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A Parallel Control Method For
Zero-Sum Games With
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Abstract—In this paper, based on ACP approach, a parallel
control method is proposed for zero-sum games of unknown
time-varying systems. The process of constructing a sequence of
artificial systems, implementing the computational experiments
and conducting the parallel execution is presented. The artificial
systems are constructed to model the real system. Computational
experiments adopting adaptive dynamic programming (ADP) are
shown to derive control laws for the a sequence of artificial
systems. The purpose of the parallel execution step is to derive the
control laws for the real system. Finally, simulation experiments
are provided to show the effectiveness of the proposed method.

Index Terms—Zero-sum games, parallel control, ACP, adaptive
dynamic programming (ADP)

1. INTRODUCTION

Zero-sum game (ZSG) is a classical problem in the game
theory. For the linear systems, the algebraic Riccati equation
is solved for ZSG. For the nonlinear systems, the Hamilton-
Jacobi-Isaacs equation (HIJE) is solved, which is difficult
to solve directly. Hence, in [1]–[3], utilizing the successive
approximation method, the HJIE is converted to a series of
linear differential equations for known systems.

With the research for the ZSG developing, model predictive
control (MPC) methods are used to solve the ZSG with known
dynamics. In [4], MPC is used for solving the ZSG between
two heterogeneous players, which are an unmanned aerial
vehicle and an unmanned ground vehicle respectively. Besides,
ADP is introduced to solve ZSG. In [5], two structures about
ADP are proposed for solving the ZSG of known systems. In
[6], the value iteration with history information is proposed
for solving the ZSG of known discrete-time systems. For the
unknown systems, in [7], by using the neural networks to
approximate the systems, the policy iteration is proposed for
solving the HJIE. In [8], utilizing the fuzzy models to identify
the unknown systems, ADP is used to solve the ZSG.
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In most of above papers, the systems are time-invariant and
known. For the unknown systems, the traditional model-based
methods utilize neural networks and fuzzy systems to identify
the unknown systems. However, for the unknown time-varying
systems, the accurate physical models are difficult to obtain for
whole time horizon. Inspired by [9], the ACP-based parallel
control [10] is introduced to handle the ZSG for unknown
time-varying systems.

The ACP approach [10] is originally proposed for the
purpose of modeling, analysis and contrl of complex systems.
It consists of the following three steps: 1) Construct artificial
systems. As the accurate physical model for a nonlinear
system is difficult to obtain, the artificial systems are necessary
to model the dynamic of the real system. Note that the
artificial systems are not meant to be accurate to the real
system but for the purpose of analysis. 2) Implement the
computational experiments on the artificial systems. Because
of the complexity of the real system, it is difficult to carry
out computational experiments on the real system. Therefore,
it is necessary to find the results of the equivalent problems
in the real system from the artificial systems. 3) Implement
the parallel execution. Because an artificial system does not
approximate the real system, the interation is necessary to
control and manage the real system. The control policies for
the real system are derived through the parallel execution.

In this paper, an ACP-based parallel control method is
proposed to solve the ZSG of the unknown time-varying
systems. Using the ACP approach, the method obtains the
control laws for the real system through constructing artificial
systems, implementing computational experiments and con-
ducting parallel execution.

This paper is organized as follows. In Section II, the
problem about ZSG is formulated. In Section III, the details
of the proposed method are presented. In Section IV, simu-
lation results and analysis are presented to demonstrate the
effectiveness of the proposed method.

2. PROBLEM FORMULATION

Consider a class of unknown time-varying systems:

sk+1 = F (sk, u1k, u2k, k), k = 0, 1, 2, ..., (1)

where F (·) is the system function, u1k ∈ Rm and u2k ∈ Rq
are the control vectors of two players, sk ∈ Rn is the state
vector of the system.
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The performance index function of the system (1) is defined
as follows:

J (sk, u1k, u2k, k) =
∞∑
i=k

U(si, u1i, u2i, i) (2)

where U(si, u1i, u2i, i) is the utility function.
The goal of the ZSG is to obtain the control pair (u∗1k, u

∗
2k)

such that

J ∗(sk, k) = min
u1k

max
u2k

J (sk, u1k, u2k, k), (3)

According to the Bellman optimality principle [11], the
optimal performance index J ∗(sk, k) is written as:

J ∗(sk, k) = min
u1k

max
u2k

(U(sk, u1k, u2k, k)+J ∗(sk+1, k+1)).

(4)
It is difficult to solve the equation (4) directly. To overcome

the difficulty, we propose a parallel control method to derive
the control laws for the real system (1).

3. METHOD

In this section, the proposed method is presented in detail.
First, a sequence of artificial systems are constructed to model
the system (1). Second, we implement computational exper-
iments via ADP to obtain the control laws for the artificial
systems. Third, through the interaction parallel execution step,
the suboptimal control laws for the real system are derived.

3.1. Artificial Systems
In many real world scenarios, precise physical models are

difficult to obtain. Hence, artificial systems are introduced to
model the real system (1). Since the real system (1) is time-
varying, a sequence of artificial systems are constructed to
model the real system. The artificial systems are written in
the following form:

ŝk+1 = F(sk, u1k, u2k, k)

=


F0(sk, u1k, u2k) k0 ≤ k < k1,

...

Fτ (sk, u1k, u2k) kτ ≤ k < kτ+1,

...

(5)

where Fτ (·), τ = 0, 1, ... is an artificial system function in
time horizon [kτ , kτ+1), k0, k1, ... are positive integers.

In this paper, multilayer perceptrons(MLPs) are used to
construct the artificial systems, an artificial system function
in time horizon [kτ , kτ+1) is expressed as:

ŝτk+1 = Fτ (sk, u1k, u2k) =W>τ φτ (sk, u1k, u2k), (6)

where Wτ are the weight matrix of MLPs, φτ (·) is the
activation functions of MLPs.

In the process of constructing artificial systems, the gradient
descend algorithm [12] is used to update the weights of MLPs.
When the weights of MLPs converge, the real system (1) is
modelled by the artificial system. The process of constructing
artificial systems is shown in Algorithm 1.

Algorithm 1 The process of constructing artificial systems

Initialization:
1: Collect observational data from the real system
2: Construct MLPs like (6)
3: Give the modeling precision ε > 0 and learning rate α

Iteration:
4: Using the gradient descend algorithm to update

the weights of MLPs
5: If ‖Wτ(i) −Wτ(i−1)‖2 > ε holds, go to step 4

Return: the weight matrix Wτ(i)

3.2. Computational Experiments
Since the real system is complex and unknown, carrying

out computational experiments on the real system is difficult.
Therefore, computational experiments are implemented on the
artificial systems via ADP to evaluate and derive control laws
for the artificial systems.

To distinguish from the state of the real system (1), we
introduce the artificial system in time horizon [kτ , kτ+1):

zk+1 = Fτ (zk, u1k, u2k), (7)

where zk ∈ Rn denotes the state in the artificial systems.
Assume saddle point exists [13], computational experiments

via ADP is used to derive the control laws for the artificial
system in certian time horizon. According to ADP method
[14], the value function and control laws are obtained. For a
sequence of artificial systems, there are a sequece of value
funxtions and control laws written as:

V(zk, k) =


V 0(zk) k0 ≤ k < k1,

...,

V τ (zk) kτ ≤ k < kτ+1,

....

(8)

U1(zk, k) =


U 0

1 (zk) k0 ≤ k < k1,

...,

U τ
1 (zk) kτ ≤ k < kτ+1,

...,

(9)

and

U2(zk, k) =


U 0

2 (zk) k0 ≤ k < k1,

...,

U τ
2 (zk) kτ ≤ k < kτ+1,

...,

(10)

In practical applications for computational experiments, MLPs
are used to approximate the control laws and the value func-
tions. The structure diagram of the computational experiments
is given in Fig. 1. The critic module approximates the value
functions, two actor modules approximate the control laws of
two players and the artificial system module is the artificial
systems constructed in III-A.

For k ∈ [kτ , kτ+1), τ = 0, 1, 2, ..., the approximation
functions of the control laws and the value functions are
expressed as:

V̂ τ (zk) =W>(τ)c φc(zk), (11)
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Fig. 1. The structure diagram of the computational experiments for a sequence of artificial systems

Û τ
1 (zk) =W

>(τ)
u1 φu1(zk), (12)

and

Û τ
2 (zk) =W

>(τ)
u2 φu2(zk), (13)

where W τ
c ,W τ

u1 and W τ
u2 are the weight matrix of MLPs,

φc(·),φu1(·) and φu2(·) are the activation functions of MLPs.
In the process of iteration for computational experiments,

the weights of MLPs are tuned by the the gradient descend
algorithm. When the weights of MLPs converge, the control
laws for the artificial systems are derived. The details about
the process of computational experiments are presented in
Algorithm 2.

Algorithm 2 Computational Experiments Algorithm

Initialization:
1: Give an initial value function V τ

0 (zk) = 0
2: Give the computation precision ε > 0
3: Construct three MLPs for approximating the value

function and control laws
Iteration:

4: Compute the iterative value functions and control laws
by using ADP

5: Using the gradient descend algorithm to update
the weights of three MLPs

6: If ‖Wc(i+1) −Wc(i)‖2 > ε holds, go to step 4
Return: W τ

u(i),W
τ
w(i),W

τ
c(i)

3.3. Parallel Execution

After constructing the artificial systems and implementing
the computational experiments, the control laws for the arti-
ficial systems are derived. As we mention above, an artificial
system in certain time horizon does not approximate the real
system, hence, feedback and interaction are necessary to obtain
the control laws for the real system.

In parallel execution step, the control laws derived from
computational experiments are implemented not only on the
artificial systems but also on the real system, then the dif-
ference about performance of the artificial systems and the
real system is evaluated. If the diffirence is not large, the
control laws derived from computational experiments continue
to be applied to the real system. Otherwise, it is necessary to
update the artificial systems and conduct the computational
experiments again.

Through constructing the artificial systems, implementing
the computational experiments and conducting the parallel
execution, the control laws for the real system are obtained
until the state of the real system is stable.

We present a detailed process of the parallel execution in
Algorithm 3

4. SIMULATION STUDY

In this section, to show the effectiveness of the proposed
method, we choose an example obtained from [9] with some
modifications, the dynamics of the system is as follows.
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Algorithm 3 Parallel Execution Algorithm

Initialization:
1: Give the computation precision ε1 and ε2
2: Let τ = 0, k = 0, kτ = k
3: Give initial state s0 and z0, let z0 = s0

Iteration:
4: Implement Algorithm 1 to construct the artificial

system (6) under ε1
5: Obtain the weights of two action modules W τ

u ,W
τ
w

and the weights of the critic module W τ
c by using

Algorihtm 2
6: Implement the control laws on the artificial system (6)

and the real system (1) and evaluate the difference:
if the difference is larger than a threshold

go to step 4
else

if ||sk|| > ε2, go to step 6

(
s1(k+1)

s2(k+1)

)
=

(
s1k + 0.1s2k

−0.1s1k + 1.1s2k − 0.1s21ks2k

)
+Bku1k + Cku2k

(14)

where

Bk =

[
−0.5 + 0.2 sin(k) 0

0 −0.5 + 0.2 sin(k)

]
(15)

and

Ck =

[
0.1 + 0.05 cos(k) 0

0 0.1 + 0.05 cos(k)

]
. (16)

Let utility function U(si, u1i, u2i) = s>i Qsi + u>1iRu1i −
γ2u>2iu2i, where Q = I1 ∈ R2×2, R = I2 ∈ R2×2.

In the Artificial Systems, multilayer perceptrons (MLPs) are
used model the real system. For the MLPs, The structure is
6–8–2 and the activation functions of the output layer and
the hidden layer are purelin functions and tansig functions
respectively. The bias of the output layer and the hidden layer
are zero. The training process of weights for MLPs is shown in
Algorithm 1 with model precision ε = 0.001 and the learning
rate α = 0.02.

Next, In the Computational Experiments, three MLPs,
which are two action networks and critic networks, are used as
basis functions to approximate the control laws of two players
and the value function. The structures of two action networks
and critic networks are chosen as 2–8–2, 2–8–2, and 2–8–1.
For all three MLPs,the activation functions of the output layer
and the hidden layer are purelin functions and tansig functions
respectively. The bias of the output layer and the hidden layer
are zero. Implement computational experiments by Algorithm
2 with the computation precision ε = 0.001 and the learning
rate α = 0.02 to evaluate and derive the control laws for
multiple artificial systems.

Then, in the parallel execution, we implement Algorithm 3
to derive the control laws for the real system. After imple-
menting the proposed method, the trajectory of the states for
the real system is shown in Fig. 2. According to the Fig. 2,

the states of system converge to the equilibrium, showing the
effectiveness of the proposed method.
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Fig. 2. The trajectory of the states for the real system
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