot (2018) [82] Speed control Q-learning Sim,Sim Effective control method

Robotic eel (2022) [97] Motion control SAC Sim,Real Effective online control

Fish-like robot (2020) [98] Path-following control A2C Sim,Real Dynamics-free control

RoboDact (2021) [99] Yaw, speed control SAC Sim,Real Effective control method

Robotic jellyfish (2019) [100] Attitude control Q-learning Sim,Real Yaw maneuverability

Soft octopus(2022) [101] Single-arm attitude control DQN Sim,Real Forward and turning motion

OUC-III (2019) [102] Attitude control ADRC + NAC Sim,Sim High-precision adaptive control

Bionic manta (2023) [103] Depth control Q-learning Sim,Real Effective control method

Robotic penguin (2022) [104] Depth control MPC-LOS + DDPG Sim,
Real Effective control method

Soft bionic Pangasius (2022) [105] Path-following control PPO, A2C, DQN Real,
Real Effective control method

Bionic vehicle (2022) [106] Target-following control DPG-AC Sim,Real Effective control method

SCP fish robot (2022) [107] Yaw, path-following control DDPG Sim,Sim Effective control method

Three-jointed fish robot (2021) [108] Target-following control DDPG Sim,Real Real-time 2D target tracking

Bionic robotic fish (2021) [109] Tracking control DDPG Sim,Real Energy-efficient control
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Table 2. Cont.

Platform Task RL Method Performance

Robotic Dolphin (2022) [110] Path-following control Improved DDPG Sim,Sim Effective control method

Hybrid fish robot (2022) [111] Path-following control DDQN −,Real Better tracking accuracy

Wire-driven robotic fish (2023) [112] Path-following control MARL Sim,Real Improved accuracy and stability

Robotic fish (2022) [113] Speed control DDPG and TD3 Sim,Real Improved speed tracking

Robotic fish (2022) [114] Pose control DDPG-DIR Sim,Real Pose control under disturbances

G9 robotic fish (2006) [69] Underwater searching Q-learning Sim,Real Tank lap swimming

Robotic shark (2022) [87] Underwater searching DDPG Real,Real Exploration efficiency boost

Self-propelled fish (2021) [115] Obstacle avoidance One-step AC Sim,Sim Complex obstacles avoidance

Swarm simulator (2018) [116] Formation control DDPG+LSTM Sim,Sim Formation energy-saving

CFD-based fish (2023) [117] Formation control D3QN Sim,Sim Leader–follower topology

Fish-like robots (2021) [16] Formation control MARL Sim,Real Effective circle formation control

Multiple robotic fish (2017) [118] Coordination control Fuzzy RL −,Real Improving game winning chances

Microswimmers (2022) [119] Pursue evasion game NAC + MARL Sim,Sim Pursue or evasion decision

Simulated agents (2019) [120] Leadership decision PPO Sim,Sim Swarm interaction groundwork

RoboDact (2022) [121] Water Polo Ball Heading SAC Sim,Real Self-heading water polo ball

Underwater robot (2019) [122] Behavior decision Q-learning Sim,Sim Better decision making

Sim and Real, respectively, refer to training or deployment conducted in simulated and real environments.

4.1. RL for Bionic Action Control Tasks

Control tasks based on RL and bionic action models (CPG, DMP, FBW) usually aim at
obtaining a better swimming gait. Swimming speed, mobility, energy consumption, etc.,
can be used to evaluate swimming gait. Based on the CPG model and RL methods,
the robotic fish µBot learned a swimming gait with backpropagating traveling waves,
with the goal of maximizing its swimming speed [89]. Based on the FBW model, RL
method SAC provided an effective approach for obtaining subcarangiform body wave
parameters for a five-jointed fish-like robot, and both the cost of transport and velocity
performance were optimized [90], in which the parameters of two optimized groups were
compared, verifying that the optimal efficiency and optimal speed cannot be achieved
simultaneously. Based on the DMP model and trust region policy optimization (TRPO)
method, the robotic tadpole achieved an effective propulsion gait, with expected thrust
and stable heading attitude as high rewards [91], which generated a target point strat-
egy for the DMP model through navigation learning, allowing the robot to swim along
a number of randomly generated paths. No matter which kind of bionic motion model,
an appropriate reinforcement learning algorithm design can achieve gait optimization for
bionic underwater robots.

The most highly regarded evaluation criterion for bionic locomotion is undoubtedly
energy efficiency optimization. To optimize the energy efficiency of a bionic robotic fish,
the method proposed in [92] is based on the flow field sensor in the fish tail (which provides
low-dimensional force feedback signals), and relies solely on proprioception to perceive
the robot’s undulation state, in which energy consumption was effectively reduced based
on improved CPG parameters. Similarly, aiming to optimize energy efficiency, ref. [93]
constructed a two-stage reward function based on an adversarial model that includes
two competing gliding robotic fish. This method saved approximately 4.88% of energy and
about 19.45% of traveling time. Based on a two-segment linear drive structure, ref. [97] de-
signed a robotic eel and used the SAC algorithm to achieve swimming control based on the
geometric relationship of the mechanism. In this method, in addition to energy consump-
tion, the straight swimming speed and swimming deviation are also included in the reward
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function. Ultimately, the control strategy with maximum speed and suboptimal energy
efficiency was chosen. These two performance optimization cases indicate that, for bionic
underwater robots, performance optimization does not rely solely on the optimization of
a single performance factor. Instead, solutions that consider multiple performance factors
are often preferred. Reinforcement learning methods also have the capability of handling
optimization problems that take multiple performance factors into account.

The complex structure of multi-joint robots makes it difficult to manually tune the pa-
rameters of their bionic action models. In 2006, Liu et al. applied RL algorithms based on AC
networks to the multi-joint robotic fish MT1 Profile, and tuned six parameters of the bionic
action control model, achieving effective turning speed [94]. In 2022, two works [90,123] ap-
plied RL algorithms to tune the model parameters of fish body wave and CPG in five-jointed
robotic fish and four-jointed robotic dogfish, respectively. Reinforcement-learning-based
methods undoubtedly provide effective solutions for the parameter tuning problem of
multi-joint robots.

When CPG is used as the bionic action model, the smooth transition of the robot in
different swimming modes is related to the convergence speed of CPG. High convergence
speed is prone to oscillation, while low convergence speed is not conducive to modal
transition. Optimizing the convergence speed of CPG through reinforcement learning
algorithms is a developing research direction. In 2022, based on the improved CPG with
a chain coupling of 16 oscillators with bidirectional perturbation, RL algorithms were
adopted to achieve natural modal switching of elongated undulating fin propulsion [124].
Specifically, Q-learning uses oscillation error as rewards and punishments to search for
optimal convergence speed, achieving performance improvement in CPG [124]. On the
other hand [88], the optimization of DDPG not only improved the convergence speed of the
CPG network by about 2.2%, but also achieved higher amplitude precision compared to the
DQN algorithm (about 1.6%), leading to high efficiency in controlling the swimming gait
of the robotic fish. In addition, from Table 2, action control based on the CPG model has
an advantage in terms of quantity. To expand the application value of CPG in reinforcement
learning, improved CPG algorithms have also been proposed to meet control requirements
and reduce the risk of abrupt changes in parameters, such as normalized CPG [125],
modified CPG network in bidirectional perturbation [124], and modified CPG with reduced
input parameters [98]. These novel CPG models are more suitable for reinforcement
learning environments, providing a solid foundation for subsequent RL-based bionic
motion optimization methods, and are of high reference value.

For soft-bodied robots that exhibit viscoelasticity and extensive deformation, appro-
priate actions may not always be manifested, even if the body dynamics are given. This is
challenging to control, and RL methods have received attention. Ref. [126] constructed soft-
bodied animals with bionic actuators, and used RL to imitate the movement of soft-bodied
animals as much as possible. Ref. [127] leveraged the scalability of RL to enable soft robots
to explore a variety of behaviors automatically. The motion control research for soft robots
using RL is discussed in Section 4.2.

Additionally, due to the exploratory nature of RL, some studies on bionic action control
have led to a deeper understanding of biological mechanisms. For example, Deng et al. [89]
systematically explored the potential relationship between body morphology, swimming
gait, and swimming performance through RL, and confirmed that the shape of the caudal
fin has a certain influence on gait and swimming speed. Zhang et al. [95] found that,
after numerous trials and errors, RL training for flapping motion always converges to pat-
terns that are similar to harmonic motions, proving that harmonic motion with appropriate
amplitude and frequency is always an optimal choice for efficient underwater propulsion.
Li et al. [92] proposed that even with a damaged lateral line system, relying solely on the
flow field perception of the fish tail is sufficient to optimize energy efficiency. The additional
knowledge obtained from RL-based experiments is exciting. Therefore, in suitable task
scenarios, reinforcement learning methods are recommended to explore deeper inferences.
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4.2. RL for Motion Control Tasks

Motion control can be further classified into attitude control and position control.
Attitude control is based on either an inertial measurement unit (IMU) or a lateral line
system (LLS). IMU-based attitude control focuses on controlling and stabilizing the attitude
angles of the roll, pitch, and yaw of the robot, while LLS-based attitude control is related
to flow field perception, such as flow velocity and angle of attack [17]. RL-based attitude
control is one of the basic research areas of motion control. In [99], bionic RoboDact is
controlled to maintain a target yaw angle and speed from a random attitude and non-
motion state by designing relevant rewards, and training and validating the SAC controller
in simulation. In [100], an effective solution for the attitude control of the jellyfish-like robot
relies on both a 3D barycenter adjustment mechanism and a Q-learning-based attitude
control method, whose reward is related to the target and the current attitude; however,
freely adjusting the three-axis attitude has not yet been achieved. Unlike the previous
two studies focusing on the overall attitude of bionic robots, the study in [101] focuses on
the posture of each soft arm of an octopus-inspired soft robot. Based on a set posture error
thresholds, precise attitude control of the soft arm is achieved through the DQN method,
and the bipedal walking of the octopus-inspired soft robot is realized by coordinating the
two precise attitude-controlled soft arms. Another posture control example focuses on
buoyancy-driven underwater gliders, combining a natural actor–critic (NAC) algorithm
with an active disturbance rejection control (ADRC) [102]. The parameters of ADRC are
adjusted by the NAC method, which compensates for ocean current disturbances and
achieves high precision and highly adaptive attitude control ability.

Position control can be divided into planar position control and depth control. Specif-
ically, the depth control of bionic underwater robots is often related to pitch attitude.
For bionic underwater robots, depth control influences underwater three-dimensional
(3D) motion performance, and is one of the research focuses. In order to avoid relying
on the mathematical model of the bionic manta, ref. [103] trained a controller based on
Q algorithm data and transplanted it into the robot prototype to conduct depth control.
Another depth control scheme, the MPC-based DDPG control algorithm, is implemented
in the bionic penguin platform [104]. This scheme builds a data-driven MPC depth control
framework, and the reinforcement learning algorithm optimizes its approximation of the
optimal control while ensuring control safety and stability, achieving significant control
effects. Whether using end-to-end RL controllers or improved traditional controllers based
on RL, existing research has verified the effectiveness of introducing RL in the pose control
of bionic underwater robots. The inclusion of reinforcement learning has, to some extent,
improved the accuracy of pose control and the ability to adapt to the environment.

Taking into account both attitude control and position control, 2D or 3D path tracking
is a common motion control task for bionic underwater robots [98,105–111,128,129] that
enables the motion capability of bionic robots in underwater environments. The authors
of [111] deployed the DDQN algorithm to the path tracking control of a hybrid-driven
robotic fish, and quantitatively compared the control performance of RL with PID and SMC.
To our knowledge, this study is the first to adopt this technique. Meanwhile, the study
by [105] verified three RL algorithms of PPO, A2C, and DQN in the motion control envi-
ronment of a soft bionic Pangasius fish robot, and ultimately, the PPO agent performed
better. Similarly, a cooperative structured control based on evolutionary strategy and
DDPG is proposed for the 3D trajectory tracking control of bionic robotic fish, saving
23.97%, 22.13%, and 38.72% energy compared with SMC, ADRC, and PID, respectively.
In addition, for stable path tracking control, ref. [112] designed a bionic robotic fish with
a reaction wheel, and controlled the momentum wheel and tail flapping at different fre-
quencies using multi-agent RL. For complex tasks that consider both position and attitude
control, reinforcement learning exhibits strong performance, and can effectively address
multi-objective control problems. In particular, motion control based on RL has been
widely researched and validated in the field of soft robotics [81,82,105,107]. For instance,
the multi-objective control problem of the soft robotic fish with a bundled SCP actuator,
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which includes heading control and path tracking, was solved by a DDPG controller and
a linear–quadratic-regulator-based multi-objective reward mechanism [107]. Based on
model-free SAC, the soft robot proposed in reference [81] learned to move in a straight line
in disturbed water.

In certain tracking scenarios, desired speed tracking control has been focused [113].
Swimming speed, as one of the important motion performance indicators, is difficult
to measure and usually indirectly obtained, with significant data noise. In [113], both
DDPG controller and twin delayed DDPG (TD3) controller methods were conducted
based on the swimming speed data from simulations or a global camera. In contrast,
TD3 avoids becoming trapped in local optima and improves the control speed tracking
accuracy. Earlier, in [82], a Q-learning-based speed control method was conducted on
a three-link soft robotic fish actuated by antagonistic artificial muscles, which is expected
to be generalizable to many other robot speed control problems, since it does not rely on
accurate dynamic models.

For bionic underwater robot platforms equipped with vision systems, target tracking
control has important research value. Based on stable visual information and target position,
reinforcement learning algorithms take target position as the input, CPG parameters as the
output, and achieve the continuous tracking of a selected target without the need for the
robot’s dynamics knowledge [108]. Similar results were achieved in [106].

In the field of motion control for robotic fish, Xie’s team has worked on a DRL-
based control method [17,18,98,114], demonstrating a complete and informative RL motion
control framework. To address an unknown flow field, the study by [17] fuses data
from LLS and IMU, and trains a data-driven simulation environment based on DDPG,
holding a desired angle of attack. In addition, the studies [18,98] focus on path tracking
and pose control, and train in both the surrogate environment and the CFD environment
based on A2C, improving the efficiency of RL training and the precision of underwater
control experiments. To balance position control and attitude control, ref. [114] only
rewarded the robot when it reached the desired pose, and reduced the difficulty of training
with imitation learning. The algorithm exhibited robustness in disturbed underwater
experiments. The above three works have complete frameworks and implementation steps,
providing guidance and foundation for researchers in the cross-disciplinary field of robotic
fish and reinforcement learning.

In conclusion, RL research on bionic underwater robot motion control task can be
divided into parameter optimization RL control methods and direct RL control methods.
The former mainly relies on traditional control methods, with RL as a supplement to
improve traditional control methods, such as ADRC-based NAC controller [102], MPC-
based DDPG controller [104], and PID-based SAC controller [128]. The latter directly
builds a control framework based on RL, i.e., end-to-end RL controllers, to train the mo-
tion control capabilities and improve control performance, such as [17]. Comparing the
two control frameworks, the data flow logic of the former is determined by the structure
of the set traditional control method, while the data flow logic of the latter is related to
the designed deep network. Although it is not possible to conclude from the surveyed
literature which one of the RL routes above is superior for motion control, it is certain that
the participation of reinforcement learning has the potential to explore and improve control
performance [109,111].

4.3. RL for Planning and Decision Making Tasks

Compared to bionic action control tasks and motion control tasks, decision making
tasks for bionic underwater robots are more diverse, such as searching [69], obstacle avoid-
ance [115], formation control [116,117], and other swarm strategies [118–120]. The majority
of current research on RL-based decision making for bionic underwater robots is conducted
in simulation environments. However, in the case of bionic underwater robots, the peri-
odic envelope of bionic flapping, especially in obstacle avoidance problems, needs to be
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considered by RL-based decision making methods. In addition, the disturbance factors in
the underwater environment must be considered as safety elements.

In decision making tasks, underwater searching has practical application prospects.
For the task of searching the water tank boundary, model-based Q-learning was conducted
with G9 robotic fish [69]. In [130], based on an intelligent visual servo Q-learning algorithm,
the bionic soft robot for target searching was trained by a threshold reward system, which
takes a certain degree of tolerance for target pointing errors. In addition, a three-stage
real-world deep RL framework was proposed to achieve underwater autonomous explo-
ration of robotic sharks [87], in which real-world training improves the adaptability to
sensor noise and the real-world environment, achieving a safe and efficient underwater
autonomous search event.

From the perspective of formation control tasks, studies have shown that RL methods
can explore the energy-saving mechanism of machine fish formation in fluid environ-
ments [116], that is, efficient swimming is achieved through the eddies of adjacent regions,
which is inspiring for the study of cluster energy efficiency. For decentralized circle for-
mation control for fish-like robots, a new MARL method based on value decomposition
networks (VDN) was proposed [16], and the cognitive consistency of multi-agents realized
by parameter sharing and the centralized training mechanism with decentralized execution
is an important factor in the effective formation of control methods. A dueling double DQN
(D3QN)-based approach in the leader–follower topology was proposed for end-to-end
formation control [117], and the blindness of agent exploration at the beginning of training
was reduced through imitation learning. Similarly, ref. [120] discussed the leadership
strategy of machine fish for real agents.

From the perspective of obstacle avoidance tasks, a one-step actor–critic-based obstacle
avoidance algorithm for self-propelled fish was designed in [115], which controls the robot
to avoid multiple obstacles. In addition, an interesting water polo ball heading strategy
for robotic fish with hybrid fin propulsion was proposed [121], which decomposes the
action and is implemented based on the SAC method. Robotic fish adversarial/cooperative
problems, such as chase–escape games [119] and “2v2 games” [118], are also discussed.
Reinforcement learning is highly suitable for solving decision making problems. However,
relevant research on bionic underwater robots is still insufficient. A large number of
decision making and planning tasks need to be further explored to enhance the individual
intelligence of bionic robots.

5. Training and Deployment Methods of RL on Bionic Underwater Robots

In the training and deployment of bionic underwater robots, reinforcement-learning-
based methods face two main challenges. First, the underwater environment is complex,
making modeling difficult, and the transfer performance from simulation to real environ-
ments is uncertain. Second, the computational complexity of algorithms supported by
resource-limited bionic robot systems is limited. Therefore, this section summarizes the
training methods, deployment methods, and training techniques in the related literature,
and discusses the computational complexity of reinforcement learning algorithms.

5.1. Training and Deployment Framework

Analyzing the specific implementation of RL methods in Table 2 from a statistical
perspective, many studies have attempted to train intelligent agents in simulation environ-
ments and directly transfer them to underwater environments for validation. The effective
transfer of RL algorithms from training to deployment is a major aspect of research fo-
cus.According to the surveyed works, effective training and deployment frameworks can
be categorized into five types, as shown in Table 3.
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There are relatively few studies based on real-world training deployment, as pre-
sented in Table 2, excluding those that were trained directly in a real-world environment
without pre-training. The convergence speed and training accuracy are two objectives of
RL training, as mentioned in [81]. The combination of pre-training and high-precision
training can improve training speed in the early stages and training accuracy in the later
stages. The aforementioned three training deployment frameworks all reflect this approach,
and the actual algorithm performance also verifies its effectiveness.

Figure 3 presents several valuable training environments for bionic underwater robots.
The self-switching simulator (Tri-S) system, shown in Figure 3a, is suitable for RL-based
decision tasks that are difficult to complete in real environments; however, it relies on
precise CFD models to ensure the performance in real environments. The semi-fixed under-
water training platform with yaw freedom is based on force sensors, as shown in Figure 3b,
which is suitable for RL-based bionic action control tasks. The reward feedback related
to propulsion force, heading angle, and energy consumption can be obtained through the
force sensor and onboard sensors. RL training based on this platform allows interaction
with the real underwater environment, ensuring the deployment accuracy of the method.
The underwater deployment environment based on global vision, shown in Figure 3c, is
suitable for position control or path tracking control tasks, and the global vision system can
calculate the robot’s pose, providing conditions for RL algorithm deployment. However,
training on this platform still poses some difficulties, and the processing delay of visual
signals may not meet the control frequency of high-swimming-speed underwater robots.
If this environment is to be used for real-world training, sufficient and safe termination con-
ditions are necessary. The obstacle environment based on real-world environments, shown
in Figure 3d, is suitable for training underwater decision tasks, such as target searching and
path planning, provided that the bionic underwater robot itself has complete perception
feedback required for the task.

Physical

Platform

Creating models in simulation Creating models in simulation

Deploying the trained policy 

on real system

(a) (b)

(c) (d)

Wireless 

channel

Global vision

x
yz

Rotational stage 

with free yaw

Force and torque sensor

Clamping structure

Figure 3. RL training and deployment environment for bionic underwater robots. (a) Self-switching
simulator (Tri-S) system [18]. (b) Underwater semi-fixed training platform based on mechanical
sensors. (c) Underwater deployment environment based on global vision. (d) Diagram of the
real-world training environment [87].
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Table 3. Existing effective training and deployment frameworks.

ID Training Deployment Primary Computational Cost

1 Simulation-based training Simulation-based deployment Robot modeling cost
2 Simulation-based training Real-world deployment Robot modeling cost

3 [18] Numerically driven simulation
training⇒ CFD-based training Real-world deployment CFD modeling cost, high-precision

simulation cost

4 [131] Imitation-learning-based teaching⇒
Simulation-based training Real-world deployment Physical data acquisition cost

5 [87] Imitation-learning-based pre-training
⇒ Real-world training Real-world deployment Supervision cost for underwater

training, safety risks of robot motion

Combined control and decision tasks for bionic underwater robots are complex.
From the perspective of the existing RL algorithm, the hierarchical RL framework [132],
as shown in Figure 4, is conducive to reducing the curse of dimensionality, improving the
performance of each layer of algorithms in turn, and helping to build a complete, intelligent,
bionic underwater robot system.
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Figure 4. Hierarchical reinforcement learning framework.

5.2. Training Techniques

Effective training techniques are beneficial for improving the performance of RL
algorithms in bionic underwater robot tasks. For example, four strategies, i.e., prioritized
experience replay, actor network indirect supervision training, target network updating
with different periods, and expansion of exploration space by applying random noise,
were applied in [106], respectively, to eliminate the correlation of training data, ensure
the stability and speed of the convergence of the reinforcement learning AC network,
update the critic network faster, and more accurately evaluate and improve the actor
network’s generalization ability. Highly correlated data may lead to local convergence
in RL [133]. One solution is to perform random sampling in the experience replay buffer,
but this solution is only suitable for off-policy RL [133]. Another solution is multi-agent RL.
With the increase in the number of agents, the computational complexity of multi-agent RL
also increases.

To facilitate overcoming difficulties during the training process, more detailed tech-
niques have been summarized as follows. To avoid the blindness of the agent improvement
in the early stage of training, an imitation-based action selection strategy [117] and teaching
initialization [87] are used in RL algorithm training. In order to prevent the RL algorithm
from being trapped in the optimum and to accelerate the training, the go-explore strategy
in [95] is used, which records the encountered states into an archive and replays them at the
beginning of subsequent episodes. These two training techniques are relatively common in
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RL methods. However, when facing underwater environments and bionic platforms, more
techniques are required.

Two training techniques were adopted in [93] to obtain a superior solution: the adver-
sarial model and a two-stage reward function. The adversarial model calculates the reward
at each step based on the performance parameters of two competing robots, while the two-
stage reward strategy designs two different rewards for each step distance and each episode
power consumption to balance the two optimization objectives. In addition, the hierarchical
training method, including initial training and iterative training, was proposed in [112] to
deal with the control coupling and frequency difference between two agents in multi-agent
reinforcement learning methods. During training in [97], a random disturbance was added
to the position, velocity, and angle of the joints of the initial robot in each episode, to in-
crease the adaptability to the initial perturbation state. In addition, most bionic underwater
robots have periodic motion, so real-time output of the reinforcement learning control
algorithm is not necessary, and periodic control output is more suitable for the needs of
bionic underwater robots. The learned policy’s action distribution via regression is fitted as
mathematical functions in [134], so that the reinforcement learning control strategy can be
fine-tuned after algorithm deployment. Moreover, centralized training with decentralized
execution (CTDE) is a common training paradigm for swarm tasks [16].

The goal of [130] differs from other approaches aimed at improving control accuracy,
as it employs a threshold reward system that demonstrates a certain degree of tolerance
for underwater tracking errors. In underwater turbulent environments, precise motion to
a specific location is difficult, and in underwater search tasks, small tracking errors can
be tolerated. Therefore, the threshold reward system [130] not only helps to reduce the
training difficulty reasonably, but also encourages the agent to approach the target with
a natural intuition.

5.3. Computational Complexity

The computational complexity of RL algorithms usually needs to consider two aspects:
the computational complexity during training and the computational complexity during
deployment. The computational complexity during training is related to the specific RL
method chosen, the training environment, and the algorithm convergence speed, which
usually involves complex calculations and takes a long time. On the other hand, the com-
putational complexity during deployment for some RL algorithms often only requires
a few matrix operations to be completed [18]. Bionic underwater robot platforms usually
have a small hull and limited computing power. Therefore, evaluating the computational
complexity of RL algorithms in bionic underwater robots is crucial, as it determines whether
they can be deployed in real bionic underwater robot systems, as well as the real-time
performance of the algorithm after deployment.

In the surveyed works, the computational complexity and real-time deployment of RL
algorithms in the field of bionic underwater robots are rarely discussed. In [17], based on
the DDPG policy, the deployment computational complexity based on a five-layer deep
neural network was carefully calculated, which is approximately at the order of 103, and the
running time based on a microcontroller (STM32F103) is about 10 ms, which can be directly
deployed onto the robotic fish. In addition, ref. [18] pointed out the training period of the
proposed algorithm. The whole learning process takes 16 days, where the first 350 episodes
within the surrogate environment take only 50 min [18]. That is, the learning process for just
50 episodes with the CFD environment needs 16 days, which confirms the computational
complexity during training. It is worth noting that its computational complexity is related
to the CFD-based simulation training environment.

6. Challenges and Future Trends

Research on reinforcement learning methods for bionic underwater robots is currently
still in its early stages, and faces numerous challenges posed by underwater environments
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and bionic systems. This section will discuss these challenges and future trends in two parts,
hoping to provide some feasible directions for future development.

6.1. Challenges
6.1.1. Inevitable Modeling

It should be noted that the meaning of “model” in “robot model” is different from
that in “model-free” of reinforcement learning (RL). The former is usually built based on
dynamic analysis, CFD models, or numerical simulation, and is used to construct simulation
training environments. The latter is related to the state transition information of RL
agents. Most of the RL training or pre-training of robots relies on simulation environments.
Therefore, even if model-free RL methods are used to design controllers or decision-makers,
it is still necessary to configure the simulation environment based on the model of the
specific bionic underwater robot platform.

6.1.2. Transferability to the Real-World Environment

The transferability of RL algorithms from simulations to the real-world underwater
environment is generally uncertain. The simulation training environment for bionic under-
water robots faces challenges in modeling underwater fluids and the robots themselves.
Simulation training environments based on the dynamics model of bionic underwater
robots have high training efficiencies, but often cannot maintain identical performances
to those of simulations when deployed in the real-world, making it difficult to evaluate
their sim-to-real performance. Numerically driven simulation training environments can
further reduce the gap between simulations and reality [18], but require large amounts of
physical data acquisition. CFD-based simulation training environments can improve the
training accuracy of the simulation environment, but rely heavily on computing resources,
and can be time-consuming [135,136]. However, training bionic underwater robots directly
deployed in the real environment is not yet widely conducted, and lacks mature solutions.
In summary, designing RL algorithms that ensure transferability remains a challenge.

6.1.3. Sample Efficiency of Training

RL algorithms usually require a large number of interactions with the environment
to learn the optimal policy. In underwater robots, data collection is expensive and time-
consuming, making it a significant challenge to improve sample efficiency. In particular,
training bionic underwater robots in real-world environments requires higher monitor-
ing and time costs for robot–environment interactions. Therefore, building an efficient
training/deployment framework remains a challenge for RL research on bionic underwa-
ter robots.

6.1.4. Security of Deploying RL in Underwater Environments

For bionic underwater robots, the underwater environment has a cushioning effect on
the impacts the robot’s body, which is advantageous for the robot itself. However, when
applied to unknown environments, the robot may act in unconventional or dangerous
ways during the RL-based learning process [96]. At the same time, the safety of the decision
outputs by the RL agent cannot be traversally verified, and the RL-based bionic underwater
robot control or decision task executor may guide the robot to the wrong area, resulting in
the damage or loss of the robot. The security of algorithm deployment presents a critical
challenge in the application of RL to bionic underwater robots.

6.1.5. Robustness and Adaptability for Continuous Disturbances in Underwater Environments

Underwater environments typically have continuous, unstructured disturbances,
which pose high demands on the performance of RL algorithms in unknown environments.
Firstly, RL algorithms need to face the impact of factors such as water flow, water pressure,
and limited visibility in underwater environments. Secondly, underwater environments
have continuous interference and noise, making RL methods that can adapt to changing
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environments necessary. A Bayesian method for handling uncertainty [137] has been
attempted for RL-based anti-disturbance control, but its computation is complex. Over-
all, the design of RL methods for continuous disturbances in underwater environments
needs to consider two factors: on one hand, simulate the disturbances of underwater envi-
ronments in the training environment, and on the other hand, improve the performance
of the system in disturbance environments through reasonable reward settings. Main-
taining the performance of RL in underwater environments with disturbances remains
a challenging issue.

6.1.6. Computational Complexity and Online Deployment

Autonomous bionic underwater robots are expected to achieve “intelligence” through
reinforcement learning algorithms, and online optimization of agents after deployment
helps the bionic robot achieve continuous improvement in its decision making ability in
different environments. However, the computational resources of the bionic underwater
robot platform are limited, and the complexity of the computations it can perform is
limited. The time cost of training and the computational cost of algorithm deployment both
determine whether an intelligent agent can be updated and optimized online. In addition,
online updates affect the lifespan, durability, and properties of the robot, and the motion
wear, malfunctions, and other issues of the robot’s mechanism may interrupt optimization.

6.2. Future Trends
6.2.1. Multiple Bionic Motion Combination Control

The current bionic action control methods only learn periodic basic actions, while
the swimming motion of real fish is often a combination of several basic actions [138].
We know that the efficient swimming of fish is related to their ability to conform to the
flow field while flapping, and for bionic underwater robots, the combination of multiple
swimming motions helps to achieve more precise bio-inspired propulsion, resulting in
more efficient propulsion and higher swimming maneuverability. The optimization of
bionic motion combinations is of great research significance for bionic underwater robots.
Reinforcement learning methods are good at making decisions for combination actions,
and under reasonable rewards and action configurations, bionic underwater robots are
expected to achieve better propulsion performance.

6.2.2. Applicable Training Schemes for Underwater Environments

Reinforcement learning provides the conditions for the intelligence of bionic under-
water robots. However, bionic underwater robots are characterized by underactuation,
and are required to navigate complex underwater environments, which poses challenges
to ensuring the safety of intelligent agents operating in such environments. At present,
the training framework for bionic underwater robots is not complete, especially in terms of
performance in real underwater environments. Therefore, due to the particularity of bionic
underwater robots, research and deployment of reinforcement learning algorithms tailored
to local conditions still needs to be continuously advanced.

6.2.3. Improving the Transferability and Generalization of RL

Adaptation and domain randomization are techniques in reinforcement learning used
to improve algorithm generalization performance and achieve simulation-to-reality transfer.
The adaptation technique aims to enable learning algorithms to transfer between differ-
ent environments or tasks, including domain adaptation and policy adaptation. Domain
randomization, on the other hand, randomly changes parameters in the simulation environ-
ment during the training process, such as physical properties and environmental conditions,
to enable the learned policy to adapt to various possible changes. By training agents to face
a large number of different situations, they are forced to learn more robust and general
policies. By applying adaptation and domain randomization techniques, reinforcement
learning algorithms can learn policies with stronger generalization ability in the simulation
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environment, leading to better performance in the real environment, which is an important
area for future research.

6.2.4. General Simulation Training Environment

Currently, reinforcement learning methods in the field of bionic underwater robots
have made initial research progress. However, many of the proposed methods are diffi-
cult to compare directly, and the pros and cons of the algorithms are difficult to discern.
In 2022, a novel RL training platform FishGym was designed, as reported in [139], based on
a localized, two-way coupled fluid–structure interaction simulation model, and equipped
with reinforcement learning components. Inspired by this, if bionic underwater robot plat-
forms can be precisely established as Gym environments through digital twin technology,
researchers in the field of reinforcement learning can become more specialized in obtaining
higher performances of RL algorithms, laying a foundation for further research on RL
intelligent algorithms.

6.2.5. Performance Evaluation System of RL in the Field of Bionic Underwater Robots

According to statistical data, most RL-based control and decision making methods
only verify their effectiveness and feasibility [99,140], and only a few compare RL with
other traditional methods. On the one hand, the evaluation criteria for RL algorithms
in the field of bionic underwater robots are unknown, and there is a lack of a baseline.
On the other hand, the algorithms for different robot platforms are diverse and difficult
to reproduce, so the recognized performance evaluation indicators in the field deserve
further clarification.

6.2.6. Complete RL-Based Algorithm Framework for Bionic Underwater Robots

For a complete task of an bionic underwater robot, task layering can effectively achieve
the reduction in state space dimensions and solve the problem of dimensionality catas-
trophe [141]. Hierarchical reinforcement learning is committed to decomposing complex
reinforcement learning problems into multiple sub-problems, and solving them separately
to achieve better results than directly solving the entire problem. Hierarchical reinforce-
ment learning and multi-agent reinforcement learning methods are suitable for building
a complete algorithm framework for bionic underwater robots. In addition, the neural
networks of animals are mostly spiking neural networks, and spiking neural networks [129]
help to achieve the selection of 0/1 actions in the DRL framework, such as the selection be-
tween power-saving mode and full-power mode. Further in-depth research based on DRL
is needed to develop a complete intelligent algorithm framework for bionic underwater
intelligent robots.

6.2.7. Individual Intelligence of Bionic Underwater Robots

Bionic underwater robots have important application values in water resources ex-
ploration, underwater searching, and other aspects. The improvement of the individual
intelligence of bionic underwater robots is of great significance for their independent com-
pletion of complex underwater tasks. Reinforcement learning can provide online decision
support and optimization suggestions for bionic underwater robots, and also has the ability
to adapt to changing tasks and environments, which can assist bionic underwater robots in
maintaining robustness and fault tolerance under uncertain factors such as communication
interruption and hardware failure. Reinforcement learning has the potential to bring signif-
icant advances to the applications of bionic underwater robots, addressing the challenges
faced by individual intelligence and providing new possibilities for the development of
bionic underwater robot technology in the future.

6.2.8. Multi-Agent Collaboration and Coordination

In many underwater tasks, a single robot may find it difficult to complete the task or
have low efficiency, so multiple robots are needed to work together. The study of bionic
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underwater robot swarm is one of the hotspots in the field. In this case, it is crucial to
design reinforcement learning algorithms that can achieve multi-agent collaboration and
coordination. In multi-agent learning, shared or decentralized learning methods can help
solve the coordination problem of multiple robots. At the same time, meta-learning, online
learning, or transfer learning methods can make the multi-agent system more adaptable and
have stronger learning ability. In the future, developing RL algorithms that can effectively
handle multi-agent scenarios and promote cooperation is a promising research direction.

7. Conclusions

Reinforcement learning shares a similar concept with biological evolution, and has
significant research value in the field of bionic underwater robots. Currently, reinforcement
learning research has been widely applied to bionic action control, motion control, plan-
ning, and decision making of bionic underwater robots, which are exposed to complex
underwater environments and are underactuated. Feasible algorithm designs have been
proposed for specific bionic underwater robot platforms, and the available research on
training and deployment frameworks is worth referring to. The intersection of bionic
underwater robots and RL is still in its initial stages and requires further exploration.

In the future, the development of reinforcement learning in the bionic underwater
robot community depends on mature training and deployment solutions, innovative high-
performance RL algorithms, and well-known platforms or evaluation systems. In addition,
the individual and collective intelligence of bionic underwater robots relies on the se-
quential decision making and cooperation coordination ability of reinforcement learning.
The development in this field is promising.

Author Contributions: Conceptualization, J.Y. and R.T.; methodology, J.Y. and R.T.; resources, R.T.
and Z.W.; investigation, R.T. and Y.F.; data curation, J.Y. and M.T.; writing—original draft preparation,
J.Y., R.T. and Y.F.; writing—review and editing, J.Y., Z.W., J.W. and M.T.; supervision, J.Y.; project
administration, J.Y.; formal analysis, J.Y. and M.T.; funding acquisition, J.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62233001, Grant T2121002, and Grant 62073196; the Joint Fund of Ministry of Education
for Equipment Pre-Research under Grant 8091B022134; and the Postdoctoral Innovative Talent
Support Program under Grant BX20220001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data generated during the current study are available from the
corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Videler, J.J.; Wardle, C.S. Fish swimming stride by stride: Speed limits and endurance. Rev. Fish Biol. Fish. 1991, 1, 23–40.

[CrossRef]
2. Bainbridge, R. The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Exp. Biol.

1958, 35, 109–133. [CrossRef]
3. Mitin, I.; Korotaev, R.; Ermolaev, A.; Mironov, V.; Lobov, S.A.; Kazantsev, V.B. Bioinspired propulsion system for a thunniform

robotic fish. Biomimetics 2022, 7, 215. [CrossRef]
4. Baines, R.; Patiballa, S.K.; Booth, J.; Ramirez, L.; Sipple, T.; Garcia, A.; Wallin, E.; Williams, S.; Oppenheimer, D.; Rus, D.; et al.

Multi-environment robotic transitions through adaptive morphogenesis. Nature 2022, 610, 283–289. [CrossRef]
5. Zhong, Y.; Li, Z.; Du, R. A novel robot fish with wire-driven active body and compliant tail. IEEE ASME Trans. Mechatron. 2017,

22, 1633–1643. [CrossRef]
6. Li, T.; Li, G.; Liang, Y.; Cheng, T.; Dai, J.; Yang, X.; Sun, Z.; Zhang, X.; Zhao, Y.; Yang, W. Fast-moving soft electronic fish. Sci. Adv.

2017, 3, e1602045. [CrossRef]

http://doi.org/10.1007/BF00042660
http://dx.doi.org/10.1242/jeb.35.1.109
http://dx.doi.org/10.3390/biomimetics7040215
http://dx.doi.org/10.1038/s41586-022-05188-w
http://dx.doi.org/10.1109/TMECH.2017.2712820
http://dx.doi.org/10.1126/sciadv.1602045


Biomimetics 2023, 8, 168 24 of 29

7. Meng, Y.; Wu, Z.; Yu, J. Mechatronic design of a novel robotic manta with pectoral fins. In Proceedings of the 2019 IEEE 9th
Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou,
China, 29 July–2 August 2019; pp. 439–444.

8. Meng, Y.; Wu, Z.; Dong, H.; Wang, J.; Yu, J. Toward a novel robotic manta with unique pectoral fins. IEEE Trans. Syst. Man
Cybern. Syst. 2022, 52, 1663–1673. [CrossRef]

9. Thandiackal, R.; White, C.H.; Bart-Smith, H.; Lauder, G.V. Tuna robotics: Hydrodynamics of rapid linear accelerations.
Proc. Biol. Sci. 2021, 288, 20202726. [CrossRef] [PubMed]

10. Du, S.; Wu, Z.; Wang, J.; Qi, S.; Yu, J. Design and control of a two-motor-actuated tuna-inspired robot system. IEEE Trans. Syst.
Man Cybern. B Cybern. 2019, 51, 4670–4680. [CrossRef]

11. White, C.H.; Lauder, G.V.; Bart-Smith, H. Tunabot Flex: A tuna-inspired robot with body flexibility improves high-performance
swimming. Bioinspir. Biomim. 2021, 16, 026019. [CrossRef] [PubMed]

12. Zheng, C.; Ding, J.; Dong, B.; Lian, G.; He, K.; Xie, F. How non-uniform stiffness affects the propulsion performance of a
biomimetic robotic fish. Biomimetics 2022, 7, 187. [CrossRef] [PubMed]

13. Ren, Q.; Xu, J.; Li, X. A data-driven motion control approach for a robotic fish. J. Bionic Eng. 2015, 12, 382–394. [CrossRef]
14. Wang, R.; Wang, S.; Wang, Y.; Tan, M.; Yu, J. A paradigm for path following control of a ribbon-fin propelled biomimetic

underwater vehicle. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 482–493. [CrossRef]
15. Manderson, T.; Higuera, J.C.G.; Wapnick, S.; Tremblay, J.F.; Shkurti, F.; Meger, D.; Dudek, G. Vision-based goal-conditioned

policies for underwater navigation in the presence of obstacles. arXiv 2020, arXiv:2006.16235.
16. Zhang, T.; Li, Y.; Li, S.; Ye, Q.; Wang, C.; Xie, G. Decentralized circle formation control for fish-like robots in the real-world

via reinforcement learning. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA),
Xi’an, China, 30 May–5 June 2021; pp. 8814–8820.

17. Zheng, J.; Zhang, T.; Wang, C.; Xiong, M.; Xie, G. Learning for attitude holding of a robotic fish: An end-to-end approach with
sim-to-real transfer. IEEE Trans. Robot. 2022, 38, 1287–1303. [CrossRef]

18. Zhang, T.; Tian, R.; Yang, H.; Wang, C.; Sun, J.; Zhang, S.; Xie, G. From simulation to reality: A learning framework for fish-like
robots to perform control tasks. IEEE Trans. Robot. 2022, 38, 3861–3878. [CrossRef]

19. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature
2016, 529, 484–489. [CrossRef]

20. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]

21. Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for
legged robots. Sci Robot. 2019, 4, eaau5872. [CrossRef]

22. Cui, R.; Yang, C.; Li, Y.; Sharma, S. Adaptive neural network control of auvs with control input nonlinearities using reinforcement
learning. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1019–1029. [CrossRef]

23. Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning quadrupedal locomotion over challenging terrain. Sci. Robot.
2020, 5, eabc5986. [CrossRef] [PubMed]

24. Andrychowicz, O.M.; Baker, B.; Chociej, M.; Jozefowicz, R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Powell, G.;
Ray, A.; et al. Learning dexterous in-hand manipulation. Int. J. Robot. Res. 2020, 39, 3–20. [CrossRef]

25. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
26. Lagoudakis, M.G.; Parr, R. Least-squares policy iteration. J. Mach. Learn. Res. 2003, 4, 1107–1149.
27. Niu, S.; Chen, S.; Guo, H.; Targonski, C.; Smith, M.; Kovačević, J. Generalized value iteration networks: Life beyond lattices.
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