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Abstract:   Score-based multimodal biometric fusion has been shown to be successful in addressing the problem of unimodal techniques′
vulnerability to attack and poor performance in low-quality data. However, difficulties still exist in how to unify the meaning of hetero-
geneous scores more effectively. Aside from the matching scores themselves, the importance of the ranking information they include has
been undervalued in previous studies. This study concentrates on matching scores and their ranking information and suggests the rank-
ing partition collision (RPC) theory from the standpoint of the worth of scores. To meet both forensic and judicial needs, this paper pro-
poses a method that employs a neural network to fuse biometrics at the score level. In addition, this paper constructs a virtual homolog-
ous dataset and conducts experiments on it. Experimental results demonstrate that the proposed method achieves an accuracy of 100%
in both mAP and Rank1. To show the efficiency of the proposed method  in practical applications, this work carries out more experi-
ments utilizing real-world data. The results show that the proposed approach maintains a Rank1 accuracy of 99.2% on the million-scale
database. It offers a novel approach to fusion at the score level.
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 1   Introduction

Biometrics  has  rapidly  evolved  into  a  formidable  in-

strument for  public  security authorities  to  uncover  cases

in  recent  years.  Biometrics,  which  includes  fingerprints,

faces, and voiceprints, are natural identifiers. The facts of

the  case  were  established  within  48  hours  in  the  615

bombing of a kindergarten in Xuzhou, Jiangsu Province,

in  2017,  using  the  face  recognition  platform  of  the  Sci-

ence and Information Bureau of Ministry of Public Secur-

ity, China. However, the continuous growth of databases

limits the performance of unimodal biometric algorithms.

One of the key drawbacks of present unimodal biometric

algorithms is that they place great demands on the qual-

ity  of  data  received.  Nevertheless,  biometrics  collected

from  crime  scenes  are  generally  of  low  quality,  such  as

fragmented fingerprints, fuzzy facial images, and long-dis-

tance iris  photographs,  among other things.  Existing ap-

proaches  are  unable  to  reconcile  the  imbalance  between

quality and accuracy. The majority of biometric recogni-

tion  research  has  concentrated  solely  on  how  to  exclude

data of poor quality. There is an immediate need to solve

the issue produced by low-quality biometrics. As a result,

biometrics that integrate several modalities have emerged

as a new development direction in the realm of public se-

curity.

Multimodal biometric recognition can be divided into

multi-sensor  biometric  recognition,  multi-algorithm  bio-

metric  recognition,  multi-instance  biometric  recognition,

multi-native  biometric  recognition,  and  hybrid  biometric

recognition[1]. Currently, hybrid multimodal biometric re-

cognition  generally  fuses  unimodal  biometrics  from  five

levels:  pixel,  feature,  score,  ranking and decision.  As the

level  of  fusion  increases,  less  original  data  is  kept,  and

various  fusion  methods  have  advantages  and  disadvant-

ages[2]. Due to its capacity to balance the amounts of in-

formation  in  many  modalities  and  its  processing  simpli-

city,  score-level  fusion has been extensively studied.  The

heterogeneity of scores – that is, the fact that scores come

from non-homogeneous modalities or distinct matching al-

gorithms – is the main challenge in score fusion. The dis-

tribution of scores within the same interval exhibits con-

siderable  variances  as  a  result,  which  has  an  impact  on

the significance of the meaning of scores.

The significance of the matching score for pattern re-

cognition-based  approaches  relies  on  the  algorithm  em-

ployed  to  acquire  the  score  and  is  often  evaluated  in

terms of similarity or distance, which have no real-world

applications.  However,  in  ranking  partition  collision

(RPC) theory, the virtual score meaning may be further

 
Research Article

Manuscript  received on April 22, 2022; accepted on December 12,
2022; published online on April 13, 2023
Recommended by Associate Editor Ji-Liang Tang

 

Colored  figures are available  in  the online version at https://link.
springer.com/journal/11633
©  Institute  of  Automation,  Chinese  Academy  of  Sciences and

Springer-Verlag GmbH Germany, part of Springer Nature 2023
 

Machine Intelligence Research

www.mi-research.net

20(6), December 2023, 884-896
DOI: 10.1007/s11633-022-1403-7

 

https://doi.org/10.1007/s11633-022-1403-7
https://link.springer.com/journal/11633
https://link.springer.com/journal/11633


stated as a score value when paired with ranking informa-

tion  and  given  various  weights.  The  approach  applied

RPC theory combines many score values to estimate the

value of the evidence. It combines the many score mean-

ings while transforming them into useful metrics for prac-

tical applications, which has a large influence on multimo-

dal fusion and real-world applications in public security.

The matching scores  and ranking ranges  of  unimodal

and multimodal biometric retrieval have a significant im-

pact on the detection of fake results in application scen-

arios.  This  work develops  a  method based on the  Rank-

ing  Partition  Collision  theory  to  accomplish  multimodal

biometric  fusion  at  the  score  level.  Furthermore,  this

work  is  validated  on  a  real-world  biometric  database.

This paper makes the following contributions:

1)  This  work  proposes  RPC  theory.  The  theory  fo-

cuses on matching scores and ranking ranges, which is in

accordance  with  the  current  demands  of  public  security

agencies.  Score-level  fusion  is  used  to  achieve  fusion,

which is governed by the ranking level.

2) The presented method is not intended for use with

any specific modalities.  The suggested approach is based

on  combining  scores  from  distinct  modalities,  and  the

fused  modalities  are  not  restricted  in  any  way.  In  this

situation,  modalities  for  fusion  can  be  flexibly  chosen

based on the actual needs.

3) The suggested method is validated on a real-world

biometric  database to ensure that the RPC theory is  ef-

fective and robust, as well as that it is reasonable in prac-

tice.

 2   Related work

Researchers  have  been  concentrating  their  efforts  on

biometric  identification  increasingly  recently,  leading  to

advancements  in  facial  detection,  palm print  recognition

and other perspectives[3−6].

Bruneli and Falavigna[7] were the first to apply fusion

biometrics for authentication, and they used weighted av-

erages of facial pictures and voiceprints to prove the viab-

ility  of  modal  fusion.  Bigün  et  al.[8] developed  the  term

“multimodal,”  combining  facial  pictures  and  voiceprints

using  a  Bayesian  statistical  framework.  Verlinde  and

Chollet[9] created  a  simultaneous  fusion  of  various  out-

puts  of  classifiers.  Multimodal  fusion  was  improved  into

feature-level  fusion,  score-level  fusion,  and  decision-level

fusion by Ross and Jain[10], laying the groundwork for the

fast  development  of  multimodal  biometric  identification

technology. Pixel-level fusion focused on fusing the origin-

al  data[11−14].  Ning  and  Chen[13] used  sensor  fusion  al-

gorithms  to  achieve  image  alignment  and  complete  3D

image fusion after removing image gaps. Yaman et al.[14]

verified  the  effectiveness  of  pixel-level  fusion.  Feature-

level fusion was oriented towards features extracted from

multiple  biometric  features[15, 16],  Kong[17] used  a  double

layer feature for fusion, which is more stable than single-

layer feature fusion. Score-level fusion concentrates on the

matching  scores  provided  by  a  specific  comparison  al-

gorithm and  merges  them to  produce  a  final  score[18, 19].

Li  et  al.[20] fused  static  and  dynamic  features  of  gait  by

the  fraction  fusion  method,  which  effectively  improved

the accuracy of gait recognition.

The matching scores  provided by a certain comparis-

on algorithm are studied in score-level fusion. Score-level

fusion is an appropriate fusion method for multimodal fu-

sion  because  it  can  easily  balance  raw  information  with

data  processing.  Score  level  fusion  approaches  are  now

classified into three groups[19, 21]: 1) Transformation-based

fractional fusion methods: The basic purpose is score nor-

malization, in which various modal scores are normalized

to  the  same  interval  and  then  synthesized  into  final

scores;  2)  Classification-based  fractional  fusion  methods:

Each matching score of candidates is considered as an ele-

ment  of  eigenvectors,  and  the  scores  of  various  modalit-

ies  are  merged into  new spaces,  in  which each matching

score of candidates is considered as a feature vector[22]; 3)

Probability density-based methods: The final result is ob-

tained by converting the  scores  into  category probabilit-

ies  and  performing  the  fusion  calculation  based  on  the

likelihood ratio test and the multiplication principle, so it

is  critical  to  estimate  the  category  probability  density

correctly.

Transformation-based  fusion  methods. Brunelli

and  Falavigna[7] normalized  facial  and  voice  information

and  applied  weights  to  scores,  achieving  score  level  fu-

sion  by  combining  matched  scores  and  ranking  informa-

tion.  Hong  and  Jain[22] performed  score  modelling  and

normalization  by  ranking  information.  Jain  et  al.[23] in-

vestigated score normalization using geometric aspects of

the  face,  fingerprint  and  hand  information,  highlighting

the  benefits  and  drawbacks  of  typical  normalizing  ap-

proaches.  To  achieve  more  robust  user  recognition,

Alsaade  et  al.[24] added  unconstrained  cohort  normaliza-

tion  (UCN)  into  the  process  of  score-level  fusion  of  face

and speech recognition.

Classification-based  fusion  methods. Wang

et al.[25] employed linear discriminant analysis (LDA) and

radial basis functional neural network (RBFNN) as classi-

fiers  to  combine  the  matching  scores  of  face  and iris  re-

cognition  into  a  two-dimensional  eigenvector.  Tulyakov

and  Govindaraju[26] suggested  a  global  algorithm  to  im-

prove  biometric  performance  by  including  interclassifier

information  and  accounting  for  the  interdependence  of

the output scores of a single classifier. For a face and iris

biometric  system,  Wang  and  Han[27] implemented  sup-

port  vector  machine  (SVM) with  a  radial  basis  function

as the kernel function. Eskandari and Toygar[28] fused the

two  modalities  after  tanh  normalization  using  local  and

global feature extractors on face and iris pictures, respect-

ively.  By  developing  user-dependent  and  user-independ-

ent classifiers and merging them with simple linear com-

binations, Ylmaz and Yanıkoğlu[29] showed that score fu-

Z. Li and Y. Tang / Multimodal Biometric Fusion Algorithm Based on Ranking Partition Collision Theory 885 

 



sion is superior to feature fusion in signature recognition.

Aravinth and Valarmathy[30] integrated the  benefits  of  a

rule-based classifier, a lazy classifier, and a learning clas-

sifier  to  achieve  score  level  fusion  for  faces,  fingerprints,

and  irises,  resulting  in  improved  accuracy.  Madane  and

Thepade[18] combined  iris,  palmprint,  and  fingerprint

scores  based  on  similarity  and  distinct  color  spaces  via

categorical  ternary  block  truncation  coding.  Supreetha

et  al.[31] investigated score-level  fusion  systems using  ba-

sic  transformation  rules  (min,  max,  and  sum),  dynamic

weighting coefficients, and triangle rules (Frank, Hamach-

er, and Sugeno Weber).

Probability  density-based  fusion  methods.

Nandakumar  et  al.[32] proposed  a  combinatorial  frame-

work for matching scores, modelling the density distribu-

tion of  matching scores between users and impostors us-

ing the Gaussian mixture model (FGMM), which outper-

formed  weighted  mean  and  SVM  rule  methods.  Peng

et al.[33] introduced a triangle criterion-based score fusion

approach to better differentiate the score distributions of

users and impostors and obtain a lower mistake rate.

Despite  the  fact  that  more  studies  have  been  per-

formed on score-level fusion, there are still issues to be re-

solved. Ranking partition collision theory is developed in

this study to steer score-level fusion based on ranking in-

formation to accomplish cross-level fusion.

 3   Ranking partition collision theory

It is often impossible to judge whether the input char-

acteristics  of  claimants  (the  biometrics  to  be  identified)

are  in  the  candidate  list  (the  existing  database),  so  the

task  is  an  open-set  retrieval  event,  which  has  different

aims  and  difficulties  than  the  verification  task.  In  the

practical  application  of  public  security  organs,  attention

is  also  paid  to  the  ranking  information  as  well  as  the

score  information.  Therefore,  this  paper  proposed  the

RPC theory to  guide  score-level  fusion  based  on  ranking

information to achieve multimodal biometric fusion.

 3.1   Theoretical content

The algorithm in this paper first builds a modal pro-

prietary network to train unimodal biometric features and

obtains  unimodal  matching  scores  and  ranking  informa-

tion; second, it divides the ranking information into parti-

tions,  attributing  different  assignments  to  sensitive  and

non-sensitive  partitions;  and  finally,  it  integrates  mul-

timodal  biometric  fusion  and  retrieval  according  to  the

partition  assignment. Fig. 1 depicts  the  algorithm frame-

work proposed in this article.

The basic substance of ranking partition collision the-

ory  includes  two  parts:  partition  selection  and  modal

matching  score  collision.  The  selection  of  partitions  will

affect  the  final  fusion  accuracy  since  it  is  based  on  the

ranking  information  to  split  sensitive  and  non-sensitive

partitions  and  assign  values.  We  may  direct  the  match-

ing scores of multiple modes to merge by assigning parti-

tions,  which  can  effectively  increase  fusion  accuracy  in

the situation of weak retrieval accuracy.

 3.2   Formal description of the problem

We hypothesize multimodal biometric identification in
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m (m = 1, 2, · · · , T ) Y

Iy (y = 1, 2, · · · , Y )

x

x

a  substrate  with T candidates.  Assume  that  candidates

are ,  that  modal  classifiers

 are  involved  in  the  recognition  pro-

cess  and  that  denotes  the  biometric  profile  of  an  un-

known  claimant.  Biometric  recognition  is  the  process  of

ranking claimant  versus the candidate list.

T

ry = {ry1 , ry2 , · · · , ryT }
x wx ∈ φ = {1, 2, · · · ,m}

wx m

wx = m x

Iy

ry ∈ RT×1
T × Y

r ∈ RT×Y

r

(T !)Y

n

r r = n ∈ {1, 2, · · · , N}, N = (T !)Y

f

r f(x) ∈ φ = {1,
2, · · · ,m}

Each modal  classifier  generates  a  score  by sorting  all

candidates  and  generates  a  × 1  dimensional  vec-

tor . The source identity of the un-

known claimant  is expressed as ,

and  the  identity  of  claimant  is ,  which  can  be  ex-

pressed  as .  For  an  unknown  claimant ,  each

modal  classifier  generates  a  score  ranking  vector

,  and  all  vectors  form  a  dimensional

matrix ,  called  the  ranking  score  matrix.  The

row vectors correspond to all modal scores of a candidate,

and the column vectors correspond to all candidate scores

of a modality. For a ranking score matrix , the number

of elements in the corresponding value space is . De-

noting  an  element  in  this  value  space  by ,  then  for  a

ranking  score , .  As-

suming  that  the  proposed  fusion  decision  function  is 

and that the scheme yields a decision based on the rank-

ing  score  matrix ,  the  final  decision  is 

.

x

wx

f(x)

The recognition problem for  can be expressed as an

optimization  problem  that  maximizes  the  sum  of  the

probabilities of identifying the unknown claimant  cor-

rectly over the full space with the ranking score matrix r
and the fused decision scheme .

max
T∑

m=1

N∑
n=1

P{f(x) = m,wx = m, r = n}. (1)

f r

r wx

As  only  relies  on  the  ranking  score  matrix 

throughout  the  decision-making  process,  the  decision  is

based only on  and is independent of , the first term

of  (2)  can  be  simplified.  Decomposition  and  simplifica-

tion of (1) using the Bayesian rule results in

T∑
m=1

N∑
n=1

P{f = m|r = n}P{wx = m, r = n}. (2)

P{f = m|r = n}

amn ∈ [0, 1] P{wx = m,

r = n}

f

P{r = n|wx = m}P{wx = m}

wx

In (2), the first term  depends on the

fusion decision process,  and the probability value can be

expressed  as ;  the  second  term 

 represents the ranking result of each modal classi-

fier, depends on the performance of a classifier and is not

related to fusion scheme . This term can be further ex-

pressed  as ,  and  the  joint

probability  can  be  determined  by  combining  score

matrices based on the different identities of the unknown

claimant .

P{f = m|r =By  defining  the  fusion  decision  process 

n} amn ∈ [0, 1] as taking values of , the objective function

in (2) can be further expressed as

T∑
m=1

N∑
n=1

amnP{f = m|r = n}. (3)

The final expression of the optimization problem is

Optimizing targets :

max amnq=1,2,··· ,T, n=1,2,··· ,N

{
T∑

m=1

N∑
n=1

amnP{f=m|r=n}

}
.

Qualifying conditions :
T∑

m=1

amn = 1, n = 1, 2, · · · , N. (4)

P{wx = m, r = n}Since  is  non-negative,  the  optimal

solution to this optimization problem is

a∗
mn =

{
1, if m = arg maxT{wx = k, r = n}
0, otherwise.

(5)

 3.3   Mathematical feasibility derivation

T

Y

ε

T × (T !)Y

Z

ε MZ

Zw DZ =

{Z1,Z2, · · · ,ZMZ} M

When the capacity of the known dataset is  and the

number of modal classifiers is , to obtain the joint prob-

ability result of (7), it is necessary to consider all the pos-

sibilities of candidates and the ranking score matrix in a

space ,  which  has  a  total  of  potential  scenarios.  There

are  a  total  of  possible  solutions  in  the  event

space.  However,  in  this  event  space,  most  of  the  solu-

tions are not optimal,  and the full  event calculation res-

ults  in  a  waste  of  computational  resources.  To  improve

computational efficiency, the whole event space can be di-

vided into  non-intersecting  subspaces,  and then the  sum

of the probability of each event can be calculated on each

subspace. Assuming that the mapping  divides the full

space  into discrete event subspace partitions , if the

different  partitions  form  an  ordered  set 

,  then the partition  defines  a  new

random variable:

dZ : I × S 7→ {1, 2, · · · ,MZ} . (6)

I S

dZ I × S

dZ = Z(m,n)

In  (8),  is  the  list  of  candidate  identities,  and  is

the  ordered  set  of  score  matrices.  The  random  variable

 maps  the  full  event  space  to  the  set  of  se-

quences  of  an  event  partition  so  that  the  random  vari-

able can be expressed as . At this point, we

can further expand the objective function in (2) by defin-

ing  its  summation  over  the  partitioned  subspace,  which

yields
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T∑
m=1

N∑
n=1

P f(x) = m, wx = m, r = n, dZ = Z(m,n).

(7)

Using the Bayesian rules, we can obtain

P {f(x) = m,wx = m, r = n, dZ = Z(m,n)} =

P {f(x) = m | wx = m, r = n, dZ = Z(m,n)}×

P {wx = m, r = n | dZ = Z(m,n)}×

P {dZ = Z(m,n)}. (8)

Since the fusion decision f is  based only on the score

matrix, the combination (9) and (10) can obtain

T∑
m=1

N∑
n=1

P{f(x) = m|r = n}×

P{wx = m, r = n|dZ = Z(m,n)}×

P{dZ = Z(m,n)}. (9)

f

Z(m,n)

amn

P{r = n,wx = m}

Equation  (11)  contains  three  probabilities.  The  first

term is  directly related to the fusion decision method .

The third term is related to the performance of the classi-

fier and depends on the classification result of the classifi-

er on the partition . The second term can be con-

sidered a transition term from partitions to sub-events. It

defines  the  probabilistic  relationship  between  the  parti-

tioning of  coarse data and the source identity and rank-

ing score  matrix of  individual  data.  In (11),  the optimal

solution of the fusion decision process depends on the par-

titioning of the data. Similarly, in terms of data partition-

ing,  the  objective  function  in  (5)  consists  of  two  main

components.  The  first  is  the  space  spanned  by  the  free

parameter ,  that  is,  the  free  parameter  space.  The

second  is  to  combine  all  the  classifier  result  statistics

across  the  space,  that  is,  all  the  estimation  parameters

, which is also named partition.

When choosing a ranking-based multi-classifier  fusion

method, it is often impossible to obtain an optimal solu-

tion to a practical problem because the classifier behavi-

or  cannot  be  predicted.  An accurate  estimate  of  the  full

probability of the classifier cannot be made, so a reason-

ably specific partition needs to be selected. In this paper,

the ranking information is partitioned, and the matching

scores  are  fused  with  the  ranking  information.  Usually,

the ranking information is  more reliable than the scores,

especially when the unknown biometrics are of low qual-

ity;  then,  both  the  true  identity  and  the  impersonation

scores will be low. At this point, when the scores of differ-

ent modalities are fused, the ranking information is still a

stable  quantity,  and  the  source  identity  may  be  identi-

fied  in  combination  with  other  modal  ranking  informa-

tion.  Conversely,  when the  classifier  yields  incorrect  res-

P{dZ = Z(m,n)}

ults,  the source identity usually lies in the top ranks.  In

this  study,  the  ranking  score  matrix  is  divided  into  two

parts,  namely,  a  sensitive  partition  and  a  non-sensitive

partition.  The  fusion  method  obtains  the  optimal  solu-

tion when the probability of a correct decision is maxim-

ized,  at  which  point  the  classifier  observation  statistic

 obtains a unique value that satisfies

P{r = n,wx = k|dZ = Z(k, n)}×

P{dZ = Z(k, n)} ≥

P{r = n,wx = m|dZ = Z(k, n)}×

P{dZ = Z(k, n)}, m = 1, 2, · · · , T . (10)

The classifier at this point is close to the ideal classifi-

er case.

 3.4   Fusion method based on ranking parti-
tion collision theory

The selection of partitions is at the heart of the rank-

ing partition collision theory-based fusion approach. Fig. 2
illustrates the three steps of the matching and identifica-

tion  process  that  take  place  when  a  trace  is  discovered:

mass  flow  monitoring,  refined  investigation,  and  expert

identification.  The  trace  is  compared  to  all  trace  data-

bases during the mass flow monitoring phase to identify a

“relevant trace database” that is connected to the trace,

as shown in Outcome 1. Most biometric automated iden-

tification algorithms can provide the findings of this step,

and investigators can complete it without having special-

ized  skills.  The  top  traces  from  Outcome  1  are  further

compared  with  the  suspect  traces  during  the  refined  in-

vestigation  phase  to  provide  a  list  of  candidates  with

ranking information, as shown in Outcome 2. It should be

emphasized that the ranking of the candidate list is only

an  algorithmic  ranking,  and  different  algorithms  may

provide results that are noticeably different from one an-

other. A multimodal recognition algorithm in 1 : N identi-

fication mode, with the investigators as the executive, can

be  used  to  produce  the  findings  of  this  phase.  When  an

identification  document  is  issued,  which  is  Outcome  3,

the  trace  is  recognized with each of  the  top-ranked can-

didates individually by an expert with specialized expert-

ise, and it becomes evidence. Due to constraints on time,

effort, and case efficiency, it is obvious that the higher up

on  the  candidate  list  the  source  identification  of  the

claimant appears,  the more likely it is  to be accepted as

evidence – or what we refer to as having a greater eviden-

tial value.

Because the outcome of a distance classifier is determ-

ined  by  the  distance  between  features  in  the  feature

space,  the  scores  fall  as  the  distances  grow.  In  many

cases,  the  feature  distance  at  the  top  of  the  ranking  is

more sensitive than that at the bottom. In other words, a

 888 Machine Intelligence Research 20(6), December 2023

 



smaller  increase  in  the  distance  between  features  in  the

top  ranking  tends  to  result  in  a  change  in  the  ranking,

whereas  the  distance  between  features  in  the  bottom

ranking is likely to result in a larger change in the rank-

ing.  As  a  consequence,  higher-order  information  is  more

vulnerable. The divisions are divided as follows in this pa-

per:

r̂my =

{
1, if rmy ≥ µy

0, if rmy < µy

(11)

µ rmy

m y

T

µy

T − µy

R̂ β(r̂m1 , r̂m2 , · · · , r̂mY )

R̂ Y m

Y T − µy

m

where  is the algorithm parameter and  denotes the

ranking  of  the -th  candidate′s -th  modality.  (13)

indicates that among all the  rankings, this paper gives

higher attention to the first  rankings and gives equal

attention  to  the  latter  candidates.  That  is,  the

current ranking has only μy + 1 classes. The new ranking

score matrix is defined as . Define 

as  the  number  of  scores  of  zero  in  the  ranking  score

matrix  for  all  modalities  of  the  candidate .

Combined with (13), this is the number of modalities for

which the ordering of all  modalities is at post .

Then,  for  candidate ,  the  final  fusion  score  can  be

defined as

ŝm =

Y∑
y=1

smy × cmy (12)

cmy =

{
1, if r̂qt ̸= 1

T − k, if r̂qt = 1 and β(r̂m1 , r̂m2 , · · · , r̂mY ) = k

(13)
ŝm

m cmy

where  denotes  the  fusion  score  for  all  modalities  for

candidate ,  and  represents  the  weight  of  each

modality.

 4   Experimental configuration

 4.1   Dataset

Biometrics  can  be  divided  into  physical  characterist-

ics (face, fingerprint,  iris,  etc.) and behavioral character-

istics (gait, voiceprint, handwriting, etc.). Behavioral bio-

metrics are easier to obtain than physiological biometrics,

but they are less safe and reliable.

The  proposed  approach  does  not  apply  to  specific

modalities;  rather,  it  merely  integrates  on  the  basis  of

modal proprietary network networks. It is possible to se-

lect  any  modality  that  may  deliver  equal  scores  in  this

circumstance.  For  the  time  being,  public  security  agen-

cies are mandated to keep track of suspects′ fingerprints,

faces,  irises,  and  voiceprints  and  have  built  ministerial-

scale  databases.  This  study  chooses  three  common

physiological  biometrics,  namely,  face,  fingerprint,  and

iris, as the research subjects for the fusion of score level,

based on the practical demands of public security organs.

Due  to  the  unavailability  of  a  large-scale  opensource

multimodal  biometric  dataset,  this  work  uses  unimodal

public datasets from the Institute of Automation, Chinese

Academy  of  Sciences,  China,  and  Tsinghua  University,

China as virtual homologous multimodal biometric data-

sets. The treatment of virtual homology has no effect on

the results since there is no association between homolog-

ous heterogeneous and heterogeneous biometrics[34, 35].

The raw data in  this  research are  treated in  particu-

lar  to  imitate  low-quality  data  collected  from  cases.  No

additional  processing is  performed due to  the  poor  qual-

ity and low resolution of the facial picture. Only 30% of

the  original  fingerprint  picture  quality  and  20%  of  the

original iris image quality are kept when the iris and fin-
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gerprint  images  are  shrunk  to  1/4  of  their  original  size.

The composition of the dataset is given in Table 1.
 
 

Table 1    Composition of the dataset

Face Fingerprint Iris

Training set 11 060 11 060 11 060

Gallery 1 449 1 449 1 449

Query 985 985 985

 
 4.1.1   Iris dataset

The  iris  dataset  in  this  paper  consists  of  two  parts:

The  first  is  the  CASIA-IrisV4-Interval  dataset[36],  which

contains 357 categories of data with a resolution of 320 ×

280 and jpg format; the second is derived from data col-

lected  by  public  security  organs  using  a  homemade

CASIA  iris  collection  device,  which  contains 2 341 cat-

egories  of  data  with a  resolution of  640 × 320 and bmp

format. The combined dataset is more closely matched to

the practical application situation because the second por-

tion of the data is obtained in a non-laboratory context.

We preserve more than five samples in each category

to  guarantee  that  the  experiment  is  as  accurate  as  pos-

sible.  This  article  also  preprocesses  iris  pictures  to  re-

move superfluous information such as corner, eyelash, and

eyelid  information.  The  Hough  transform is  used  to  loc-

ate  the inner  and outer  circles  of  the iris,  and the outer

circle diameter is used as the edge length to crop the im-

age to squares.  Each of  the 2 712 categories  in  the com-

bined iris dataset has at least five items.
 4.1.2   Fingerprint dataset

The fingerprint dataset utilized is  the CASIA-Finger-

print  V5 dataset[36].  The  dataset,  which  has  been  collec-

ted using a URU4000 fingerprint sensor, has over 20 000

fingerprint  scans  from  500  people  with  a  resolution  of

328 × 356 pixels and bmp format. Each person collected

data  on  eight  fingers  (thumb,  index,  middle,  and  ring)

and  five  images  of  each  finger,  for  a  total  of  40  images.

Fingerprints from various fingers are considered separate

categories in this  work to expand the dataset.  The ther-

apy has little effect on the eventual outcome since homo-

logous biometrics have no association[34, 35]. We only util-

ized the top 2 712 categories of the fingerprint dataset to

match with the iris dataset.
 4.1.3   Face dataset

The face dataset is the WebFace260M dataset[37]. The

algorithm  purifies  the  web  face  images  after  millions  of

alignments  using  an  image  resolution  of  112 × 112  and

jpg  format.  The  challenge  with  this  dataset  is  that  it  is

based on online data that have not been cleaned, and the

photos  within  the  class  span  a  wide  time  period  with

many fluctuations.  Moreover,  the  resolution of  the  data-

set is inadequate. This research only utilizes the top 2 712

categories  of  the  face  dataset,  each  having  no  less  than

five  categories,  to  match  with  the  iris  and  fingerprint

databases.

 4.2   Experimental settings

This  research  investigates  the  fusion  method  by  pro-

cessing the dataset and selecting the traditional common

backbone network to mimic the low accuracy of  the un-

imodal  algorithm due to a lack of  a large-scale and low-

quality multimodal biometric dataset.

µ µ

The  backbone  networks  in  this  article  are  the  stand-

ard  convolutional  neural  networks  VGG16,  ResNet50,

DenseNet169,  and  VGG16-BN  with  the  addition  of  a

batch normalization layer  before  the  activation function.

In this study, the same network structure is employed to

train  the  various  modal  data,  resulting  in  more  general-

ized and generalized outputs. Additionally, in this study,

the algorithm parameter  is taken to be  = 10.

N N

This study employs assessment measures such as mAP

(mean average precision), Rank  (  takes 1, 5, 10) and

performance  indicators  such  as  CMC  (Cumulatively

match charitable) curves.

The  following  experimental  settings  are  employed  in

this study: Ubuntu 20.04 operating system, AMD EPYC

7 702 CPU running at 2.0 GHz, 128 GB of RAM, and an

NVidia RTX3090 graphics card. PyTorch1.7 is the exper-

imental  framework,  with  an  epoch  of  120,  stochastic

gradient  descent  (SGD)  optimizer,  base  learning  rate  of

0.004, weight decay of 0.000 1, learning rate descent tech-

nique of cosine, and input picture of 256 × 256.

 5   Results and discussion

 5.1   Unimodal biometric recognition

X = (x1, x2, · · · ,
xn) Y = (y1, y2, · · · , yn)

∥X∥2 =
√∑n

i=1 x
2
i = ∥X∥2 =√∑n

i=1 x
2
i = 10 d = ∥X − Y ∥2 =

√∑n
i=1 (xi − yi)

2,

d ∈ [0, 20] Sd(X,Y ) =

(20− d)/20

The main research subject  of  score-level  fusion is  the

matching  score  given  by  the  modal  classifier.  The  out-

puts  of  the  unimodal  network  need  to  be  transformed

first.  In  this  paper,  unimodal  matching  scores  are  ob-

tained using both Euclidean distance  and cosine  similar-

ity.  The  score  transformed  according  to  the  Euclidean

distance  can  be  regarded  as  a  distance  score,  which  is

transformed  according  to  the  distance  between  features.

Suppose the features of the claimant are 

, one of the candidate features is ,

and  the  2-norm  is 

; then, 

. At this point, the distance score is 

.  The  unimodal  accuracy  using  the  Euclidean

distance metric is shown in Table 2.

d = ∥X − Y ∥ = XY
∥X∥2∥Y ∥2

=
∑n

i=1 xiyi√∑
x2
i

∑
y2
i

, d ∈

The scores  transformed according to  cosine  similarity

can  be  regarded  as  similarity  scores,  which  are  trans-

formed according to the similarity between features. The

formula  is 
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[−1, 1] Ss(X,Y ) =

(d+ 1)/2

.  In  this  case,  the  similarity  score  is 

. The unimodal accuracy measured using the co-

sine similarity metric is shown in Table 3.

 
 

Table 2    Accuracy of unimodal biometrics using Euclidean
measurements

Backbone Modality
mAP
(%)

Rank1
(%)

Rank5
(%)

Rank10
(%)

ResNet50 Iris 93.1 96.1 99.0 99.4

Face 82.6 89.0 96.8 98.1

Fingerprint 88.4 91.6 98.4 99.4

VGG16 Iris 91.6 94.8 98.3 99.3

Face 81.9 88.1 95.6 97.7

Fingerprint 86.1 89.7 98.3 99.4

VGG16_BN Iris 92.6 95.8 99.2 99.6

Face 84.0 89.5 97.4 98.4

Fingerprint 88.5 92.1 98.6 99.4

DenseNet169 Iris 93.7 96.0 99.3 99.6

Face 85.9 91.2 97.1 97.7

Fingerprint 89.8 93.0 98.8 99.5

 
 
 

Table 3    Accuracy of unimodal biometrics using cosine
measurements

Backbone Modality
mAP
(%)

Rank1
(%)

Rank5
(%)

Rank10
(%)

ResNet50 Iris 88.6 93.4 98.0 99.0

Face 71.2 81.1 90.8 94.7

Fingerprint 74.4 82.4 94.0 96.3

VGG16 Iris 86.4 92.3 97.1 98.5

Face 68.6 79.1 90.4 94.1

Fingerprint 67.7 74.7 92.0 95.9

VGG16_BN Iris 86.8 92.4 97.5 98.6

Face 72.9 81.7 92.1 94.5

Fingerprint 71.3 78.3 93.7 96.9

DenseNet169 Iris 91.3 94.8 98.2 99.0

Face 78.6 85.9 94.8 96.3

Fingerprint 78.3 83.5 95.1 97.2

 

Fig. 3 illustrates  the  unimodal  biometric  accuracy

based  on  Euclidean  distance  and  cosine  similarity.

Fig. 3(a) presents the unimodal mAP line graph, whereas

Fig. 3(b) depicts the unimodal Rank1 line graph. The res-

ults  reveal  that  Euclidean  distance  has  a  much  greater

accuracy  than  cosine  similarity  and  that  Euclidean  dis-

tance is a preferable distance description approach in bio-

metric recognition.

Iris retrieval accuracy is substantially better than that

of  fingerprints  and  faces,  indicating  that  irises  are  more

distinctive and secure.  Due to the difficulty of  obtaining

iris images, the problem can be mitigated to some extent

by  using  commonly  accessible  biometrics  such  as  faces

and fingerprints as fusion possibilities. DenseNet169 is the

most efficient of the four backbone networks for unimod-

al biometric retrieval, whereas VGG16 is the least effect-

ive.

 
 

(a) mAP

m
A

P
 (

%
)

100

90

80

70

60

50

Backbone

VGG16 VGG16-BN ResNet50 DenseNet169

Face-Euclidean

Fingerprint-Euclidean

Iris-Euclidean

Face-Cosine

Fingerprint-Cosine

Iris-Cosine

R
an

k
1
 (

%
)

(b) Rank1

100

90

80

70

60

50

Backbone

VGG16 VGG16-BN ResNet50 DenseNet169

Face-Euclidean

Fingerprint-Euclidean

Iris-Euclidean

Face-Cosine

Fingerprint-Cosine

Iris-Cosine

 
Fig. 3     Line  graphs  based  on  different  distance  description
methods for mAP and Rank1 of unimodal biometrics
 

The  CMC  curves  are  used  to  assess  the  accuracy  of

unimodal  biometric  retrieval  using  various  distance  de-

scription approaches, as illustrated in Fig. 4. The perform-

ance of  the Euclidean distance-based method is  substan-

tially superior to that of the cosine similarity method, as

seen intuitively in Fig. 4. Likewise,  DenseNet169 training

is the most appropriate in unimodal retrieval.

 5.2   Score level fusion based on ranking
partition collision theory

The  backbone  network  in  the  score  level  fusion

strategy  based  on  ranking  partition  collision  theory  is

trained  using  Euclidean  distance  and  cosine  similarity.

Table 4 shows the experimental results between our meth-

od and Yaman′s[14], which serves as a baseline. The rank-

ing partition collision theory introduced in this paper per-

formed well on the test set, with 100% mAP and Rank1

in all four backbone networks, as shown in the table. The

findings  revealed  that  the  proposed  method  performed

better  for  both  Rank1  and  mAP.  Rank1  and  mAP  are

both improved by 2.9% and 4.5%, respectively, using the
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approach  when  assessed  in  terms  of  Euclidean  distance.

mAP and  Rank1  are  both  improved  by  6.3% and  2.7%,

respectively, via the cosine distance approach.

The CMC curves of the proposed approach and other

methods are compared in Fig. 5. The proposed scheme has

a  surprising  impact,  with  the  proposed  fusion  scheme

mAP increasing to 100% in cases when the peak mAP of

unimodal  is  less  than  95%  and  the  lowest  mAP  is  less

than 85%.

The proposed approach offers a very evident and con-

siderable improvement, as shown by the CMC graph. The

employment  of  the  commonly  available  biometric  fea-

tures  face  and  fingerprint,  as  well  as  the  high  security

biometric  feature  iris,  as  fusion  alternatives  is  fair  and

reasonable.  The  ranking  partition  collision  theory  has

been adapted to the practical needs of public security or-

gans, and the fusion system based on this theory achieves

100% mAP and Rank1 accuracy.

 5.3   Discussion

According  to  the  findings,  the  score-level  fusion  al-

gorithm  paired  with  RPC  theory  is  efficient  and  in-

 

Table 4    Performance of the score fusion scheme based on
ranking partition collision theory

Distance Backbone Method
mAP
(%)

Rank1
(%)

Rank5
(%)

Rank10
(%)

EuclideanVGG16 Our 100 100 100 100

[14] 95.5 97.1 99.9 100

VGG16-BN Our 100 100 100 100

[14] 96.9 98.6 100 100

ResNet50 Our 100 100 100 100

[14] 96.2 97.1 100 100

DenseNet169 Our 100 100 100 100

[14] 98.1 99.1 100 100

Cosine VGG16 Our 99.5 99.9 100 100

[14] 93.7 97.3 99.8 100

VGG16-BN Our 99.7 100 100 100

[14] 95.0 97.9 100 100

ResNet50 Our 99.5 99.8 100 100

[14] 93.6 96.4 99.7 100

DenseNet169 Our 99.9 100 100 100

[14] 96.1 98.1 99.8 100
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Fig. 4     CMC  curves  of  unimodal  biometric  retrieval  based  on
different distance description methods
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Fig. 5     CMC curve of the proposed scheme and other methods
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creases the rate at which biometric data correctly match

individuals and the effectiveness of the case solution. Sus-

picious traces for a case go through three steps before be-

coming admissible  evidence in court:  mass flow monitor-

ing,  refined  investigation,  and  expert  identification.

Through  successive  technological  advancements,  we  nar-

row  the  identity  of  a  subject,  and  the  standards  for  al-

gorithm reliability are progressively raised.

Most  automatic  biometric  identification  algorithms

may be used to derive the mass flow monitoring phase. In

these  algorithms,  a  wider  number  of  candidates  are

circled, and the source identity of the suspicious trace is

only  anticipated  to  fall  within  the  circled  range.  The

source identification of the suspicious trace is likely to be

at  the  top  of  the  list  of  candidates  during  the  refine  in-

vestigation  phase,  which  involves  the  fusion  of  many

modalities and can be obtained through a multimodal fu-

sion  algorithm.  The  top  of  the  candidate  list  must  be

manually matched by experts during the expert identific-

ation  step;  therefore,  the  more  reliable  the  source  iden-

tity of  the suspect trace at the top of  the list,  the more

likely it is to become evidence. Direct identification of ex-

perts  based  on  algorithm  ranking  results  may  lead  to  a

major  loss  of  efficiency  and  effort.  To  give  the  scores

meaningful worth, this study divides the ranking informa-

tion into partitions and assigns different weights to each

section.  Few  studies  have  evaluated  the  meaning  of  the

scores  from  the  standpoint  of  the  score  values  since  the

majority  of  pattern  recognition-based  biometric  ap-

proaches present ways from the perspective of mathemat-

ical  statistics,  rendering  the  given  scores  practically

meaningless.  The  method  combined  with  RPC  theory

fuses the matching scores of various modalities that con-

tain  the  score  value  information  so  that  the  score  value

gradually approaches the evidence value. RPC theory, on

the other hand, assigns different partition weights to the

ranking  so  that  the  candidate  list  ranking  contains  the

score  value  information.  It  can  fully  meet  both  forensic

and judicial needs.

 5.4   Additional experiment on real-world
dataset

This  research  uses  the  real-world  database  collected

by public security organs from real  cases to validate the

performance of the suggested algorithm and its rationale

for  practical  applications.  A database with a capacity of

1.1  million  persons  and  500  people  registered  to  be  re-

trieved is being built. For validation experiments, the top

unimodal recognition software development kit (SDK) in

China is employed as the modal proprietary network, and

the  matching  scores  provided  by  the  unimodal  SDK are

used as the foundation for the fusion of the score level.

The  fingerprint  recognition  algorithm  adopts  the  fin-

gerprint  recognition  SDK  of  Tongyuanwei  Intelligent

Technology.  The  face  recognition  algorithm  adopts  the

open source offline face recognition SDK of ArcSoft. The

iris recognition algorithm adopts the iris recognition SDK

from IrisKing.

The received data  are  further  processed to  verify  the

robustness of the proposed methodology and to raise the

complexity of the validation experiments. During the test,

some data are exchanged for the same modal, as shown in

Table  5.  For  claimants  1–50,  the  face  uses  information

from  301–350,  and  the  rest  of  the  modalities  are  their

own;  for  claimants  51–100,  the  fingerprint  uses  informa-

tion from 351–400, and the rest of the modalities are their

own; for claimants 101–150, the iris uses information from

401–450, and the rest of the modalities are their own. The

facial information of claimants 1–50 comes from claimants

1–50  because  the  transferred  information  is  included  in

the  test  set.  The  face  information  of  claimants  1–50

comes from claimants 301–350, as the transferred inform-

ation  is  included  in  the  test  set.  This  indicates  that

claimants  1–50′s  face  modal  will  provide  high  ratings,

which  is  “false”.  As  a  result,  it  is  possible  that  it  will

have an influence on the final recognition result,  making

the validation experiment incredibly tough right now.

Table 6 shows the accuracy of the unimodal and pro-

posed approaches. The focus here is exclusively on the ac-

curacy  of  the  algorithm before  Rank20  due  to  the  great

accuracy of the unimodal itself. In this validation experi-

ment, there are two major challenges. First and foremost,

the database is  massive,  with data derived from biomet-

rics  collected  from  genuine  cases.  Second,  this  artificial

procedure reduces the accuracy of unimodal SDK. Simul-

taneously,  the  modal  proprietary  network  may  produce

higher  but  “wrong”  ratings,  indicating  that  unimodal

cannot  be  employed  or  that  information  is  entered  im-

properly, necessitating more resilience.

As seen in Table 6, adjusting the obtained data makes

identification more difficult, and the accuracy of unimod-

al  recognition  declines  dramatically,  with  Rank1  accur-

acy falling below 80% and Rank20 accuracy falling below

 

Table 5    Processing of test data

Index 1–50 51–100 101–150 151–300 301–350 351–400 401–450 451–500

Test

Face 301–350 – – – 1–50 – – –

Fingerprint – 351–400 – – – 51–100 – –

Iris – – 401–450 – – – 101–150 –
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90%.  The  proposed  algorithm,  however,  is  still  quite  ac-

curate;  Rank1  is  99.2%  correct,  and  the  CMC  graph  is

given in Fig. 6. The validation experiments assess the pro-

posed  method  in  terms  of  data  scale  and  algorithm  ro-

bustness,  confirming  that  it  still  works  effectively  in  the

presence of  large datasets and unimodal data instability.

It  also  shows  that  the  presented  method  is  suitable  for

real-world cases.

 
 

Table 6    Validation results of the proposed algorithm

Index Face Fingerprint Iris Proposed

1 0.796 0.794 0.798 0.992

5 0.798 0.820 0.798 0.994

10 0.798 0.846 0.802 0.996

20 0.800 0.876 0.808 0.996
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Fig. 6     Curve of CMC for the proposed method on the million-
sized dataset
 

It  is  vital  to  note  that  the  unimodal  accuracy  here

relates  solely  to  the  accuracy  of  presentation  after  data

adjustment  and  does  not  mean  the  full  accuracy  of  the

unimodal  algorithms.  The  “wrong”  discrimination  seen

here is  due to data adjustment rather than false  accept-

ance or false rejection in the unimodal identifications.

 6   Conclusions

This  paper  introduces  ranking  partition  collision  the-

ory and applies it  to multimodal biometric fusion at the

score level, delivering advanced results in both virtual ho-

mogeneous datasets and real-world applications. The pro-

posed  method  combines  ranking  information  with  scores

in practical  applications and partitions them with differ-

ent weights so that the virtual scores have realistic mean-

ings and are eventually brought close to evidential values

through multimodal fusion. It completes the transfer from

the  meaning  of  scores  to  the  value  of  scores  and,  ulti-

mately, to the value of evidence. This work achieves the

unification of the meaning of heterogeneous scores. Exist-

ing  approaches  simply  consider  automated  identification

from a mathematical  and statistical  standpoint,  but  this

paper  applies  RPC  theory  to  address  forensic  and  judi-

cial  demands,  greatly  assisting  investigators  and  enhan-

cing the effectiveness of case solving. This research makes

significant advancements in the fields of multimodal bio-

metric  fusion  and  forensic  science.  However,  this  work

still  suffers  from the  problem of  insufficient  data  due  to

the difficulty of acquiring biometrics. The next step is to

increase  the size  of  the dataset,  and it  could be possible

to work together on further levels of fusion.
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