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An Accurate Outlier Rejection Network With Higher
Generalization Ability for Point Cloud Registration

Shiyi Guo
Yujie Fu

Abstract—Feature-based point cloud registration algorithms
have gained more attention recently for their high robustness.
Outlier rejection is a key step of such algorithms. With the develop-
ment of deep learning, some of the learning-based outlier rejection
methods have been proposed and implemented in various scenes.
However, generalization ability and accuracy of the existing meth-
ods in complex scenes still need to be improved. In this letter, we
construct a neural network for removing outlier correspondences.
Particularly, we propose a novel seed selection method based on
feature consistency (FC) and a new loss function based on second
order feature consistency (FC?). Experimental results on various
datasets show the proposed network achieves better accuracy and
stronger generalization ability than the state-of-the-art learning-
based algorithms.

Index Terms—Point cloud registration, outlier rejection, 3D
feature.

I. INTRODUCTION

HE aim of point cloud registration is to calculate the
Ttransformation matrix between two partially overlapped
point clouds, which is an extremely important task in many
applications of robotics and computer vision, such as simul-
taneous localization and mapping (SLAM) [1], [2], [3], [41, [5].
augmented reality [6] and 3D reconstruction [7], [8], [9], [10].
Recently, the feature-based point cloud registration has attracted
more attention in the rapid development of 3D feature process-
ing [10], [11], [22], [13], [14]. In feature-based point cloud regis-
tration, usually the 3D local features extraction and matching are
implemented to build feature correspondences. However, cor-
respondences obtained by feature matching still contain many
outliers. So outlier rejection needs to be implemented to remove
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outliers and obtain inliers, which is critical for correct point
cloud registration, especially in small overlap scenes.

The outlier rejection algorithms in point cloud registration
have been widely studied. In the point cloud registration task,
RANSAC [15] can achieve high accuracy in most of challenging
scenarios, which is widely used for removing outliers in the
field of computer vision and mathematics. However, it often
consumes a lot of time to get correct results. Spectral matching
(SM) [16] is a traditional algorithm which relies on spatial
consistency (SC), a strong constraint obtained by rigid trans-
formation, to realize outlier rejection. The execution speed of
SM is fast, but the accuracy is low in the scene with a high
outlier ratio. In recent years, some learning-based 3D outlier
rejection algorithms are proposed, such as DGR [17], 3DReg-
Net [18] and PointDSC [19]. In these learning-based algorithms,
PointDSC achieves the state-of-the-art performance by building
adeep neural network and adding spatial consistency constraints
explicitly. For input correspondences, PointDSC utilizes Spatial
Consistency guided Nonlocal (SCNonlocal), MLP-based seed
selection, Neural Spectral Matching (NSM) and hypothesis se-
lection to obtain inlier correspondences and a final transforma-
tion matrix. Based on SC, the second order spatial consistency
(SC?) [20] is proposed and has better performance on estab-
lishing consistent sets of correspondences than SC regardless of
learning or not.

However, the existing learning-based outlier rejection al-
gorithms have insufficient accuracy and generalization ability
in some challenging scenes. 3DRegNet [18] and DGR [17]
formulate outlier rejection as a classification problem, which
use MLP [21] and convolution [22] to classify the input corre-
spondences. They only rely on parameter fitting and ignore the
strong constraint of rigid transformation in 3D space, and have
low accuracy and poor generation ability in complex scenes.
PointDSC [19] achieves the state-of-the-art performance by ex-
plicitly adding SC, a constraint obtained by rigid transformation.
Its accuracy in some challenging scenes, especially in the low
overlap point cloud pairs, still can be improved. Also, its general-
ization ability still can be improved for its excessive dependence
on the obtained features and the fitting ability of MLP.

In this article, we give a learning-based outlier rejection
network with high accuracy and strong generalization ability for
point cloud registration. Firstly, for input correspondences, each
correspondence is embedded into a high-dimensional geometric
feature space through a nonlocal module based on spatial con-
sistency. Secondly, in order to reduce the dependence on MLP,
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the obtained features are passed through a seed selection module
which explicitly use feature consistency (FC) to obtain the seeds
with high correlation with other correspondences instead of
MLP fitting in PointDSC. Thirdly, the SC? and the constructed
features are utilized to find the consistent set corresponding to
each seed [20]. Finally, we calculate the pose transformation
matrix corresponding to each consistent set, and obtain the final
result through hypothesis selection. In addition, we propose a
new loss function based on the second order feature consistency
(FC?), which considers the relationship between a pair of corre-
spondences and other correspondences, to improve the accuracy
of the proposed network. The proposed method inherits the basic
framework of PointDSC. The main differences of the proposed
method are that a novel seed selection mechanism based on FC
is proposed to obtain the seeds with high correlation with other
correspondences, and a new loss function based on FC? is also
proposed. To summarize, the contributions of the letter are as
follows:
A novel seed selection mechanism based on FC is pro-
posed to obtain the seeds with high correlation with other
correspondences.
A new loss function based on FC? is proposed, which con-
siders the relationship between a pair of correspondences
and other correspondences.
Based on the above seed selection mechanism and loss
function, we construct an outlier rejection network for
point cloud registration. Experimental results about both
accuracy and generalization ability on public datasets show
that our network presents the superior performance over the
previous learning-based methods.

The rest of this letter is organized as follows. The related work
is reviewed in Section 11 and the details of the proposed method
are described in Section I11. Experiment results are presented in
Section 1V, followed by the conclusion in Section V.

Il. RELATED WORK
A. Point Cloud Registration

Traditional algorithms of point cloud registration have been
reviewed in [23]. In these algorithms, Iterative Closest Point
(ICP) [24] has been widely used for its good performance.
However, ICP-based methods usually fall into the wrong local
minimum when without good initialization.

In recent years, the feature-based point cloud registration,
which realizes point cloud registration by establishing feature
correspondences, has attracted more attention in the rapid de-
velopment of learning-based feature. It includes 3D keypoint
detection [10], [25] and local descriptor extraction [10], [11],
[12], [13], [14], [26], [27], [28]. In addition, some recent
networks improve the performance by designing coarse-to-
fine [29], [30] and overlap modules [31], [32]. These features
have strong description ability, which makes feature-based point
cloud registration more robust and can be used in various scenes.
Although these algorithms achieve significant performances,
they can hardly establish outlier-free correspondences, which
makes outlier rejection indispensable.

Besides, several direct point cloud registration methods based
on end-to-end networks have been studied in recent years. There
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are some excellent network architectures [33], [34], [35], [36],
[37] among these methods. In addition, a new loss function is
proposed in [38]. However, their robustness and accuracy still
need further improvement in complex scenes.

B. Outlier Rejection for Point Cloud Registration

In traditional outlier rejection methods, RANSAC [15] and its
variants [39], [40] are the most popular methods for their high
accuracy and robustness. However, since there are usually thou-
sands of feature correspondences between two point clouds and
the minimum number of correspondences for solving this task is
3, these algorithms converge slowly and consume a lot of time.
SC is a strong constraint obtained by the rigid transformation,
which is widely used in outlier rejection for point cloud regis-
tration. SM [16] utilizes SC and matrix decomposition to realize
a fast outlier rejection, but its accuracy is low, especially in the
scene with a high outlier ratio. Recently, based on SC, SC? [20]
has been proposed and Chen et al. [20] have theoretically proved
that SC? reduces the probability of outliers being included in
the consensus set of correspondences. SC? can be used in both
traditional methods and learning-based methods. SC2-PCR [20]
directly processes each correspondence, utilizes SC? to realize
high accuracy on establishing consistent sets, and carries out a
two-stage sampling strategy in a coarse-to-fine mannner, which
achieves the state-of-the-art performance in traditional methods.

With the rapid development of deep learning, many learning-
based outlier rejection methods [17], [18], [19] have been pro-
posed. In 3DRegNet [18] and DGR [17], outlier rejection is
formulated as a classification problem. These two methods use
MLP [21] and convolution [22] to classify the input corre-
spondences. DHVR [41] utilizes deep hough voting to identify
the consensus and predict the final transformation. However,
they ignore the strong constraint of SC in 3D space. Different
from them, PointDSC [19] is proposed which explicitly adds
SC, a constraint obtained by the rigid transformation. In the
framework of PointDSC, each correspondence is embedded into
a high-dimensional geometric feature space through a nonlocal
module based on SC. PointDSC uses feature embedding, con-
struction of multiple consistent sets and hypothesis selection
to achieve the state-of-the-art performance in learning-based
methods. However, its accuracy in some challenging scenes,
especially in the low overlap point cloud pairs, is not enough.
Besides, its generalization ability is insufficient for its excessive
dependence on the obtained features and the fitting ability of
MLP.

Our algorithm is a learning-based method. We construct our
network by making full use of SC and SC?, and propose a new
seed selection method based on feature consistency (FC) and
new loss function based on second order feature consistency
(FC?). Our network realizes better performance than the above
learning-based algorithms in accuracy and generalization ability.

I1l. METHODOLOGY

Asshown inFig. 2, the proposed algorithm includes five mod-
ules: feature embedding, seed selection, consistent set calcula-
tion, transformation matrix calculation, and hypothesis selec-
tion. The input correspondences, C RN 6, are passed through
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Fig. 1. Qualitative registration results on 3DLoMatch dataset, which show the
proposed network can successfully align two point clouds with very low overlap
ratio.
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Fig. 2.  Pipeline of the proposed network which realizes outlier rejection from
the input correspondences. The input correspondences, C, are passed through a
feature embedding module to obtain the geometric features of each correspon-
dences through a nonlocal module. These features are passed through a seed
selection module based on feature consistency to obtain the correspondences
which have high correlation with others, and the obtained correspondences are
set as seeds. Then SC? and the constructed features are utilized to find the
consistent set corresponding to each seed [20]. Finally, the pose transformation
matrix corresponding to each consistent set is calculated, and the final output
correspondences through hypothesis selection are obtained. In Fig. 2, ared line
represents a wrong correspondence and green line represents a right correspon-
dence. Best viewed in color with 200% zoom in.
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Fig. 3. Nonlocal module in [19] (Left) and nonlocal layer in it (Right). SCM
is the spatial consistency matrix obtained by (1) and F represents features
generated by the previous layer. Best viewed with 200% zoom in.

a feature embedding module to obtain the geometric features of
each correspondence through a nonlocal module (Section I11-A).
These features are passed through a seed selection module based
on feature consistency to obtain the correspondences with high
correlation with other correspondences, which are set as seeds
(Section 111-B). Then the second order spatial consistency (SC?)
and the constructed features are utilized to find the consistent
set corresponding to each seed [20] (Section 111-C). Finally, we
calculate the pose transformation matrix corresponding to each
consistent set, and obtain the final result through hypothesis
selection (Section 111-D). In addition, a new loss function based
on second order feature consistency (FC?) is proposed to train
our network (Section I11-E).

A. Feature Embedding

Given two point clouds of the same scene, P;  RIP1l 3 and
P, RIP2l 3 we obtain N correspondences through feature
extraction and matching. The set of these correspondences is
denoted as C RN 6. Each correspondence in C is denoted
as ¢ = (Xi,yi) RS, inwhichx; Pi1,yi P, are the coor-
dinates of 3D keypoints associated by feature matching. The
spatial consistency matrix SCM RN N for C is constructed

by

da
SCMjj =max 1 —3,0 , @)
1
in which dj; is calculated by
dij = Xi Xj, Vi Vi, )

and ; is a constant value and represents the distance param-
eter. The main diagonal elements of SCM are set to 0. Then
the nonlocal module in [19] is implemented to generate the
high-dimension feature of each correspondence, and refine these
features by utilizing feature similarity and SC guidance. Original
non-local module [42] only uses feature similarity to model
long-range dependencies. By contrast, the nonlocal module
in [19] uses both SC and feature similarity to capture better
long-range dependencies tailored for 3D outlier rejection. The
nonlocal module embeds correspondences into a feature space,
where the inliers are close to each other, and it is briefly described
as below.

As shown in the left side of Fig. 3, the nonlocal module
has m blocks, each of which consists of Convld, BatchNorm,
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ReLU and nonlocal layer. The right side of Fig. 3 illustrates the
nonlocal layer, which is a spatial-consistency guided nonlocal
layer. The layer uses both SC and feature similarity to capture
better long-range dependencies. SCM is the spatial consistency
matrix obtained by (1) and F represents the feature generated by
the previous layer. We refer reader to [19] for more information.

The set of features generated by the nonlocal module is
denotedas F RN D,

B. Seed Selection

After generating the features F, some correspondences are
selected as seeds through these embedded features. In order to
find well-distributed and reliable correspondences as seeds, a
new seed selection module is proposed.

Given the embedded features F, the proposed seed selection
module utilizes feature similarity to obtain correspondences
which are similar to the large number of correspondences in

C as seeds. First, the feature consistency matrix FCM RN N
is constructed by
1 (F FT);
FCM;j = max 1 M,o (3)

2

The confidence vector Cof RN of correspondences set C is

calculated through FCM:
; FCM;;
N 4)
Then Non-Maximum Suppression [43] is implemented to high-
light the correspondences with local maximum confidence. Af-
ter this, the correspondences with local maximum confidence
are selected as seeds. The number of seeds is set to N =

N seedratio, in which seedratio is a constant value. The set
of the selected seeds is denotedas S RNz 6,

COfi =

C. Consistent Set Construction

In this module, the consistent set corresponding to each seed
is constructed. We follow the idea of [20] in this part.

First, the second order spatial consistency matrix based on
SCM in (1) is calculated by

SC2=SCM+(SCM SCM), (5)

in which ¢ represents the multiplication of two elements at the
same position of matrix and  represents matrix multiplication.

Second, for each seed s; R® in S, k-nearest neighbor
searching in SC? is performed to get the top ky correspondences.
sj and the top ky correspondences constitute the consistent set
corresponding to seed s;. Then the consistent sets corresponding
to all seeds are constructed.

D. Transformation Matrix Calculation and Hypothesis
Selection

For each consistent set CS ~ C(|CS| = k; + 1), the correla-
tion matrix M R+ (ka+1) petween correspondences in
CS is constructed by

M = SC% * FCs, (6)
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in which SC2g  R®1+1) (ka+1) represents the second order
spatial consistency matrix for CS, FCcs  RK1*+1D) (ka+1) rep.
resents the feature consistency matrix for CS and  represents the
multiplication of two elements at the same position of matrix.

Following [16], the leading eigenvector e R¥1*1 of M is
computed. Then we estimate the transformation through matrix
by

ki+1

Re, te = argmin ej
Rt =

Rxi+t i’ (7
(7) can be solved to obtain rotation matrix Re and translation
vector te by SVD decomposition [24]. By performing such
operations for each consistent set, N; group of transformation
matrix Te = {Re, te} are obtained.

The final module of the proposed algorithm is hypothesis
selection, which aims to select the best transformation matrix
from N; group of transformation matrix generated above. Fol-
lowing [19], we select the best transformation through

N

Re, fe = argmax
Revte

9(Re, te), (8)

i=1

in which function g is constructed by

1, if ReXj+te yi <

Re, 1) = 9
I(Re, te) 0 else ©)
And the final inlier/outlier labels vector clabels RN of C is
calculated by
1, if Rexj+te Vi
clabels; = eXitle ¥ (10)

0, else

Then the final transformation matrix is recomputed using least-
squares algorithm through all the inliers obtained from (10) and
it is denoted as T¢ = {R¢, t¢}, in which R¢ represents final
rotation matrix and t¢ represents final translation vector.

E. Loss Function

After constructing the network, the loss function needs to be
constructed to train the network parameters. Our loss function
consists of two parts: a classification loss item and a second
order feature consistency loss item (denoted as FC? loss). We
first describe the classification loss item and then the FC? loss
item.

Classification loss In this task, the classification loss item is
defined as follows:

Lciassification = BCE(clabels, gtlabels), (11)
in which clabels is the same as clabels in (10), gtlabels RN
is the labels calculated by the ground-truth pose R and t :

. . _
gtlabels; = = T RXi*TL i (12)

0, else

and BCE represents binary cross entropy, a common loss in
classification problems.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 05,2023 at 14:23:56 UTC from |IEEE Xplore. Restrictions apply.



GUO et al.: ACCURATE OUTLIER REJECTION NETWORK WITH HIGHER GENERALIZATION ABILITY FOR POINT CLOUD REGISTRATION

FC2 loss The FC? loss item is defined as follows:

Lrco = [F Cizj ( )i, (13)
ij
and the second order feature consistency matrix is constructed

by

N2

FC? =FCM FCM, (14)
in which FCM is the same as FCM in (3), and RN Njs
calculated by

_ 1L if Rxi+t yi < & Rxj+t  y) <
Y 0, else
(15)

This loss is implemented to supervise the relationships among
correspondences in C.

Finally, the loss function of our network is constructed as
follows:

Liotal = Lclassification + Lgc2, (16)

inwhich isaconstant value and can adjust the weight between
L ciassification and Lgcz.

IV. EXPERIMENTS

In this section, we firstly introduce the evaluation criteria and
implementation details in Section IV-A. Secondly, we evalu-
ate the accuracy of our algorithm on 3DMatch dataset [11]
(indoor scenes) and 3DLoMatch dataset [31] (indoor small
overlap scenes) in Section I1V-B. Thirdly, the generalization
ability evaluation is described on KITTI dataset [44] (outdoor
scenes) in Section I\V-C. Finally, ablation studies are conducted
to demonstrate the importance of the proposed seed selection
module and loss function in Section 1V-D.

A. Evaluation Criteria and Implementation Details

Following [17], we report three evaluation indexes:

1) Registration Recall (RR), the percentage of correctly regis-
tered point cloud pairs whose rotation error and translation
error are below some thresholds.

2) Rotation Error (RE), which is defined as

Tr(RIR 1)
RE(R¢) = arccosf a7
3) Translation Error (TE), which is defined as
TE(te) = t¢ t 2 (18)

R denotes the ground-truth rotation matrix and t denotes the
ground-truth translation vector. Besides, we also report average
execution time (denoted as Avg Time) of the proposed model on
each point cloud pair.

Our network is implemented in Pytorch and one RTX2080Ti
GPU card. For the evaluation on 3DMatch dataset, we follow
the same protocols [11] to obtain the training and test data. The
test data includes 8 scenes and about 2000 point cloud pairs.
For the evaluation on 3DLoMatch dataset, we follow the same
protocols [31] to obtain the test data, which consists of about
2000 low overlap point cloud pairs. For the evaluation on KITTI
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Fig. 4. Some qualitative results on 3DMatch dataset, showing good perfor-
mances of the proposed network on 3DMatch dataset.

dataset, we follow the same data splitting strategy in [17], [19]
for a fair comparison. Specially, we choose the sequence 8 to 10
scenes, obtaining about 600 point cloud pairs for testing.

For parameter setting, the ; in (1) is set as 0.1 m for in-
door scenes and 0.6 m for outdoor scenes, the m in Section
I11-A is set as 12. the seedratio in Section IlI-B is set to
0.1, the kg in Section IlI-C is set as 40, the threshold in
(9)(10)(12) is set as 0.1, and the in (16) is set as 0.1. We
optimize the network using ADAM optimizer with learning rate
of 0.0001 and the momentum is set as 0.9. The batch size is
set to 16, the thresholds in Registration Recall (RR) is set
to (15 ,0.3m) for indoor scenes and (5 ,0.6 m) for outdoor
scenes.

B. Accuracy Comparison

Following [19], we use the 3DMatch dataset [11] for eval-
uating the accuracy of the proposed network. For each pair of
point clouds, we use 0.05 m voxel grid to control the density of
point cloud. Then the 3D local feature is extracted and matched
to form the putative correspondences. We use two descriptors,
FPFH [45] (traditional descriptor) and FCGF [14] (learned de-
scriptor) to evaluate the accuracy of the proposed network. We
compare our algorithm with state-of-the-art learning-based algo-
rithms and state-of-the-art traditional methods, RANSAC [15]
and SC2-PCR [20]. We report the result in Table I, from which
we can see our algorithm achieves the highest Registration
Recall under different descriptors in the learning-based meth-
ods. In terms of indexes RE and TE, the proposed method
achieves the quite competitive results, either the best or close
to the best, under different descriptors. Compared with the
traditional algorithm SC2-PCR, the proposed method achieves
the higher Registration Recall under FCGF descriptors, which
indicates the proposed method can project correspondences
into high-dimensional and more discriminative spaces. But at
the same time, it should be noted that when combined with
a weaker descriptor FPFH, the proposed method may achieve
lower accuracy than SC2-PCR. This is mainly because when
combined with weak descriptors, much noise is incorporated
into the features extracted by the Nonlocal module for the
correct correspondences. In addition, it can be seen all the other
learning-based methods suffer from larger degradation than ours
in the second and fifth columns of Table | when combined
with a weaker descriptor. Some qualitative results on 3DMatch
dataset are shown in Fig. 4, showing the good performances
of our network on this dataset. These strongly demonstrate the
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