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Abstract
Deformation of iris pattern caused by pupil dilation and

contraction is one of the most influential intra-class vari­
ations. Most state-of-the-art iris recognition methods only
focus on the description of local iris texture features. We
believe that both geometric and photometric features are
important to achieve a robust matching result of deformed
iris images. This paper proposes to decompose iris images
into lowpass and bandpass components using nonsubsam­
pled contourlet transform (NSCT) and then extract differ­
ent features. Geometric features are extracted in bandpass
components based on key point detection to align deformed
iris patterns. And then aligned Ordinal features are ex­
tracted in lowpass components to characterize the ordinal
measures of local iris regions. Finally, key point features in
bandpass components and Ordinalfeatures in lowpass com­
ponents are fused for deformed iris image matching. Exten­
sive experiments on two challenging iris image databases
namely CASIA-Iris-Lamp and ICE'2005 demonstrate that
the proposed method outperforms state-of-the-art methods
in deformed iris recognition.

1. Introduction

Human iris between the pupil and sclera contains com­
plex and random texture information which is highly dis­
criminating and stable during the whole life. Iris recogni­
tion is an automatic identification method by analyzing iris
patterns based on non-contact imaging of human's iris [7].
As the muscles surrounding a pupil contract or relax, the
size of the pupil changes to regulate the amount of light en­
tering into an eye. Therefore, illumination variations will
cause significant changes in pupil size. In the daily illu­
mination environment, pupil diameter usually varies from
1.5mm to 7mm [17]. As a result, the changes lead to iris de­
formation dramatically and introduce large intra-class dif­
ference. Thus, iris recognition under unrestricted illumina-
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tion conditions is an extremely challenging problem.

There are three categories of methods to handle iris de­
formation. The first one is image preprocessing. Daug­
man [7] proposed to linearly stretch the circular iris area
into a rectangle image. Yuan et ale [18] described the re­
lationship of iris collagen fibers between different iris sizes
by employing a meshwork model. Wei et ale [16] applied a
Gaussian function to normalize deformation of iris texture
nonlinearly. However, precise mathematical model of iris
deformation does not exist. Even after image preprocess­
ing, deformed iris images are still highly different. Thus
the second kind of methods is to extract robust features.
Sun et ale [14] made use of qualitative iris texture repre­
sentation which is robust to deformation to a certain degree.
Ortiz et ale [13] implemented dilation-aware enrollment to
improve recognition accuracy. To address heavy deforma­
tion, robust matching strategies can be our third resort. Un­
der a Bayesian model, Thornton et ale [15] utilized max­
imum a posteriori probability (MAP) parameters of train­
ing iris images for matching deformed patterns. The ap­
proach in [10] estimated iris deformation as a bunch of hid­
den variables and designed a graph model. Zhang et ale [19]
showed perturbation-enhanced local and global feature fu­
sion method for robust iris recognition. Although there are
lots of deformed iris image matching methods, it remains a
challenging problem and deserves further study.

In [7] [5] and [12], multi-channel filters were utilized to
extract multi-scale and multi-orientation iris features. It is
mentioned that discriminating features are contained in dif­
ferent frequency bands. Inspired by these work, we propose
a novel algorithm using bandpass geometric features and
lowpass Ordinal features for deformed iris image match­
ing. Two kinds of iris features are extracted in different
subbands and then fused for deformed iris image matching.
In the flowchart shown in Figure 1, a normalized iris im­
age is decomposed into lowpass and bandpass subbands by
nonsubsampled contourlet transform (NSCT) [4] in the be-



Figure 1. Flowchart of the proposed algorithm

ginning. And then key points and aligned Ordinal features
are extracted in different subbands, separately. At last, two
kinds of features are fused for final matching. The details
of the proposed method can be seen in Section 4.1.

There are three main contributions of our work. Firstly,
due to the shift-invariant, multi-scale and multi-direction
properties of NSCT, smooth iris texture contours are ex­
tracted effectively. Secondly, deformed iris images are eas­
ily aligned by the locations of key points extracted from the
subbands where iris texture edges are strengthened. Lastly,
diverse features in different subbands are separately ex­
tracted and then fused, which can make use of various ad­
vantages of different subbands.

The remainder of this paper is organized as follows. Sec­
tion 2 reviews the background of the proposed algorithm.
Section 3 gives the motivation of the algorithm. The tech­
nical details of the proposed algorithm are described in
Section 4. Experimental results on two challenging iris
databases are presented in Section 5. Finally, Section 6
gives concluding remarks.

2. Background

This paper proposes to extract and fuse two sets of
iris features based on nonsubsampled contourlet transform
(NSCT) [4] which is a shift-invariant improvement of Con­
tourlet Transform (CT) [8]. NSCT adopts nonsubsampled
pyramid (NSP) structure to ensure its multi-scale property
and nonsubsampled filter banks (NSFB) to capture direc­
tionality in images, respectively. Different from other dis­
crete image decomposition algorithms, NSCT separates im­
ages into different subbands iteratively in an unseparated
way, which means the original geometric and edge infor­
mation can be fully preserved in the decomposition results.
Similar to the structure of Contourlet Transform [8], we can
select different kinds of nonsubsampled pyramids and non­
subsampled directional filter banks as discussed in [4].

In general, NSCT decomposition results contain low­
pass and directional bandpass subbands. NSP detects edge
points in an image and NSFB joints the detected edge points
in the same direction together. The geometric and edge in­
formation are captured and fully preserved in directional
bandpass subbands, which will be described in detail in
Section 4.2. The remained image information constructs
lowpass subbands, thus lowpass subbands contain less noise

and less high-frequency image information. Different from
other existed image decomposition methods, the distinct ad­
vantage of NSCT is that it detects smooth boundaries suc­
cessfully.

3. Motivation

Iris recognition accuracy is commonly affected by iris
deformation caused by illumination changes, emotion,
medical condition and so on. When iris images are ac­
quired in different illumination environments, pupil dila­
tion and contraction generate serious iris elastic deforma­
tion, which leads to large intra-class difference. As shown
in Figure 2, the two iris images are both from the same class
in CASIA-Iris-Lamp Database [1]. Image A and B were
acquired in the bright and dark environments, respectively.
Even though the iris areas are linearly normalized into rect­
angle images with the same size, they look highly different.

Figure 2. Deformed iris examples from the same class (This figure
is better viewed in color.)

Usually, iris images are registered and recognized at dif­
ferent time, even by different devices. The changes of en­
vironment illumination make heavily deformed iris images
ubiquitous in iris recognition so as to decrease recognition
accuracy significantly. Thus in this paper we propose a
deformed iris recognition method using bandpass geomet­
ric information and lowpass Ordinal features to solve this
problem. This method decomposes iris images into differ­
ent subbands and extracts different features based on the
unique characteristics of subbands. The geometric features
extracted in bandpass subbands based on key point detec­
tion are used to align deformed iris images and then align­
ment information is taken into account to help local Ordinal
feature extraction in lowpass subbands. Furthermore, fusion
of key point features and aligned Ordinal features is applied
to achieve better recognition performance in the last step.



4. Technical Details
4.1. Framework of proposed method

A novel deformed iris image matching method using
bandpass geometric information and lowpass Ordinal fea­
tures is proposed to address deformed iris image matching
problem. In our work, nonsubsampled contourlet transform
(NSCT) is implemented to decompose normalized iris im­
ages for its multi-scale, multi-direction and shift-invariant
properties. We find out that bandpass subbands contain
smooth and strengthened iris texture boundaries, which
makes bandpass subbands suitable to extract key points for
deformed image alignment. Meanwhile, lowpass subbands
contain less noise and less high-frequency information, thus
they are suitable to extract local iris features.

There are four main steps in the framework of the pro­
posed method shown in Figure 1. Firstly, normalized iris
images are decomposed into lowpass and bandpass sub­
bands by NSCT. Secondly, bandpass subbands are taken to
construct maxima images and extract key points in order to
align deformed iris images. Thirdly, the locations of key
points are utilized for aligned Ordinal feature extraction in
lowpass subbands. Finally, these two sets of features in dif­
ferent subbands are fused.

4.2. NSCT decomposition and NSCT maxima image
construction

In the beginning, we decompose each normalized iris im­
age into subbands at three different levels by nonsubsam­
pled contourlet transform (NSCT). The first level stands
for the lowpass subband and the other two ones represent
bandpass subbands in 8 orientations, thus 1 lowpass and
16 (8 x 2) bandpass subbands with the same size are ob­
tained. All the subbands are labeled as B o,BIn, B 2n (n ==
1,2, ... ,8), where Bi, is the lowpass subband, BIn, B 2n
(n == 1,2, ... ,8) stand for the bandpass subbands and
n == 1,2, ... ,8 means 8 orientations. After decomposition,
Bi, appears more smooth than the original image for it only
contains lowpass information, while the directional bound­
aries are mostly preserved in BIn and B 2n (n == 1,2, ... ,8).

When a certain iris image is decomposed by NSCT, to
eliminate noise and integrate the directional boundary in­
formation in different bandpass subbands, a maxima image
is constructed based on the decomposition results. The pro­
cess of maxima image construction is described as follows:

Step 1: The difference between two subbands is com­
puted in each direction. Dn == BIn - B 2n (n == 1,2, ... ,8),
where D n is named as 'difference image' in the nth orien­
tation. Thus we can get 8 difference images.

Step 2: At each pixel, we combine the maximum magni­
tude from the 8 difference images as a new one defined as
'NSCT maxima image'. M(i,j) == max(Dn(i,j)), where
M is the maxima image and (i, j) is the pixel coordinate.

Figure 3. NSCT maxima iris image construction

4.3. Key point extraction

Bandpass subbands are utilized to eliminate noise and
enhance boundaries of iris texture when we constructed
maxima images, which makes maxima images more suit­
able to extract key points than corresponding original im­
ages. Thus we can align two images by locating and match­
ing key points in maxima images more accurately.

In our work, we select Speeded Up Robust Features
(SURF) [3] for key point extraction and matching. SURF is
widely used to detect and match scale and rotation invariant
interest points. In contrast to other existed key point match­
ing algorithms (e.g. [9] [11]), SURF detects more scale and
shift invariant key points faster and more accurately.

At the key point extraction stage, firstly locations and
scales of key points are selected based on Hessian matrix
and integral images due to their low time cost and high ac­
curacy. Then a 64-dimension feature for each key point is
computed with the help of main orientation and gradient
in scale space. SURF points are selected by Blob-like fea­
ture detector efficiently later. Besides, the dominant orien­
tations and descriptor of SURF points can be determined by
Haar wavelet responses in point locations. Finally, when
two maxima images (no matter whether they are from the
same class or not) need to be aligned, Euclidean distance is
taken to measure the similarity of key points from them.

By taking a real example in our experiments shown in
Figure 4, we find 55 pairs of effective SURF key points be­
tween two normalized iris images. While 96 pairs of ef­
fective SURF key points are located between two maxima
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Figure 4. SURF point extraction and matching

images of theirs. This example illustrates that maxima im­
ages are more suitable to locate key points and align images.
With the benefits of key points in maxima images, deformed
iris images are easily aligned, which pave the way for local
feature extraction and matching in the next step.

4.4. Aligned Ordinal feature extraction and fusion

Ordinal measures (OM) come from an intuitive idea in
our daily life - qualitative description. This idea can also be
applied in feature extraction. We only focus on the qualita­
tive relationship between two pixels, such as whether one is
brighter or darker than another one. If one pixel is brighter
than another one, it is encoded as '1'. Otherwise, it is en­
coded as '0'. The binary codes are applied to present the
qualitative relationship instead of the real value of the two
ones. Sun et ale [14] take advantages of Ordinal measures to
encode the qualitative relationship between different block
regions in iris images. Each iris image can be encoded into
a sequence of binary iris code to describe the qualitative
difference between different image blocks from the same
iris image. Ordinal measures represent micro structures and
pixel value variance in a distinctive way. Meanwhile, due
to the unique idea of qualitative presentation, Ordinal mea­
sures are robust to illumination changes, noise, etc.

In this paper, multi-lobe differential filters (MLDF) are
applied to extract Ordinal features of iris images. A Gaus­
sian kernel is taken as the basic element of MLDF [14],
which is expressed as

n.; [ 2]MLDF = Cm 2: _1_. exp -(X-frn i )

i=l V27r8 rn 't 28rn i

N n 1 [ _ (X _ I-tn . ) 2 ]
-Cn 2: .J2=~ .exp 282 . J

j=l V ~7run't nJ

where J-L and 8 describe the size of each lobe. N m and N n
stand for the numbers of positive and negative lobes, respec­
tively. And CmNm = CnNn is necessary to ensure the zero
sumofMLDF.

Figure 5. Aligned Ordinal feature extraction in lowpass subbands

Figure 5 shows the process of aligned Ordinal features
extraction in lowpass subbands. To align a deformed iris
image, SURF key points have been extracted and matched
in the maxima images constructed by bandpass subbands
and the locations of theirs are utilized to determine where to
extract Ordinal features in lowpass subbands. In Figure 5,
each colored '*' means that there is a matched SURF key
point at the same location in the maxima image. And the re­
gions labeled as ..., b., bj , bm , bn , bp , bq , ••• , which are with
key points at the centers, stand for the feature extraction ar­
eas around key points. While in the regions where does not
exist any key point, we label them as aI, a2, a3, a4, ... , tu,
aj , ... , and use the regular location and step size for Ordinal
feature extraction. For we apply the locations of key points
to fix positions of feature extraction, the extracted Ordinal
features are called as aligned features. After aligned Ordinal
feature extraction, the lowpass subband of each iris image
can be easily encoded into a sequence of binary iris codes.
The measurement of Hamming distance (HD) between two
iris codes is taken to describe the dissimilarity of these ones.

The locations of extracted SURF key points are used to
align deformed iris images, while the features of them are
also fused with aligned Ordinal features. Euclidean distance
is taken to measure the similarity of matched key points
from different iris images. Score level fusion of aligned
Ordinal features and SURF features is utilized in our work.
The final matching score of two images is

S(p, q) = SOM(p, q) + A x SSURF(p, q) (2)

where P and q stand for two different normalized iris im­
ages. SOM(p, q) is the Hamming distance between aligned
Ordinal features of p and q, while Ssu RF(p, q) is Euclidean
distance between SURF features of them. A is a weight



Method Equal Error Rate (%) Discriminating Index

Gabor filtering 8.66 2.5074

Ordinal Measures 0.80 5.3533

Proposed 0.61 5.8968

Method Equal Error Rate (%) Discriminating Index

Gabor filtering 12.81 2.0273

Ordinal Measures 2.94 3.5571

Proposed 2.05 5.2625

value to determine the relative importance of two kinds of
features.

5. Experiments
5.1. Databases

The two iris databases used in this section for algo­
rithm evaluation are CASIA-Iris-Lamp [1] and ICE'2005
databases [2].

The first one is CASIA-Iris-Lamp [1], which will be ab­
breviated as Lamp in the following. There are more than
800 classes and each class contains about 20 images. A
lamp was tum on/off when iris images were acquired, thus
heavy iris deformation was introduced into the database.
The ratio of pupil radius to iris radius varies from 0.19 to
0.67 in this database.

The second one is ICE'2005 iris database [2], which will
be abbreviated as ICE in the following. National Institute
of Standards and Technology (NIST) released this database
which contains 2953 images from 132 subjects. Most iris
images from this database are low-quality, for instance, de­
focus, occlusion by eyelashes and eyelids, deformation and
so on.

are shown in Figure 6 and Figure 7.
DI == Iml - m21

v(8r + 8~)/2

Table 1. Experimental results on the Lamp database [1]

Table 2. Experimental results on the ICE database [2]

(3)

5.2. Experimental results

To evaluate the performance of the proposed method, we
compared it with two state-of-the-art iris recognition algo­
rithms on the Lamp and ICE databases. Two compared al­
gorithms are both self-implemented and choose the basic
parameters. All the iris images from the datasets are lin­
early normalized [6]. In each method, we applied one-to­
one matching, which means there is only one gallery image
and one probe image for each matching. The first com­
pared method is Gabor wavelet filtering by classification
with Hamming Distance [6]. In this method, normalized iris
images are encoded into binary iris codes after being filtered
by Gabor wavelet of different scales and orientations. The
dissimilarity of two images is defined as the Hamming Dis­
tance between their codes. The second compared method is
Ordinal Measures [14]. Two-lobe and tri-lobe Ordinal fil­
ters are utilized to extract iris features. And then score level
fusion of two sets of features is applied. Similarly, Ham­
ming Distance is used to measure the dissimilarity of two
iris images.

Equal Error Rate (EER) and Discriminating Index
(DI) [7] are taken to evaluate performance of the proposed
method. EER is the value where false accept rate (FAR) and
false reject rate (FRR) are equal. DI is computed as Equa­
tion 3, where ml and m2 are two means of intra-class and
inter-class distributions, and variances of the two distribu­
tions are 8r and 8~. Recognition results, EER and DI, on
the two databases are shown in Table 1 and Table 2, respec­
tively. Besides, the entire ROC curves on the two databases

Figure 6. ROC curves on the Lamp database [1]

Figure 7. ROC curves on the ICE database [2]

5.3. Discussions

From the two tables and two figures shown in Sec­
tion 5.2, we see that the proposed method is more robust



to iris deformation compared with other two methods. In
our work, we select NSCT lowpass subbands rather than
bandpass subbands to extract local Ordinal features. Al­
though the lowpass subbands contain little high-frequency
image information, it almost does not affect Ordinal fea­
ture extraction. Besides, the lowpass subbands contain less
noise, which is positive to feature extraction and matching.
At the same time, due to the characteristics of NSCT band­
pass subbands, the key points are stable and suitable for de­
formed image alignment.

Although the experimental results are encouraging, the
problem of deformed iris image matching has not been to­
tally solved. In our work, we align deformed iris images
by applying SURF points, the amount of which is actually
limited, thus the deformed iris images can not be perfectly
aligned. Meanwhile, occlusions of eyelid and eyelashes
also make negative influence on the alignment.

6. Conclusions

We have proposed a novel deformed iris recognition
method using bandpass geometric features and lowpass Or­
dinal features. Four main steps are taken in this method.
Firstly, normalized iris images are decomposed into low­
pass and bandpass subbands by nonsubsampled contourlet
transform (NSCT). Secondly, bandpass subbands are uti­
lized to construct maxima images to extract key points. The
locations of those points are employed for aligned Ordinal
features extraction in lowpass subbands. Finally, the match­
ing scores obtained by aligned local features and key point
features are fused.

The proposed algorithm makes full use of the shift­
invariant, multi-scale and multi-direction properties of non­
subsampled contourlet transform efficiently. Meanwhile, it
extracts and fuses different features in different subbands
to take fully advantages of subbands. This algorithm is ro­
bust to deformation, noise and so on. The experimental re­
sults have shown that the proposed method is an effective
approach which can reduce the error rates of deformed iris
recognition. Since iris deformation is an important issue
in iris recognition, we will continue to focus on deformed
pattern matching in the future.
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