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Abstract
We consider the problem of locating pupillary and

limbic boundaries in iris images captured in non-
cooperative environment. This work presents an effi-
cient segment search algorithm, which takes advantage
of shape information and learned iris boundary detec-
tors, to enable exclusion of most noisy edges and ex-
traction of genuine pupillary contour segments. Pupil-
lary boundaries can then be accurately fitted as ellipses
using the extracted segments. To locate limbic bound-
aries more stably, the shapes of pupillary boundaries
constrain limbic boundary localization by adding in-
ferred points during ellipse fitting. Extensive experi-
ments on the challenging CASIA-Iris-Thousand iris im-
age database demonstrate the effectiveness and effi-
ciency of the proposed method.

1. Introduction

Iris localization aims to locate pupillary and limbic
boundaries from the background of an iris image, pro-
viding important position and region information for
further segmentation and iris texture analysis. Because
of its crucial role in iris recognition, much attention
has been paid during the last two decades [2]. As
the development of iris recognition from constrained to
non-cooperative environment, iris localization becomes
more challenging due to serious noises caused by non-
iris regions, such as eyelashes, eyeglass frames and
specular reflections.

Great efforts have been made to reduce the impacts
of noises to locate iris boundaries accurately and ro-
bustly [4, 7, 8]. In our recent work [8], we formulated
iris boundary detection in a discriminative framework
to distinguish between genuine iris boundary points and
spurious ones. Even though the experiments achieved
attractive segmentation results in most iris images, the
performance will be degraded in non-circular boundary
cases because of circle models we used. Moreover, it is
inevitable that the learned boundary detectors (LBD for
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Figure 1: The flowchart of the proposed iris localization
method.

short) output false detections. Therefore, more flexible
boundary models and further noise removal are needed
in the LBD based iris localization method.

Iris boundaries can be modeled as ellipses in most
cases [3, 4, 10]. However, such shape information is
rarely exploited since every candidate point is treated
separately during noise removal [4, 7, 8]. The contours
of an object, composed by edge points, contain richer
shape information than isolated points. Object detection
using contours has been developed in recent years [5, 9].
These methods assemble contour segments into the ob-
ject outlines under shape constraints and have achieved
encouraging performance.

In this paper, we introduce a new iris localization
method using contour segments which were ignored in
our previous work [8]. The flowchart of the proposed
method is shown in Figure 1. We start by preprocess-
ing the Canny edges of an input iris image to get can-
didate contour segments. Then, an efficient segment
search algorithm, which utilizes both shape informa-
tion and LBD, is designed for genuine pupillary contour
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Figure 2: Pupillary boundary localization. (a) Origi-
nal iris image; (b) Canny edge image; (c) Contour seg-
ments, dark points are endpoints; (d) The dark segment
is the beginning segment; the semi-circles centered at
endpoints illustrate the neighborhood search for adja-
cent segments; (e) Dark segments are pupillary contour
segments after assembling; (f) Pupillary boundary is fit-
ted as an ellipse.

segments assembling. The assembled pupillary contour
segments exclude most noises and can be accurately
fitted as an ellipse in consequence. After that, limbic
boundary points are detected by LBD. For more sta-
ble localization results, some unseen limbic boundary
points are inferred in eyelid occluded regions. The de-
tected and inferred points are fitted together as an el-
lipse.

2. Technical details
2.1. Pupillary and limbic boundary detectors

Learned iris boundary detectors presented in [8] are
effective for genuine boundary point detection. We ex-
tract the same features as described in [8] to characterize
edge points, but employ boosting chain algorithm [11]
to train four cascaded AdaBoost boundary detectors, i.e.
left/right pupillary and left/right limbic boundary detec-
tors. The cascade structure enables early rejection of
spurious points, which accelerates the detection.

2.2. Pupillary boundary localization

Shape information of iris boundaries is ignored when
the learned boundary detectors classify each edge point
separately. In this section, we utilize contour segments
to exploit shape information for further noise removal.

We first obtain the candidate pupillary contour seg-
ments of an iris image by removing contour junctions
and short segments from Canny edges (Figure 2b and
2c). Then, genuine pupillary contour segments are se-
lected from the candidates by pupillary contour assem-
bling algorithm (Algorithm 1).

Algorithm 1 Pupillary contour assembling and fitting

Input:
• An iris image and its contour segments X =
{Sn}, n = 1, ..., N , where Ln ≥ Ln+1 , Ln is the
length of segments Sn;

• Learned left and right pupillary boundary detectors;
Initialize:
• Thresholds Tp, Tkl, Tku;
• Pupillary contour segments Y = ∅;

Find out the beginning segment:
1: for n = 1, ..., N do
2: Calculate the percentage pn of genuine pupillary

boundary points validated by LBD in Sn;
3: Calculate the average curvature κn of Sn;
4: if pn > Tp and κn > Tkl and κn < Tku then
5: Y = Y ∪ Sn; X = X\Sn;
6: Contour endpoints {ec1, ec2} ← The begin-

ning segment endpoints {ens1, ens2};
7: Flag fendp = 1; Break;
8: end if
9: end for

10: if Y == ∅ then
11: No pupillary boundary is found; Goto: Output;
12: end if
Assemble pupillary contour segments:
13: while 1 do
14: Fit segments in Y as an ellipse Bp

15: If fendp == 1, find adjacent segments near
ec1; if fendp == 2, find adjacent segments near
ec2. Adjacent segments A = {Sadjm},m =
1, ...,M , where Sadjm ∈ X;

16: if A == ∅ then
17: if fendp == 1 then fendp = 2;
18: else Break; end if
19: else
20: Update contour segments X = X\A;
21: Calculate cm for each Sadjm (Equation 4);
22: Extend pupillary contour segments Y = Y ∪

Sbest, where Sbest is with minimum cost in A;
23: Update contour endpoints {ec1, ec2};
24: end if
25: end while
Output:
• Pupillary contour segments Y and ellipse Bp.

Pupillary contour assembling begins at the most
credible pupillary segment (Figure 2d). The beginning
segment is fitted as an ellipse Bp [6] to introduce shape
constraints into the following steps. Then the segment
with any one of its endpoints in the current contour end-
point’s semi-circle neighborhood (Figure 2d) is selected
as an adjacent segment and will be evaluated by three
cost functions, i.e. LBD cost, angle cost and distance
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Figure 3: Limbic boundary localization. (a) Limbic
boundary points (white points) are detected in the rays
(dark lines); unseen limbic boundary points are inferred
(white points on upper and lower eyelids); (b) Ellipse
fitting without (the dark ellipse) or with (the white el-
lipse) inferred points.

cost. The LBD cost is:

cLBD = g(
−2np

ap + bp
), (1)

where g(x) = 1/(1 + e−x) is the logistic function to
normalize the cost into (0, 1), np is the number of gen-
uine pupillary boundary points validated by LBD, ap
and bp are semi-major axis and semi-minor axis of Bp

respectively.
The adjacent segment s is composed by L points

(s1, ..., sL), where s1 and sL are the endpoints. As-
suming the line determined by sl and the center of Bp

intersects Bp at point bl, then the angle cost is calculated
as:

cθ = g(cos−1(
v⃗s · v⃗b
|v⃗s| |v⃗b|

)), (2)

where v⃗s is the vector from s1 to sL, v⃗b is the vector
from b1 to bL. The distance cost function is:

cd = g(µd) + g(σd), (3)

where µd and σd are the mean and standard deviation of
the distance between sl and bl, respectively. The total
cost is defined as:

c = wLBDcLBD + wθcθ + wdcd, (4)

where wLBD, wθ and wd are weights. Pupillary contour
segments are extended by the candidate that has mini-
mum c.

After several iterations, the genuine pupillary con-
tour segments which exclude most noises are assembled
together (Figure 2e). Finally, the pupillary boundary is
accurately fitted as an ellipse using the assembled seg-
ments (Figure 2f).

2.3. Limbic boundary localization
As iris boundary detection in [10], we detect limbic

boundary points in rays. Only one point is selected from
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Figure 4: Accuracy rate vs. difference rate threshold on
CASIA-Iris-Thousand database.

each ray by learned limbic boundary detectors (Figure
3a). In some cases, only a small number of points can be
detected due to occlusions, which may lead to unstable
fitting results (e.g., the dark ellipse in Figure 3b).

Since the pupillary boundary has been localized ac-
curately, it will obtain more stable results if assuming
that the shape of limbic boundary is similar with the
pupillary boundary. Such constraint is added by infer-
ring limbic boundary points in occluded regions. As-
suming the unseen points are generated by a latent el-
lipse which is concentric to the pupillary ellipse, then
the parameters of the latent ellipse can be simply de-
duced by the detected limbic boundary points and the
pupillary ellipse. The inferred points are fitted together
with the detected points. Therefore, the more inferred
points we add, the stronger shape constraint to limbic
ellipse fitting. In our experiments, the number of in-
ferred points is less than half of detected points to keep
the dominant constraint given by the detected points.

3. Experimental results
Experiments are carried out on CASIA-Iris-

Thousand database [1]. The database includes 20,000
iris images from 2,000 eyes of 1,000 persons. All
images in the database are used for iris localization
test. We collect training samples in 200 images which
are randomly selected from the first 100 eyes in the
database. The number of positive and negative samples
for each cascaded AdaBoost detector training are about
10,000 and 100,000 respectively. The patch size is set
to 17× 17 as in [8].

We compare the new method with two state-of-the-
art methods proposed in [7] and [8].

To state conveniently, we will use some abbrevia-
tions of different localization methods in the rest of the
section. Each abbreviation is described as follows:

He PP: Pupillary and limbic boundaries are local-
ized by the Pulling and Pushing method (PP) [7].

3400



AdaLBD HW: AdaBoost LBD. Pupillary and lim-
bic circles are determined by weighted Hough trans-
forms [8].

CasLBD HT: Cascaded AdaBoost LBD. Pupillary
and limbic circles are determined by Hough transforms
without weighting because the cascaded detectors out-
put only ±1.

CasLBD Pro: The proposed method described in the
previous Section.

The accuracy rate AR of iris localization is defined
in [8]. The average of the semi-major axis and semi-
minor axis of an ellipse is used for comparing with the
radius of the corresponding circle. The accuracy rate
curves varying with the threshold Th are shown in Fig-
ure 4. CasLBD Pro achieves more accurate localiza-
tion results than others. Even though CasLBD HT uses
more training samples than AdaLBD HW, its accuracy
is slightly lower than AdaLBD HW’s, which demon-
strates the difficulty to construct both fast and accurate
detectors.

Figure 5 shows some examples of localization re-
sults. Due to non-circular iris boundaries or seri-
ous noises caused by eyeglass frames and reflections,
there are some errors in the results of He PP and
AdaLBD HW. CasLBD Pro performs better in these
images. In rare cases, only a small fraction of pupil-
lary contour segments can be extracted by CasLBD Pro
and cause more unstable localization results than other
methods.

We implement AdaLBD HW, CasLBD HT and
CasLBD Pro by MATLAB in a PC with 2.4 GHz
CPUs. The average time costs per iris localization
are about 3.2s, 2.1s and 2.2s respectively, which are
slower than He PP [7]. Benefitting from cascaded de-
tectors, CasLBD HT is more than one second faster
than AdaLBD HW. The speed of CasLBD Pro is com-
parable with CasLBD HT’s even though iris boundaries
are modeled as ellipses rather than circles.

4. Conclusions
We have introduced a novel iris localization method

using contour segments. Two contributions ensure the
superiority of the proposed method. The first one comes
from the efficient segment search algorithm which uti-
lizes shape information and LBD to seek out genuine
pupillary contour segments. The second one is the
shape constraints to limbic boundary localization intro-
duced by inferred points. Extensive experiments on the
challenging CASIA-Iris-Thousand iris image database
have shown the proposed method achieves state-of-the-
art iris localization accuracy.
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