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Abstract—Multimedia contents are of predominance in the modern Web era. Recent years have witnessed growing research interests in
multimedia recommendation, which aims to predict whether a user will interact with an item with multimodal contents. Most previous studies
focus on modeling user-item interactions with multimodal features included as side information. However, this scheme is not well-designed
for multimedia recommendation. First, only collaborative item-item relationships are implicitly modeled through high-order item-user-item
co-occurrences. Considering that items are associated with rich contents in multiple modalities, we argue that the latent semantic item-item
structures underlying these multimodal contents could be beneficial for learning better item representations and assist the recommender
models to comprehensively discover candidate items. Second, although previous studies consider multiple modalities, their ways of fusing
multiple modalities by linear combination or concatenation is insufficient to fully capture content information of items and item relationships.
To address these deficiencies, we propose a latent structure Mining with ContRastive mOdality fusion model, which we term MICRO for
brevity. To be specific, we devise a novel modality-aware structure learning module, which learns item-item relationships for each modality.
Based on the learned modality-aware latent item relationships, we perform graph convolutions to explicitly inject item affinities into modality-
aware item representations. Additionally, we design a novel multimodal contrastive framework to facilitate item-level multimodal fusion by
mining both modality-shared and modality-specific information. Finally, the item representations are plugged into existing collaborative
filtering methods to make accurate recommendation. Extensive experiments on three real-world datasets demonstrate the superiority of our
method over state-of-arts and rationalize the design choice of our work.

Index Terms—Multimedia recommendation, graph structure learning, contrastive learning
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Collaborative Filtering (CF), as one of the most prevalent

ITH the rapid development of Internet, information over-

load has become an increasingly crucial challenge. Now-
adays, users are easily accessible to large amounts of online
information represented in multiple modalities, including
images, texts, videos, etc. For example, visual appearances and
textual descriptions play important roles for selecting products
online; visual covers and textual tags allow users to find inter-
esting items from a large amount of instant videos. Therefore,
multimedia recommendation, which aims to predict whether a
user will interact with an item with multimodal contents, has
attracted a lot of research interests and has been successfully
applied to many online applications, such as e-commerce,
instant video platforms, and social media platforms.
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techniques in personalized recommendation, has been
widely studied previously. Focusing on exploiting abun-
dant user-item interactions, CF methods group users
according to their historical interactions, by encoding users
and items into low-dimensional dense vectors and making
recommendation based on these embeddings [2], [3], [4].
Following traditional CF frameworks, early work on multi-
media recommendation like VBPR [5], DeepStyle [6], and
ACF [7] incorporates multimodal features as side informa-
tion in addition to the learned dense vectors of items, so as
to group users based on both historical interactions and
item contents. Park et al. [8] propose to explicitly capture
the information hidden in also-viewed products, i.e., a list
of products that have also been viewed by users who have
viewed a target product. The also-viewed relationship can
be regarded as a special kind of co-interacted relationship.
Lee and Abu-El-Haija [9] propose to minimize the similarity
of the content vectors of co-watched items, which exploits
co-interacted item-item relationships through item-user-
item occurrences.

Inspired by the recent surge of graph neural networks [10],
[11], Wang et al. [12] propose to model user-item relationships
as bipartite graphs. The first-order connectivities in user-item
graphs indicate the interaction history. The second-order con-
nectivities reveal collaborative relations that similar users (or
items) who have co-interacted with the same items (or users).
These graph-based recommender systems [12], [13], [14] inject
high-order connectivities into the embeddings to learn better
representations. Recently, many attempts have been made to
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- - - Semantic relation

Fig. 1. A toy example of recommendation with two types of item rela-
tions. In this paper, we argue that semantic structures mined from multi-
modal features are helpful for comprehensively discovering candidate
items supplementary to collaborative signals in traditional work, which
can be found on the Computer Society Digital Library at http:/doi.
ieeecomputersociety.org/10.1109/TKDE.2022.3221949.

integrate multimodal contents into graph-based recommen-
dation systems. MMGCN [15] constructs modality-specific
user-item interaction graphs to model user preferences spe-
cific to each modality. Following MMGCN, GRCN [16] uti-
lizes multimodal features to refine user-item interaction
graphs by identifying false-positive feedbacks and pruning
the corresponding noisy edges. HUIGN [17] constructs a co-
interacted item graph, where the edge corresponds to the
item pair consumed by the same users. By conducting hierar-
chical GNNs on the co-interacted item graph, HUIGN can
mine users’ intents at different levels.

Despite their effectiveness, previous attempts suffer from
two limitations. First, existing work fails to comprehen-
sively model item-item relationships, which have been
proved to be important in recommender systems [18]. Spe-
cifically, only collaborative relations are considered through
high-order item-user-item co-occurrences [8], [9], [17]. How-
ever, semantic relations which reflect the content of items,
are not explicitly modeled. Taking Fig. 1 as an example,
existing methods will recommend the shirt (%) for wu,
according to collaborative relations, since shirts (§), hats
(@), and pants () all interacted with u;. However, previous
work may not be able to recommend coats () to uy, which
are semantically (visually in this example) similar to shirts.
Considering that items are associated with rich multimodal
content features in multimedia recommendation, there exist
a wealth of semantic relations underlying multimodal con-
tents, which would assist the recommender models to com-
prehensively discover candidate items.

Second, most previous attempts disregard the item-level
multimodal fusion. Early work [5], [6], [19] only focuses on
uni-modal information; other work on multimedia recom-
mendation [15], [16] conducts multimodal fusion by simple
linear combination or concatenation, the inductive bias
behind which is that all items share the same fusion mecha-
nism (e.g., the same combination weights). However, users
usually focus on different modalities when browsing differ-
ent items. For example, one may pay more attention to the
visual modality when selecting clothes, while focusing
more on textual information when picking books. To this
end, we conduct item-level multimodal fusion, allowing the
model to utilize the most important parts of different items
in a flexible manner and therefore learn better item repre-
sentations. Specifically, we propose to mine latent semantic
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item-item relationships underlying multimodal features of
items and conduct item-level multimodal fusion based on
the learned structures.

As shown in Fig. 2, the proposed MICRO consists of four
key components. First, we develop a novel modality-aware
structure learning layer, which learns modality-aware item
structures from content features of each modality. Second,
we perform graph convolutions on the learned modality-
aware latent graphs to explicitly consider item relationships
of each modality individually. Third, we devise a novel
multimodal contrastive framework to consider both modal-
ity-shared and modality-specific information. Finally, the
resulting enhanced item representations are infused with
item relationships in multiple modalities, which will be
added into the output item embeddings of CF models to
make recommendations.

Our model enjoys two additional benefits. First, MICRO
can alleviate the cold-start problem. Previous graph-based
multimedia recommendation methods face cold-start prob-
lems where long-tailed items are only interacted with few
users or even never interacted with users. Since previous
methods utilize multimodal content features based on the
user-item interaction graph, those long-tailed items will
become isolated nodes in that graph, which will reduce the
effectiveness of multimodal information. Our work, on the
contrary, can alleviate the cold-start problem in two ways:
(1) we mine latent item-item structures and the long-tailed
items will get similar user feedbacks from their learned
neighbors; (2) the multimodal contrastive framework serves
as an auxiliary training signal that helps learn better item
representations involved with relation information. The sec-
ond benefit is that, MICRO can serve as a flexible play-and-
plug module. Unlike previous attempts which utilize multi-
modal features based on dedicated user-item aggregation
strategies, MICRO separates the usage of multimodal fea-
tures with the usage of user-item interactions and is thus
agnostic to downstream CF methods.

In summary, the main contribution of this work is threefold.

e We highlight the importance of explicitly exploiting
item relationships and explicitly consider item-level
multimodal fusion in multimedia recommendation.

e We propose a novel method to mine latent item rela-
tions and conduct item-level multimodal fusion
based on the mined structures, which consider both
modality-shared and modality-specific information.

e We perform extensive experiments on three public
datasets. Notably, our method outperforms the
state-of-the-art methods by 20% on average in terms
of different metrics, validating the effectiveness of
our proposed model.

To foster reproducible research, our code is made publicly

available at https:// github.com /CRIPAC-DIG/MICRO.

2 PRELIMINARIES

In this section, we first formulate the multimedia recom-
mendation problem. Then, to motivate our model design,
we use two simple and intuitive experiments, from item
and user perspectives respectively, to show that users tend
to buy semantically similar items. That is, semantic item-
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Fig. 2. The overall framework of our proposed MICRO model. First, we develop a novel modality-aware structure learning layer to mine the modality-
aware latent item-item semantic relationships from multimodal features. Second, we employ graph convolutions on the learned modality-aware
graphs to explicitly model item relationships of each modality individually. Third, we devise a novel contrastive multimodal fusion framework to adap-
tively capture item relationships shared between multiple modalities in a self-supervised manner. Finally, the resulting item representations are
infused with item relationships in multiple modalities, which will be added into the output item embeddings of CF models to make recommendation.

item relationships are helpful for comprehensively discov-
ering candidate items.

2.1 Problem Definition

Let U, Z(|Z| = N) denote the set of users and items, respec-
tively. Each user u € U is associated with a set of items Z"
with positive feedbacks which indicate the preference score
Yui = 1fori € I% x,, x; € R? is the input ID embedding of u
and i, respectively, where d is the embedding dimension.
Besides user-item interactions, multimodal features are
offered as content information of items. We denote the
modality features of item i as e € R®* , where d,, denotes
the dimension of the features, m € M is the modality, and
M is the set of modalities. The purpose of multimedia rec-
ommendation is to accurately predict users’ preferences by
ranking items for each user according to predicted prefer-
ence scores §,;. In this paper, we consider visual and textual
modalities denoted by M = {v,t}. Please kindly note that
our method is not fixed to the two modalities and multiple
modalities can be involved.

2.2 Pilot Studies

First, from the item perspective, we conduct an experiment
to show that co-interacted items are much more semanti-
cally similar. We compute the cosine similarity between all
items as the baseline and compute the similarity between
co-interacted items. The averages are summarized in
Table 1. We can observe that co-interacted items (items
bought by the same user) are much more similar, which
demonstrates that users tend to buy semantically similar
items.

Second, from the user perspective, we count the propor-
tion of users buying semantically similar items. We intui-
tively define ¢; and i, are semantically similar if ¢; is among
the k items most similar to i, or 42 is among the k items
most similar to i;, where a smaller k£ means a smaller range.
Table 2 reports the proportion of users buying semantically
similar items with respect to different k. We can observe

that even with a small &, the majority of users tend to buy
semantically similar items.

3 THE PROPOSED METHOD

In this section, we introduce our model in detail. As illus-
trated in Fig. 2, there are four main components in our pro-
posed framework: (1) a modality-aware graph structure
learning layer that learns item graph structures from con-
tent features of each modality, (2) graph convolutional
layers that learn the modality-aware item embeddings by
injecting item-item affinities based on the learned graph
structures, (3) an contrastive multimodal fusion framework
to promote item-level multimodal fusion by considering
both modality-shared and modality-specific information,
and (4) downstream CF methods.

3.1 Modality-Aware Latent Structure Mining

Multimodal features provide rich and meaningful content
information of items, while existing methods only utilize
multimodal features as side information for each item,
ignoring the important semantic relationships of items
underlying features. In this section, we introduce how to
discover the underlying latent graph structure of item
graphs in order to learn better item representations.

TABLE 1
Average Semantic Similarity of All tems and Co-Interacted
Items

Dataset Modality All Items Co-interacted Items
Clothing Visual 0.2239 0.3958
Textual 0.4206 0.5830
Sports Visual 0.2184 0.3547
Textual 0.3895 0.5423
Baby Visual 0.2240 0.3534
Textual 0.4413 0.5405
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TABLE 2
The Proportion (%) of Users Buying Semantically Similar ltems
With Respect to Different k

Dataset Modality k=5 k=10 k=15 k=20
Clothing Visual 46.88 51.34 54.22 56.33
Textual 54.90 60.21 63.41 65.57
Sports Visual 42.18 45.58 47.71 49.39
Textual 53.56 58.48 61.64 63.90
Baby Visual 44.37 48.17 50.87 53.36
Textual 55.25 59.58 62.45 64.89

To be specific, we first construct initial k-Nearest-Neigh-
bor (kNN) modality-aware item graphs S by utilizing raw
multimodal features. After that, we learn the latent graph
structures A™ from transformed multimodal features.
Finally, we combine the learned structures with the initial
structures by a skip connection.

3.1.1 Constructing Initial Modality-Aware Graphs

We first construct initial kNN modality-aware graph S™ by
using raw features for each modality m. Based on the
hypothesis that similar items are more likely to interact than
dissimilar items [20], we quantify the semantic relationship
between two items by their similarity. Common options for
node similarity measurement include cosine similarity [21],
kernel-based functions [22], and attention mechanisms [23].
Our method is agnostic to similarity measurements, and we
opt to the simple and parameter-free cosine similarity in

this paper. The similarity matrix $™ € R™*" is computed
by
eUL Te'!_ﬂ
s ) e M)
llei" e

Typically, the graph adjacency matrix is supposed to be
non-negative but S;; ranges between [—1, 1]. Thus, we sup-
press its negative entries to zeros. Moreover, common graph
structures are much sparser other than a fully-connected
graph, which is computationally demanding and might
introduce noisy, unimportant edges [23]. We conduct ANN
sparsification [24] on the dense graph: for each item i, we
only keep edges with the top-k confidence scores

Sm _ { S, S € top—k(S}"),
ij

0, otherwise,

(2)

where S} denotes the i-row of S, and S™ is the resulting
spar51f1ed directed graph adjacency matrix. To alleviate the
exploding or vanishing gradient problem [10], we normal-
ize the adjacency matrix as

gm _ (Dm)fégm(Dm)fé (3)
where D" € RN is the diagonal degree matrix of 5™ and

DZL _ Z Sm

3.1.2 Learning Latent Modality-Aware Graphs

Although we have obtained the modality-aware initial
graph structures S by utilizing raw multimodal features,
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they may not be ideal for the recommendation task. This is
because the raw multimodal features are often noisy or
even incomplete due to the inevitably error-prone data mea-
surement or collection. To this end, we propose to dynami-
cally learn the graph structures by the transformed
multimodal features and combine the learned structures
with initial ones.

First, we transform raw modality features into high-level
features €}

,é:n = Wmegn + by, 4)

where W,,, € R™”% and b,, € R? denote the trainable trans-
formation matrix and the bias vector, respectively. We
dynamically infer the graph structures utilizing €", repeat
the graph learning process described in Egs. (1), (2), and (3)
and obtain the adjacency matrix A™.

Although the initial graph could be noisy, it still carries
rich and useful information regarding item graph struc-
tures. Also, drastic change of adjacency matrix will lead to
unstable training. To keep rich information of initial item
graph and stabilize the training process, we add a skip con-
nection that combines the learned graph with the initial

graph

m _ A:S'vm + (1 )\)Zrn7 5)

where A € (0,1) is the coefficient of skip connection that
controls the amount of information from the initial struc-
ture. The obtained A™ is the final graph adjacency matrix
representing latent structures for modality m.

It is worth mentioning that both §™ and A™ are sparsified
and normalized matrices, thus the final adjacency matrix A™
is also sparsified and normalized, which is computationally
efficient and stabilizes gradient backpropagation.

3.2 Item Affinity Learning With Graph Convolutions
After obtaining the modality-aware latent structures, we
perform graph convolution operations to learn better item
representations by injecting item-item affinities into the
embedding process. Graph convolutions can be treated as
message propagation and aggregation. Through propagat-
ing the item representations from its neighbors, one item
can aggregate information within the first-order neighbor-
hood. Furthermore, by stacking multiple graph convolu-
tional layers, the high-order item-item relationships can be
captured.

Following Wu et al. [25] and He et al. [14], we employ
simple message propagation and aggregation without fea-
ture transformation and non-linear activations which is
effective and computationally efficient. In the Ith layer, the
message passing and aggregation could be formulated as

o ATHY ©)

where H' € RV is the Ith layer item embedding matrix of
modality m, the ith row of which denotes the embedding
vector of item . For all modalities m € M, we use the same
item ID embedding matrix to initialize the input embedding
matrix H{g. We utilize ID embedding vector of items as
input representations rather than multimodal features, since
we employ graph convolutions to directly capture item-item
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affinities and multimodal features are used to bridge
semantic relationships. After stacking L layers, H{}, enco-
des the high-order item-item relationships of modality m.

3.3 Multimodal Fusion With Contrastive Learning
Multiple modalities convey both complementary and sup-
plementary information [26], available online. To this end,
we first utilize contrastive learning to extract modality-
shared representations and then deploy an orthogonality
constraint to extract modality-specific representations.

3.3.1  Mining Modality-Shared Information

For simplicity, we omit the subscript (L) and use k" hereaf-
ter to denote the ith row of H{}), which represents the
embedding of item ¢ in modality m. The importance of each
modality corresponding to item ¢ can be formulated as fol-
lows:

o' = softmax (g, tanh(Wh]" +b)), (7

where ¢, € R? denotes attention vector and W € R p ¢
R? denote the weight matrix and the bias vector, respec-
tively. Note that these parameters are shared for all modali-
ties. Then, the modality-common embedding of item 4 can
be represented as

M|
hei=Y o' (8)

m=1

We devise a novel self-supervised auxiliary task to adap-
tively distill the shared information from multiple modali-
ties. Existing contrastive learning frameworks [27] seek to
maximize the agreement among differently augmented
views of the same data examples, which has been proven to
be effective in multi-view representation learning [28], [29]
and multimodal tasks [30], [31]. In this work, since multiple
modality-aware graphs are involved, we propose to con-
struct self-supervision signals by maximizing the agreement
between item representations under individual modalities and the
fused multimodal representations. In this way, the fused multi-
modal representations can adaptively capture item-item
relationships shared between multiple modalities in a self-
supervised manner. The resulting contrastive loss can be
mathematically expressed as

£ — h’n
C |I\ |./\/l| Z Z 9

i€ meM

where I(-,-) denotes the mutual information which quanti-
fies the agreement between two representations, which is
implemented by the InfoNCE estimator [27]. Specifically,
for I(R]", h.;), we set (h]", h.;) as positive samples, while all
other item embeddings in an individual modality (h{", ")
and the fused multimodal embeddings (", hc;) ., are
considered as negatives

I(h", he;) =
(B hei) /T

log (10)

?
mp mp 0 h’-”,hi”')
(B hei) /T S A hej)/T o, ( i) I

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 9, SEPTEMBER 2023

where 7 € R is a temperature parameter and 6(-,-) is the
critic function which is a simple cosine similarity function
in this work.

The proposed objective also conceptually relates to contras-
tive knowledge distillation [32], where several teacher models
(representations under different individual modalities) and
one student model (the modality-shared representations) are
employed. By forcing the embeddings between several teach-
ers and a student to be close, these modality-shared representa-
tions adaptively collect information from all modality-aware
item relations. Additionally, the multimodal contrastive frame-
work serves as a self-supervised auxiliary task, where the exter-
nal self-supervision signals are introduced to learn better item
representations involved with relation information from multi-
ple modalities, which would further alleviate the cold-start
problem.

3.3.2 Mining Modality-Specific Information

Multiple modalities usually convey both complementary and
supplementary information [26], available online. Our con-
trastive learning framework could adaptively extract the
modality-shared supplementary information from all modali-
ties, available online. The distinctive characteristics held by
each modality are also important for fully understanding
item relationships. Previous work [33], [34], [35] notices that
the modality-specific information could complement the
modality-shared features captured in the invariant space and
provides comprehensive multimodal representations.

To this end, we propose to mine modality-specific repre-
sentations. Specifically, the modality-specific representa-
tions h}; of each modality m are obtained by subtracting the
modality-common representations h.; from the modality
representation h}"

By, =h! — he;, an
h’ft = h}: - h(’,,i~ (12)

To ensure that the modality-specific representations of
different modalities do not encode shared information of
each other, we employ a soft orthogonality constraint

:
Ls = |I‘Znhv B

€T

(13)

Then, we employ a simplified attention module to fuse
the modality-shared and modality-specific representations.
The importance of each representation corresponding to
item 7 can be formulated as

[otu,ab“a;i} = softmax(q2 [hu,h:/“ht D (14)
where ¢, € R? denotes the attention vector. Then, the final
fused multimodal representation of item ¢ can be repre-
sented as

hi = aeihe; +aV.hY +ab pb

EX) 8,1 ERARERA

(15)

3.4 Incorporating With Collaborative Filtering
Methods
Unlike previous attempts which utilize multimodal features

based on ad-hoc user-item aggregation strategies, MICRO
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separates the usage of multimodal features with the usage
of user-item interactions and is agnostic to downstream CF
methods. Specifically, we learn item representations from
mined item relations and then combine them with down-
stream CF methods that model user-item interactions. It is
flexible and could be served as a play-and-plug module for
any CF methods.

First, we represent user preference by aggregating the
semantic item-item relation information of interacted items

1
hu =

Z h;. (16)

12 i€y

We denote the output user and item embeddings from CF
methods as Z,,%; € RY, respectively. Finally, the user-item
preference scores are obtained by taking inner product of
enhanced user embeddings and item embeddings

o (e Y (o )
Yui = U i .
([ A [l

3.5 Optimization

We adopt the Bayesian Personalized Ranking (BPR)
loss [36] to compute pair-wise rankings, which encourage
the prediction of an observed entry to be higher than its
unobserved counterparts

Lppr = — Z Z Z 6 (Gui — Guj),

weld i€y j¢ Ty

a7

(18)

where 7" indicates the observed items associated with user

uand (u, i, j) denotes the pairwise training triples where i €

T" is the positive item and j ¢ Z* is the negative item sam-

pled from unobserved interactions. o(-) is the sigmoid
function.

The overall objective function can be formulated as

L = Lppr + BoLc + BgLs, (19)

where B, Bg are hyperparameters to control the effect of

the contrastive auxiliary task and the orthogonality con-
straint, respectively.

4 EXPERIMENTS

In this section, we conduct experiments on three widely
used real-world datasets to answer the following four
research questions:

e RQI: How does our model perform compared with
the state-of-the-art multimedia recommendation
methods and other CF methods in both warm-start
and cold-start settings?

e RQ2: How do the structure mining and contrastive
learning modules contribute to the model performance?

e RQ3: How sensitive is our model under the pertur-
bation of several key hyperparameters?

e RQ4: How does each modality contribute to the final
representations?
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TABLE 3
Statistics of the Datasets
Dataset! #Users  #Items  #Interactions Density
Clothing 39,387 23,033 237,488 0.00026
Sports 35,598 18,357 256,308 0.00039
Baby 19,445 7,050 139,110 0.00101

Datasets can be accessed at http://jmcauley.ucsd.edu/datajamazon/links.html.

4.1 Experimental Settings
4.1.1 Datasets

We conduct experiments on three categories of widely used
Amazon datasets introduced by McAuley et al. [37]:
(a)Clothing, ShoesandJewelry, (b)SportsandOutdoors, and (c)Baby,
which we refer to as Clothing, Sports, and Baby in brevity. The
statistics of these three datasets are summarized in Table 3. The
three datasets include both visual and textual modalities. We
use the 4,096-dimensional visual features that have been
extracted and published. For the textual modality, we extract
textual embeddings by concatenating the title, descriptions,
categories, and brand of each item and utilize sentence-trans-
formers [38] to obtain 1,024-dimensional sentence embeddings.

4.1.2 Baselines

To evaluate the effectiveness of our proposed model, we
compare it with several state-of-the-art recommendation
models. These baselines fall into two groups: CF methods
(i.e., ItemKNN, MF, NGCF, LightGCN, SGL) and deep con-
tent-aware recommendation models (i.e., VBPR, MMGCN,
GRCN).

e ItemKNN [39] computes the similarity between the
items, and compute the similarity between a basket
of items and a candidate recommender item.

e MF [36] optimizes Matrix Factorization using the
Bayesian personalized ranking (BPR) loss, which
exploits the user-item direct interactions only as the
target value of interaction function.

e NGCF [12] explicitly models user-item interactions
by a bipartite graph. By leveraging graph convolu-
tional operations, it allows the embeddings of users
and items to interact with each other to harvest the
collaborative signals as well as high-order connectiv-
ity signals.

o LightGCN [14] argues the unnecessarily complicated
design of GCNs (i.e., feature transformation and
nonlinear activation) for recommendation systems
and proposes a light model which only consists of
two essential components: light graph convolution
and layer combination.

e SGL [40] generates multiple views of a node and
maximizing the agreement between different views
of the same node.

e VBPR [5] integrates the visual features and ID
embeddings of each item as its representation based
upon the BPR model and feeds them into the matrix
factorization framework. In our experiments, we
concatenate multi-modal features as content infor-
mation to predict the interactions between users and
items.
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TABLE 4
Performance Comparison of Our MICRO With Different Baselines in Terms of Recall@20 (R@20), Precision@20 (P @20), and
NDCG @20
Model Clothing Sports Baby
R@20 P@20 NDCG@20 R@20 P@20 NDCG@20 R@20 P@20 NDCG@20

ItemKNN 0.0280 0.0014 0.0131 0.0410 0.0022 0.0212 0.0317 0.0017 0.0152
MF 0.0191 0.0010 0.0088 0.0430 0.0023 0.0202 0.0440 0.0024 0.0200
NGCF 0.0387 0.0020 0.0168 0.0728 0.0038 0.0332 0.0591 0.0032 0.0261
LightGCN 0.0470 0.0024 0.0215 0.0803 0.0042 0.0377 0.0698 0.0037 0.0319
SGL 0.0598 0.0030 0.0268 0.0905 0.0047 0.0412 0.0745 0.0040 0.0328
VBPR 0.0481 0.0024 0.0205 0.0582 0.0031 0.0265 0.0486 0.0026 0.0213
MMGCN 0.0501 0.0024 0.0221 0.0638 0.0034 0.0279 0.0640 0.0032 0.0284
GRCN 0.0631 0.0032 0.0276 0.0833 0.0044 0.0377 0.0754 0.0040 0.0336
MICRO 0.0824 0.0042 0.0371 0.1005 0.0052 0.0467 0.0898 0.0047 0.0407
Almprovement 30.5% 31.3% 34.4% 11.0% 10.6% 13.3% 19.1% 17.5% 21.1%

The best performance is highlighted in bold and the second is highlighted by underlines. Almprovement indicates the relative improvement of MICRO compared
to the best baseline in percentage. All improvements are significant with p-value < 0.05.

e MMGCN [15] is one of the state-of-the-art multi-
modal recommendation methods, which constructs
modal-specific graphs and refines modal-specific
representations for users and items. It aggregates all
model-specific representations to obtain the repre-
sentations of users or items for prediction.

e GRCN [16] is also one of the state-of-the-arts multi-
modal recommendation methods. It refines user-item
interaction graph by identifying the false-positive
feedback and prunes the corresponding noisy edges
in the interaction graph.

4.1.3 Evaluation Protocols

We conduct experiments in both warm-start and cold-start
settings.

Warm-Start Setting. For each dataset, we select 80% of his-
torical interactions of each user to constitute the training set,
10% for validation, and the remaining 10% for the test set.
For each observed user-item interaction, we treat it as a pos-
itive pair and then conduct the negative sampling strategy
to pair them with one negative item that the user does not
interact before.

Cold-Start Setting. We remove all user-item interaction
pairs associated with a randomly selected 20% item set
from the training set. We further divide the half of the items
(10%) into the validation set and half (10%) into the test set.
In other words, these items are entirely unseen in the train-
ing set.

We adopt three widely-used metrics to evaluate the per-
formance of preference ranking: Recall@k, NDCG@k, and
Precision@k. By default, we set k = 20 and report the aver-
aged metrics for all users in the test set.

4.1.4 Implementation Details

We implemente our method in PyTorch [41] and set the
embedding dimension d fixed to 64 for all models for fair
comparison. We optimize all models with the Adam [42]
optimizer, where the batch size is fixed at 1,024. We use the
Xavier initializer [43] to initialize the model parameters.
The optimal hyper-parameters are determined via grid
search on the validation set: the learning rate is set to 0.0005,
the coefficient of ¢, normalization is set to 10~%. The k of

kNN sparsification is set to 10, the A of skip connection is set
to 0.7, and the temperature parameter 7 is set to 0.5. Besides,
we stop training if Recall@20 on the validation set does not
increase for 10 successive epochs to avoid overfitting.

4.2 Performance Comparison (RQ1)

We start by comparing the performance of all methods, and
then explore how the our method alleviate the cold-start
problem. In this subsection, we combine MICRO with
LightGCN as a downstream CF method, and will also con-
duct experiments with different CF methods in Section 4.3.

4.2.1 Overall Performance

Table 4 reports the performance comparison results, from
which we can observe:

e  Our method MICRO significantly outperforms both
CF methods and content-aware methods, verifying
the effectiveness of our methods. Specifically,
MICRO improves over the strongest baselines in
terms of Recall@20 by 24.1%, 18.6%, and 18.3% in
Clothing, Sports, and Baby, respectively. This indi-
cates that our proposed method is well-designed for
multimedia recommendation by discovering under-
lying item-item relationships and is able to conduct
fine-grained multimodal fusion through the contras-
tive auxiliary task.

e Compared with CF methods, content-aware meth-
ods yield better overall performance, which indicates
that multimodal features provide rich content infor-
mation about items, and can boost recommendation
accuracy. Even without utilizing item content infor-
mation, the self-supervised method SGL achieves
competitive performance on the three datasets and
even outperforms the powerful content-aware
method GRCN, which demonstrates that the auxil-
iary self-supervised task can also improve node
representation learning.

e Additionally, existing content-aware recommendation
models are highly dependent on the representative-
ness of multimodal features and thus obtain fluctuat-
ing performance over different datasets. For the
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Clothing dataset where visual features are very impor-
tant in revealing item attributes [5], [6], VBPR,
MMGCN, and GRCN outperform all CF methods. For
the other two datasets where multimodal features
may not directly reveal item attributes, content-aware
methods obtain relatively small improvements. The
performance of VBPR and MMGCN is even inferior to
the CF method LightGCN. Different from existing con-
tent-aware methods, we discover the latent item rela-
tionships underlying multimodal features instead of
directly using them as side information. The latent
item relationships are less dependent on the represen-
tativeness of multimodal features and thus we are able
to obtain robust performance.

4.2.2 Performance in the Cold-Start Setting

The cold-start problem remains a prominent challenge in
recommendation systems [44]. Multimodal features of items
provide rich content information, which can be exploited to
alleviate the cold-start problem. We conduct cold-start
experiments and compare with representative baselines.
MICRO wjo. fusion is the simplified variant of MICRO,
which discards multimodal fusion described in Section 3.3
and only utilizes the BPR loss in Eq. (18). Fig. 3 reports the
results of performance, from which we can observe:

e Both MICRO w/o. fusion and MICRO can alleviate the
cold-start problem and outperform all baselines on
three datasets. They learn item graphs from multi-
modal features, along which cold-start items will get
similar feedbacks from relevant neighbors through
neighborhood aggregation of graph convolutions.

e Additionally, MICRO outperforms MICRO w/o.
fusion on three datasets. In MICRO, the multimodal
contrastive framework serves as a self-supervised
auxiliary task. The self-supervision signals are con-
structed by maximizing the agreement between item
representations under individual modalities and the
multimodal fused representations to learn better
item representations which encode item relation-
ships from multiple modalities. In this way, the cold-
start problem would be further alleviated.

e CF methods MF and LightGCN obtain poor perfor-
mance under the cold-start setting in general, pri-
marily because they only leverage users’ feedbacks
to predict the interactions between users and items.
Although these methods may work well for items
with sufficient feedbacks, they cannot help in the
cold-start setting, since no user-item interaction is
available to update the representations of cold-start
items.

e The content-aware model VBPR outperforms CF
methods in general, which indicates that the content
information provided by multimodal features bene-
fits recommendation for cold-start items. In particu-
lar, content information can help bridge the gap
between the existing items to cold-start items. How-
ever, some graph-based content-aware methods
such as GRCN, although perform well in the warm-
start setting, obtain poor performance in the cold-
start setting. GRCN utilizes multimodal features on
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Fig. 3. Performance comparison of our method with different baselines in
the cold-start setting.

user-item interaction bipartite graphs, which is also
heavily dependent on user-item interactions. For
cold-start items, they never interact with users and
become isolated nodes in the user-item graphs, lead-
ing to deteriorated performance.

4.3 Ablation Studies (RQ2)

In this subsection, we combine MICRO with three common-
used CF methods, i.e., MF, NGCF, and LightGCN to vali-
date the effectiveness and flexibility of our proposed
method. For each CF method, we compare it with the fol-
lowing variants:

o  CF+feats does not consider latent item-item relation-
ships and directly uses transformed multimodal fea-
tures to replace the item representations learned
from item graphs in Eq. (17).

e  MICRO/feats uses multimodal features as the input
initial item embeddings of graph convolutions
instead of ID embeddings.

e MICRO wjo. fusion discards the modality fusion in
Section 3.3 and only utilizes the BPR loss in Eq. (18),
which is equivalent to LATTICE [1].

e MICRO wjo. specifc: discards the modality-specific
information mining module in Section 3.3.2. Specifi-
cally, it only utilizes modality-shared representation
h; in Eq. (8) as the final multimodal item representa-
tion and ﬁBpR7 E'C in Eq (18)

o MICRO w/o. preference: ignores the user preference h,,
in Eﬁl (17) and producing user-item score with ¢,; =

~ ~ h;
@) (@i + )

Table 5 summarizes the performance, from which we

have the following observations:

e MICRO significantly and consistently outperforms
all original CF methods and CF+feats variants on
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TABLE 5
Performance of Our Proposed MICRO on Top of Different Downstream Collaborative Filtering (CF) Methods
Model Clothing Sports Baby
R@20 P@20 NDCG@20  R@20 P@20 NDCG@20 R@20 P@20 NDCG@20

MF 0.0191 0.0010 0.0088 0.0430 0.0023 0.0202 0.0440 0.0024 0.0200
MF+feats 0.0456  0.0023 0.0197 0.0889  0.0047 0.0403 0.0701  0.0037 0.0306
MICRO/ feats 0.0729 0.0037 0.0323 0.0889 0.0047 0.0403 0.0840 0.0044 0.0376
MICRO w/o. fusion 0.0758  0.0038 0.0339 0.0940  0.0050 0.0436 0.0827  0.0044 0.0366
MICRO w/o. specific 0.0785 0.0039 0.0351 0.0968 0.0051 0.0450 0.0845 0.0045 0.0384
MICRO w/o. preference ~ 0.0727  0.0036 0.0321 0.0883  0.0047 0.0408 0.0752  0.0040 0.0336
MICRO 0.0797  0.0040 0.0355 0.0971  0.0051 0.0450 0.0854  0.0045 0.0385
NGCF 0.0387  0.0020 0.0168 0.0728 0.0038 0.0332 0.0591 0.0032 0.0261
NGCF+feats 0.0436  0.0022 0.0190 0.0748  0.0040 0.0344 0.0660  0.0035 0.0295
MICRO/ feats 0.0676 0.0034 0.0297 0.0932 0.0049 0.0422 0.0799 0.0042 0.0356
MICRO w/o. fusion 0.0639  0.0032 0.0288 0.0900  0.0048 0.0408 0.0766  0.0041 0.0340
MICRO w/ 0. specific 0.0735 0.0037 0.0333 0.0957 0.0049 0.0438 0.0799 0.0042 0.0360
MICRO w/o. preference ~ 0.0639  0.0032 0.0282 0.0888  0.0040 0.0047 0.0785  0.0041 0.0337
MICRO 0.0743  0.0038 0.0336 0.0962  0.0051 0.0440 0.0805  0.0042 0.0355
LightGCN 0.0470 0.0024 0.0215 0.0803 0.0042 0.0377 0.0698 0.0037 0.0319
LightGCN+feats 0.0477  0.0024 0.0208 0.0754 0.0040 0.0350 0.0793 0.0042 0.0344
MICRO/ feats 0.0736  0.0037 0.0331 0.0945  0.0050 0.0433 0.0892  0.0047 0.0404
MICRO w/o. fusion 0.0729 0.0037 0.0331 0.0925 0.0049 0.0428 0.0849 0.0045 0.0377
MICRO w/ 0. specific 0.0803  0.0042 0.0368 0.0981  0.0051 0.0461 0.0880  0.0046 0.0404
MICRO w/o. preference 0.0796 0.0040 0.0358 0.0992 0.0051 0.0461 0.0890 0.0047 0.0401
MICRO 0.0824  0.0042 0.0371 0.1005  0.0052 0.0467 0.0898  0.0047 0.0407

three datasets, obtaining up to 68.8% improvements
over the CF+feats variants, verifying the flexibility of
our plug-in paradigm.

e Even without the contrastive auxiliary task, MICRO
w/o. fusion obtains significant improvements over
CF+feats, indicating the effectiveness of discovering
latent item-item relationships from multimodal fea-
tures. Furthermore, the improvements between
MICRO and MICRO w/o. fusion show the impor-
tance of fine-grained multimodal fusion, through
which we can capture item relationships shared
between modalities adaptively.

e Based on the learned item graph structures, MICRO/
feats employs graph convolutions on multimodal fea-
tures. Our proposed method MICRO utilizes the
same learned structures but employ graph convolu-
tions on item ID embeddings, which aims to directly
model item affinities. The improvements between
them validate the effectiveness of explicitly modeling
item affinities where multimodal features are only
used to bridge semantic relationships between items.

e Multiple modalities convey both complementary
and supplementary information, available online.
The modality-specific information could comple-
ment the modality-shared features captured in the
invariant space and provides comprehensive multi-
modal representations. The improvements between
MICRO and MICRO w/o. specific indicates the spe-
cific information could also boost recommendation.

e The improvements between MICRO and MICRO w/
o. preference indicates the effectiveness of adding
user preference representations by aggregating the
multimodal representation of history items. Differ-
ent from the aggregating operation in CF methods
which encodes collaborative signals, we aim to

encode semantic item-item relationships conveyed
by multimodal content into the user preference
representation.

4.4 Sensitivity Analysis (RQ3)

Since the graph structure learning layer and the contrastive
auxiliary task play pivotal roles in our method, in this sub-
section, we conduct sensitivity analysis with different
hyper-parameters on graph structure learning layers and
the contrastive auxiliary task. First, we investigate perfor-
mance of MICRO-LightGCN with respect to different %k
value of the k-NN sparsification operation since £ is impor-
tant which determines the number of neighbors of each
item, and controls the amount of information propagated
from neighbors. Second, we discuss how the skip connec-
tion coefficient A affects the performance which controls the
amount of information from the initial graph structures.
Finally, we explore how the auxiliary task magnitude g,
and B, affects the performance.

4.4.1 Impact of Varied k Values

Figs. 4a, 4c, and 4e present the results of performance com-
parison. k=0 means no item relationships are included
and the model is degenerated to LightGCN. We have the
following observations:

e  Our method gains significant improvement between
k=0 and k=5, which validates the rationality of
item relationships mined from multimodal features.
Even if only a small part of the neighbors are
included, we can obtain better item representations
by aggregating meaningful and important informa-
tion from the neighbors, which boost the recommen-
dation performance.
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Fig. 4. Performance comparison of various hyperparameters k and .

e Furthermore, the performance first improves as k
increases, which verifies the effectiveness of informa-
tion aggregation along item-item graphs since more
neighbors bring more meaningful information that
helps to make more accurate recommendations.

e The trend, however, declines when k continues to
increase, since there may exist many unimportant
neighbors that will inevitably introduce noise to
information propagation. This demonstrates the
necessity of conducting ANN sparsification on the
learned dense graph.

4.4.2 Impact of Varied Coefficients A

Figs. 4b, 4d, and 4f present the performance comparison.
A =0 means only consider the graph structure learned by
the transformed multimodal features, and A = 1 means we
only consider the initial structure generated by the raw mul-
timodal features. We have the following observations:

e When we set A = 0, the model obtains poor perfor-
mance. It only learns graph structure from the trans-
formed features, completely updating the adjacency
matrix every time, ignoring the rich and useful infor-
mation of raw features and resulting in fluctuated
training process.

e The performance first grows as A becomes larger,
validating the importance of initial structures con-
structed by raw multimodal features. However, it
begins to deteriorate when A continues to increase,
since raw features are often noisy due to the
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inevitably error-prone data measurement or collec-
tion process. Learning the graph structures dynami-
cally can reduce noise.

e Overall, there are no apparent sharp rises and falls,
indicating that our method is not that sensitive to the
selection of A. Notably, all models surpass the base-
lines (c.f. Table 4), proving the effectiveness of item
graphs.

4.4.3 Impact of Varied Coefficients p

We investigate how the coefficients of the contrastive auxil-
iary task g, and the orthogonality constraint B, affect the
performance. Figs. 5a, 5c, and 5e report the performance.
We can observe that:

e With the increase of 8, and B,, the performances on
all datasets first rise and is always better than . = 0
and B,=0. The primary recommendation task
achieves decent gains when jointly optimized with
the two auxiliary tasks even with a small 8. and 8,.

e However, it begins to decline when 8, and g, con-
tinue to increase. A small 8 can promote the primary
task, while a larger one would mislead it. The bene-
fits brought by the self-supervised task and orthogo-
nality constraint could be easily neutralized and the
recommendation task is sensitive to the magnitude
of them.

4.4.4 Impact of Varied Layer Number L

In order to investigate the effect of multiple graph convolu-
tion layers and high-order information, we search the num-
ber of layers L in the range of {0,1,2,3,4,5}. Fig. 6 report
the performance. We can observe that:

e When L increases from 0 to 1, the performance
increases significantly on all datasets, indicating that
the item-item relationships can effectively boost
recommendation.

e The best performed hop varies from different data-
sets. Specifically, MICRO achieves the best perfor-
mance with L =1 in Clothing, L = 2 in Sports and
Baby. Applying a too deep architecture might intro-
duce noisy, unimportant item relationships to the
representation learning.

e  When varying the number of layers, MICRO consis-
tently and significantly outperforms baselines on all
datasets. It again verifies the effectiveness of item-
item relationships.

4.5 Investigation of the Contribution of Each

Modality (RQ4)
In this subsection, we aim to explore the contribution of
each modality. Table 6 reports the performance comparison
over different modalities. We observe that the performances
of utilizing multiple modalities are better than that of ones
within the single modality, demonstrating that incorporat-
ing the information from multiple modalities facilitates
comprehensive understanding of items. Additionally, tex-
tual modality contributes more than visual modality in gen-
eral. It is reasonable since textual modality provide more
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fine-grained information which directly reveals the titles,
categories and descriptions of items while visual modality
only provides coarse-grained visual appearances.

5 RELATED WORK

5.1 Multimedia Recommendation

Collaborative filtering (CF) has achieved great success in
recommendation systems, which leverage users’ feedbacks
(such as clicks and purchases) to predict the preference of
users and make recommendations. However, CF-based
methods suffer from sparse data with limited user-item
interactions and rarely accessed items. To address the
problem of data sparsity, it is important to exploit other
information besides user-item interactions. Multimedia
recommendation systems consider massive multimedia
content information of items, which have been success-
fully applied to many applications, such as e-commerce,
instant video platforms and social media platforms [37],
[45], [46], [471].
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TABLE 6
Performance Comparison Over Different Modalities

Dataset Model R@20 P@20 NDCG@20

Visual 0.0626 0.0032 0.0277

Clothing Textual 0.0765 0.0038 0.0349

Both 0.0824 0.0042 0.0371

Visual 0.0868 0.0046 0.0409

Sports Textual 0.0940 0.0049 0.0435

Both 0.1005 0.0052 0.0467

Visual 0.0768 0.0040 0.0339

Baby Textual 0.0835 0.0043 0.0380

Both 0.0898 0.0047 0.0407

For example, VBPR [5] extends matrix factorization by
incorporating visual features extracted from product images
to improve the performance. DVBPR [48] attempts to jointly
train the image representation as well as the parameters in a
recommender model. Sherlock [19] incorporates categorical
information for recommendation based on visual features.
DeepStyle [6] disentangles category information from visual
representations for learning style features of items and sens-
ing preferences of users. ACF [7] introduces an item-level
and component-level attention model for inferring the
underlying users’ preferences encoded in the implicit user
feedbacks. VECF [49] models users’ various attentions on
different image regions and reviews. MV-RNN [50] uses
multimodal features for sequential recommendation in a
recurrent framework. Recently, Graph Neural Networks
(GNNs) have been introduced into recommendation sys-
tems [12], [13], [51] and especially multimodal recommen-
dation systems [15], [16], [52]. MMGCN [15] constructs
modal-specific graph and conducts graph convolutional
operations, to capture the modal-specific user preference
and distills the item representations simultaneously. In this
way, the learned user representation can reflect the users’
specific interests on items. Following MMGCN, GRCN [16]
focuses on adaptively refining the structure of interaction
graph to discover and prune potential false-positive edges.
There are several prior studies [8], [9], [17] that propose to
explore collaborative item relationships through high-order
item-user-item co-occurrences. For example, HUIGN [17]
constructs a co-interacted item graph which exhibits users’
intents at different levels. It aims to learn multi-level user
intents from the co-interacted patterns of items and further
enhance the recommendation performance. PAMD [35]
takes the modality-specific information which could com-
plement the modality-shared features into consideration.

The above methods directly utilize multimodal features
as side information of each item and disregard fine-grained
multimodal fusion. In our model, we step further by discov-
ering semantic item-item relationships from multimodal
features, and conduct fine-grained multimodal fusion to
inject complementary item-item relationships from multiple
modalities into the item representations.

5.2 Deep Graph Structure Learning

GNNs have shown great power on analyzing graph-struc-
tured data and have been widely employed for graph ana-
lytical tasks across a variety of domains, including node
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classification [10], [53], link prediction [54], information
retrieval [55], [56], etc. However, most GNN methods are
highly sensitive to the quality of graph structures and usu-
ally require a perfect graph structure that are hard to con-
struct in real-world applications [57]. Since GNNs
recursively aggregate information from neighborhoods of
one node to compute its node embedding, such an iterative
mechanism has cascading effects — small noise in a graph
will be propagated to neighboring nodes, affecting the
embeddings of many others. Additionally, there also exist
many real-world applications where initial graph structures
are not available. Recently, considerable literature has
arisen around the central theme of Graph Structure Learn-
ing (GSL), which targets at jointly learning an optimized
graph structure and corresponding representations. There
are three categories of GSL methods: metric learning [21],
[22], [23], probabilistic modeling [57], [58], [59], and direct
optimization approaches [60], [61], [62].

For example, IDGL [23] casts the graph learning problem
into a similarity metric learning problem and leverage adaptive
graph regularization for controlling the quality of the learned
graph; DGM [63] predicts a probabilistic graph, allowing a dis-
crete graph to be sampled accordingly in order to be used in
any graph convolutional operator. NeuralSparse [58] considers
the graph sparsification task by removing task-irrelevant
edges. It utilizes a deep neural network to learn k-neighbor sub-
graphs by selecting at most k£ neighbors for each node in the
graph. We kindly refer to [64] for a recent overview of
approaches for graph structure learning.

In personalized recommendation, although user-item
interactions can be formulated as a bipartite graph natu-
rally, item-item relations remain rarely explored. To model
item relationships explicitly, we employ metric learning
approaches to represent edge weights as a distance measure
between two end nodes, which fits for multimedia recom-
mendation since rich content information can be included
to measure the semantic relationship between two items.

5.3 Contrastive Learning

Self-supervised learning is an emerging technique to learn rep-
resentations by self-defined supervision signals generated
from raw data without relying on annotated labels. Contrastive
learning (CL) has become a dominant branch of self-supervised
learning, which targets at obtaining robust and discriminative
representations by grouping positive samples closer and nega-
tive samples far from each other. For visual data, negative sam-
ples can be generated using a multiple-stage augmentation
pipeline [27], [65], [66], consisting of color jitter, random flip,
cropping, resizing, rotation, color distortion, etc. The latest
advances extend self-supervised learning to graph representa-
tion learning. Velickovic et al. [67] introduce an objective func-
tion measuring the Mutual Information (MI) between global
graph embeddings and local node embeddings. GraphCL [68]
and GRACE [53] propose a node-level contrastive objective to
simplify previous work. Furthermore, Zhu et al. [69] propose a
contrastive method with adaptive augmentation that incorpo-
rates various priors for topological and semantic aspects of the
graph. Generally, most CL work differs from each other in
terms of the generation of negative samples and contrastive
objectives.
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There also exist several works combining self-supervised
learning with collaborative filtering [40], [70], session-based
recommendation [71], social recommendation [72], [73] and
multimedia recommendation [74], [75]. Wu et al. [40] intro-
duce self-supervised auxiliary task into collaborative filter-
ing and improve both accuracy and robustness of GNNs for
recommendation. Yao et al. [70] utilize self-supervised
learning to learn better latent relationship of item features
for large-scale item recommendations. Zhou et al. [71] uti-
lize contrastive learning to learn the correlations among
attribute, item, subsequence, and sequence. Wei et al. [75]
aim to maximize the mutual information between item con-
tent and collaborative signals to alleviate the cold-start
problem.

In this work, since multiple modality-aware graphs are
involved, the individual modality-aware item representa-
tions and multimodal fused representations are natural pos-
itive pairs. We utilize contrastive learning to maximize the
agreement between item representations under an individual
modality and the multimodal fused representations. In this way,
the fused multimodal representations can adaptively cap-
ture item-item relationships shared between multiple
modalities in a self-supervised manner.

6 CONCLUSION

In this paper, we have proposed the latent structure mining
method (MICRO) for multimodal recommendation, which
leverages graph structure learning to discover latent item
relationships underlying multimodal features and devises a
novel contrastive framework to fuse multimodal item rela-
tionships. In particular, we first develop a modality-aware
structure learning layer and graph convolutions to inject
modality-aware item relationships into item representations.
Furthermore, we propose a novel multimodal contrastive
framework to adaptively capture item-item relationships
shared between multiple modalities in a self-supervised
manner. Finally, the resulting enhanced item representations
are infused with item relationships in multiple modalities,
which will be added into the output item embeddings of CF
models to make recommendations. Empirical results on
three public datasets have demonstrated the effectiveness of
our proposed model.
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