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Abstract— Fluorescence molecular tomography has become a
promising technique for in vivo small animal imaging, and has
many potential applications. Due to the ill-posed and the ill-
conditioned nature of the problem, Tikhonov regularization is
generally adopted to stabilize the solution. However, the result is
usually over-smoothed. In this study, the sparsity of the fluores-
cent source is used as a priori information. We replace Tikhonov
method with an iteratively reweighted scheme. By dynamically
updating the weight matrix, L0- or L1-norm regularization
can be approximated which can promote the sparsity of the
solution. Simulation study shows that this method can preserve
the sparsity of the fluorescent source within heterogeneous
medium, even with very limited measurement data.

I. INTRODUCTION

In vivo small animal molecular imaging has become an
important and rapidly developing method for biomedical
research, and has been widely used for cancer detection, drug
discovery, and gene expression visualization [1]. Among
molecular imaging modalities, fluorescence molecular to-
mography (FMT) has become a promising technique which
can three-dimensionally resolve molecular processes by mea-
suring the photons on the animal surface and reconstructing
the distribution of fluorescent probes.

In recent years, much effort has been put into the re-
construction of FMT. FMT is often an ill-posed inverse
problem since only the photon distribution on the surface
is measurable. This can be alleviated by increasing the mea-
surement data sets. However, even if sufficient measurements
can be obtained, the problem may still be ill-conditioned,
which means that it is unstable and is sensitive to noises.
To compute a meaningful approximate solution, various
regularization methods are generally incorporated to make
this problem less sensitive to perturbations. Among different
regularization methods, Tikhonov regularization is a popular
method that has been widely adopted in optical tomography
problems [2], [3], [4]. Tikhonov method assumes that the
“size” of the solution should not be very large, and adds L2-
norm constraint of the solution to the original problem. The
advantage of Tikhonov regularization is that the optimization
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problem is simple and can be solved efficiently by now-
standard minimization tools. However, the solution is often
over-smoothed with the localized features lost during the
reconstruction process [5].

To improve the quality of the reconstructed image, more
a priori information should be included. Fortunately, for
FMT problems, the domains of the fluorescent sources are
often very small and sparse compared with the entire re-
construction domain [6]. This can be considered as valuable
a priori information for FMT. A straightforward way to
incorporate sparsity constraint is to replace the Tikhonov
regularization with L0-norm regularization. However, the
problem becomes NP-hard if L0-norm is utilized, and cannot
be solved efficiently. Fortunately, it is proved that when the
solution is sufficiently sparse, L0-norm can be replaced by
L1-norm, which is convex and can be solved by standard
optimization tools, such as pursuit algorithms [7]. In recent
years, several reconstruction algorithms incorporating L1-
norm regularization have been reported [6], [8], [9].

In this paper, an iteratively reweighted regularization
method is proposed for the FMT problem. Based on the
basic idea of FOCUSS algorithm which is used in MEG
reconstruction [10], we extend Tikhonov method by incor-
porating a weighting matrix. By iteratively updating the
weighting matrix, L0- or L1-norm regularization can be
approximated which tends to promote the sparsity of the
solution. The advantage of the proposed method is that the
optimization problem remains simple and can be solved by
many minimization algorithms, such as the Newton method.
Besides, this method is very easy to implement. Experimental
results on simulated data demonstrate the performance of the
proposed method.

II. SPARSITY-PROMOTING FLUORESCENCE
MOLECULAR TOMOGRAPHY

A. Photon propagation model

In the near infrared spectral window, the photon prop-
agation model for steady-state FMT with point excitation
sources can be depicted using the following coupled diffuse
equations:{ ∇𝐷𝑥(𝑟)∇Φ𝑥(𝑟)− 𝜇𝑎𝑥(𝑟)Φ𝑥(𝑟) = −Θ𝑠𝛿(𝑟 − 𝑟𝑙)

∇𝐷𝑚(𝑟)∇Φ𝑚(𝑟)− 𝜇𝑎𝑚(𝑟)Φ𝑚(𝑟) = −Φ𝑥(𝑟)𝜂𝜇𝑎𝑓 (𝑟)
(1)

where subscripts 𝑥 and 𝑚 denote the excitation and emis-
sion wavelengths, respectively. Φ𝑥,𝑚 is the photon density,
𝜇𝑎𝑥,𝑎𝑚 is the absorption coefficient and 𝐷𝑥,𝑚 is the diffusion
coefficient. 𝜂𝜇𝑎𝑓 (𝑟) denotes the fluorescent yield which is
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to be reconstructed. In this forward model, the excitation
light is implemented as isotropic point sources located one
mean free path of photon transport beneath the surface at
different locations 𝑟𝑙(𝑙 = 1, 2, ..., 𝐿) with the amplitude Θ𝑠.
These equations are complemented by Robin-type boundary
conditions on the boundary ∂Ω of the domain Ω:

2𝐷𝑥,𝑚∂Φ𝑥,𝑚/∂�⃗�+ 𝑞Φ𝑥,𝑚 = 0 (2)

where �⃗� denotes the outward normal vector to the surface
and 𝑞 is a constant depending on the optical reflective index
mismatch at the boundary.

B. Finite element discretization

Instead of solving Eqs. (1) and (2) directly, they are posed
in their weak solution forms. Discretizing the domain with
tetrahedron elements and employing the base functions as
the test functions, the FMT problem can be linearized and
the following matrix-form equations can be obtained. The
detailed derivation can be found in [2].

[𝐾𝑥]{Φ𝑥} = {𝑆𝑥} (3)

[𝐾𝑚]{Φ𝑚} = [𝐹 ]{𝑋} (4)

where 𝐾𝑥 and 𝐾𝑚 are the system matrices. Matrix 𝐹
is obtained by discretizing the unknown fluorescent yield
distribution. Vector 𝑋 denotes the fluorescent yield to be
reconstructed.

For each excitation point source at 𝑟𝑙 (𝑙 = 1, 2, ..., 𝐿), Φ𝑥

can be directly obtained by solving Eq. (3). Considering the
inverse crime problem, Φ𝑥 is calculated on a fine mesh using
2nd order Lagrange elements. Then, it is projected onto a
coarse mesh which is used for the reconstruction of 𝑋 with
linear elements.

As 𝐾𝑚 is symmetrical positive definite, Eq. (4) can be
transformed into {Φ𝑚,𝑙} = [𝐾−1

𝑚,𝑙][𝐹 ]{𝑋} = [𝐵𝑙]{𝑋}. Re-
moving the unmeasurable entries in Φ𝑚 and corresponding
rows in 𝐵, we can obtain the following matrix equation:

{Φ𝑚𝑒𝑎𝑠
𝑚,𝑙 } = [𝐴𝑙]{𝑋} (5)

Then, we assemble Eq. (5) for different excitation loca-
tions and obtain the following matrix-form equation:

{Φ𝑚𝑒𝑎𝑠
𝑚 } = [𝐴]{𝑋} (6)

where

Φ𝑚𝑒𝑎𝑠
𝑚 =

⎧⎨
⎩

Φ𝑚𝑒𝑎𝑠
𝑚,1

Φ𝑚𝑒𝑎𝑠
𝑚,2
...

Φ𝑚𝑒𝑎𝑠
𝑚,𝐿

⎫⎬
⎭

, 𝐴 =

⎡
⎢⎢⎢⎣

𝐴1

𝐴2

...
𝐴𝐿

⎤
⎥⎥⎥⎦ (7)

C. Iteratively reweighted regularization

Due to the ill-posed and the ill-conditioned nature of the
FMT problem, regularization method is always utilized to
make the solution more reasonable, which can be considered
as a kind of a priori information. Here, we extend Tikhonov
regularization by incorporating a weighting matrix 𝑊 :

min
𝑋≥0

𝐽(𝑋) =
1

2
∣∣𝐴𝑋 − Φ𝑚𝑒𝑎𝑠

𝑚 ∣∣22 +
𝜆2

2
∣∣𝑊𝑋∣∣22 (8)

where 𝜆2 is the regularization parameter that balances the
two terms, and 𝑊 is a diagonal matrix. In this paper, we
always assume that 𝑋 is non-negative. This energy function
𝐽(𝑋) can be efficiently minimized by iterative minimization
tools, such as Newton method.

It is evident that the desirable norms ∣∣𝑋∣∣0 and ∣∣𝑋∣∣1
can be represented using ∣∣𝑊𝑋∣∣22 by choosing the weighting
matrix 𝑊 as follows:

𝑊0(𝑖, 𝑖) =

{
1/𝑋(𝑖) 𝑋(𝑖) > 0
0 𝑋(𝑖) = 0

(9)

𝑊1(𝑖, 𝑖) =

{
1/
√

𝑋(𝑖) 𝑋(𝑖) > 0
0 𝑋(𝑖) = 0

(10)

However, both 𝑊0 and 𝑊1 depend on 𝑋 and are unknown in
advance. To resolve this problem, we assume that for every
two adjacent iterations 𝑛− 1 and 𝑛 during the minimization
process, ∣∣𝑋𝑛 − 𝑋𝑛−1∣∣2 is relatively small compared with
∣∣𝑋𝑛−1∣∣2, which means that we can use 𝑋𝑛−1 to approxi-
mate 𝑋𝑛 to some extent. Therefore, for every new iteration 𝑛,
we can construct the sparsity-promoting regularizers ∣∣𝑋∣∣0
and ∣∣𝑋∣∣1 using the current solution 𝑋𝑛−1. Based on this,
we redefine the two diagonal weighting matrices 𝑊0 and 𝑊1

as follows to approximate L0- and L1-norm regularization,
which are termed as L0- and L1-like regularization, respec-
tively:

𝑊0(𝑖, 𝑖) =

{
1/𝑋𝑛−1(𝑖) 𝑋𝑛−1(𝑖) > 0
0 𝑋𝑛−1(𝑖) = 0

(11)

𝑊1(𝑖, 𝑖) =

{
1/
√

𝑋𝑛−1(𝑖) 𝑋𝑛−1(𝑖) > 0
0 𝑋𝑛−1(𝑖) = 0

(12)

where 𝑋𝑛−1 is the reconstructed solution from the last
iteration.

For the first few iterations of the minimization algorithm,
the solution 𝑋𝑛 may vary rapidly, which violates our basic
assumption. To resolve this problem, Tikhonov method is
firstly used for several iterations to provide a rough initial
guess. The number of iterations can be set in advance or be
determined dynamically. Then, L0- or L1-like regularization
starts from the initial guess to compute a sparse solution.

III. SIMULATION RESULTS

In this section, heterogeneous simulation experiments were
conducted to verify the sparsity-promoting characteristic of
the proposed method. Fig. 1 shows the heterogeneous cylin-
drical phantom we used, which was of 20mm in diameter
and 20mm in height. The phantom consisted of four kinds of
materials, which is illustrated in Fig. 2, to represent muscle
(M), lung (L), heart (H), and bone (B), respectively. The
optical parameters can be found in [11]. Three spherical
fluorescent sources of 2mm in diameter centered in 𝑧 = 0
plane were placed in the left and the right lungs. The
fluorescent yield was set to be 8.

Fluorescence measurement was implemented in transil-
lumination mode. For each excitation source, which was
modeled as an isotropic point source located one mean free
path of photon transport beneath the surface in 𝑧 = 0 plane,
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Fig. 1. Mouse-mimicking heterogeneous phantom with three spherical
fluorescent sources of 2mm in diameter centered in 𝑧 = 0 plane.

(a) 15 excitation sources (b) 3 excitation sources

Fig. 2. Slice images of the phantom in 𝑧 = 0 plane. The black dots
represent the locations of the excitation point sources. For each excitation
location, fluorescence is measured from the opposite cylindrical side within
160o field of view.

measurement of the emitted fluorescence on the surface was
taken from the opposite cylindrical side within 160o field
of view (FOV), which is illustrated in Fig. 2. It means that
all the nodes on the cylindrical side within this FOV were
considered to be measurable. Besides, 5% guassian noise was
added to the measurement data to simulate the real case.

Newton method was adopted to iteratively compute the
solution. To provide an initial guess, Tikhonov method
was used for the first 10 iterations. Then, L0- or L1-like
regularization proceeded the reconstruction from the initial
guess. The maximum iteration number was set to be 300.
The regularization parameter 𝜆2 plays an important role for
the inverse problem. However, finding the optimal 𝜆2 is
itself a very challenging task and will not be covered in
this paper. Instead, we sampled the range between 1e-2 and
1e-6 which was sufficient for this experiment, and performed
reconstructions using these sampled values. The best value
for 𝜆2 was chosen by visual inspection of the results and
quantitative comparison of reconstructed location errors.

In the first experiment, fluorescence was excited by point
sources from 15 different locations in sequence, which is
illustrated in Fig. 2(a). Measurements were taken every
24o and a total of 15 data sets were acquired for the
reconstruction of the fluorescent yield. To show the merit

Fig. 3. Reconstruction results using 15 measurement data sets with
Tikhonov (top row), L1-like (middle row) and L0-like (bottom row) regular-
izations, respectively. These results are presented in the form of slice images
in 𝑧 = 0 plane (left column) and iso-surfaces for 30% of the maximum
value (right column). The small circles in the slice images denote the real
positions of the fluorescent sources.

of the proposed method, L0- and L1-like regularizations
were compared with Tikhonov method. Fig. 3 shows the
reconstruction results which are presented in the form of
slice images in 𝑧 = 0 plane and iso-surfaces for 30% of the
maximum value. The small circles in the slice images denote
the real positions of the fluorescent sources. From Fig. 3 we
can clearly see that, the result obtained using the Tikhonov
regularization is over-smoothed with reduced intensities. On
the contrary, both L0-like and L1-like regularizations can
preserve the sparsity characteristic of the fluorescent sources
very well, and the reconstructed intensities are greater.

Next, we reduced the amount of measurement data to
simulate a much worse case. This is possible when long-
time measurement is not appropriate or feasible. For instance,
when imaging small animals like mice, the artifacts caused
by movements must be taken into consideration. Besides,
long-time measurement can cause the bleaching effect of the
fluorescent probes and affect the accuracy of the reconstruc-
tion results. One way to resolve this problem is to reduce the
number of fluorescence measurements. This requires that we
should be able to reconstruct the fluorescent sources from
very limited data. It has been shown in bioluminescence to-

1968



Fig. 4. Reconstruction results using 3 measurement data sets with Tikhonov
(top row), L1-like (middle row) and L0-like (bottom row) regularizations,
respectively. These results are presented in the form of slice images in 𝑧 = 0
plane (left column) and iso-surfaces for 30% of the maximum value (right
column). The small circles in the slice images denote the real positions of
the fluorescent sources.

mography that, by using L1-norm regularization, satisfactory
results can still be achievable even with very limited imaging
data [5]. Here, we only retained 3 measurement data sets,
which is illustrated in Fig. 2(b). Fig. 4 shows the reconstruc-
tion results using Tikhonov regularization and the proposed
method. From these results we can clearly see that, due to the
badly ill-posed situation and the over-smooth effect, the two
sources in the left lung cannot be separated from the result
when using Tikhonov regularization. However, the proposed
method can still preserve the sparsity of the sources very
well. This demonstrates the applicability of the proposed
method under more ill-posed conditions.

IV. CONCLUSIONS

In this paper, we have incorporated the sparsity charac-
teristic of the fluorescent sources into the FMT problem
as a priori information, and proposed a sparsity-promoting
reconstruction algorithm. The algorithm is based on an
iteratively reweighted scheme which can approximate L0-
or L1-norm regularization. The advantage of the proposed
method is that the optimization problem remains simple
and can be solved efficiently. The extra work is merely the
construction of a diagonal weighting matrix at each iteration,

which is a relatively cheap operation. For the evaluation
of this method, heterogeneous simulation experiments have
been conducted. Compared with Tikhonov method, more
reasonable and satisfactory results can be obtained when
using L0- or L1-like regularization, even with very limited
measurement data. This demonstrates the applicability of the
proposed method for the early detection of tumors which are
usually small and sparse at this stage. Of course, there are
situations in which the assumption that the solution will be
sparse cannot hold, e.g. a large tumor or broadly distributed
fluorescence signal, and the proposed method may fail in
those cases.

Although the diffuse equation has been utilized to de-
scribe photon propagation in biological tissues, yet it is
not applicable in certain regions, such as void or more
absorptive regions. Several improved models, e.g. higher
order approximation to radiative transfer equation, have been
proposed to resolve the problem. Since FMT reconstruction
is a linear inverse problem in nature, the proposed method
can potentially be utilized in these improved models.

In conclusion, we have developed a sparsity-promoting
reconstruction method for FMT. Numerical simulations show
the merits of our method. In vivo mouse studies using the
proposed method will be reported in the future.
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