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Unsupervised graph representation learning aims to learn low-dimensional node embeddings without super-
vision while preserving graph topological structures and node attributive features. Previous Graph Neural
Networks (GNN) require a large number of labeled nodes, which may not be accessible in real-world ap-
plications. To this end, we present a novel unsupervised graph neural network model with Cluster-aware
Self-training and Refining (CLEAR). Specifically, in the proposed CLEAR model, we perform clustering on
the node embeddings and update the model parameters by predicting the cluster assignments. To avoid de-
generate solutions of clustering, we formulate the graph clustering problem as an optimal transport problem
and leverage a balanced clustering strategy. Moreover, we observe that graphs often contain inter-class edges,
which mislead the GNN model to aggregate noisy information from neighborhood nodes. Therefore, we pro-
pose to refine the graph topology by strengthening intra-class edges and reducing node connections between
different classes based on cluster labels, which better preserves cluster structures in the embedding space. We
conduct comprehensive experiments on two benchmark tasks using real-world datasets. The results demon-
strate the superior performance of the proposed model over baseline methods. Notably, our model gains over
7% improvements in terms of accuracy on node clustering over state-of-the-arts.
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1 INTRODUCTION

Graph data is fast becoming a key instrument for understanding complex interactions among
real-world objects, for instance, biochemical molecules, protein-protein interactions, purchase net-
works from e-buy websites, and academic collaboration networks. Recent years have witnessed a
surge of graph representation learning methods, which aims to encode nodes and graphs to low-
dimensional vector spaces to better serve analysis of graph data. Recently, theGraph Neural Net-

work (GNN)model, as a generalized form of convolutional networks in the graph domain, has at-
tracted a lot of attention. Compared with conventional graph embedding methods, GNN shows su-
perior expressive power and has achieved promising performance in many tasks [11, 13, 22, 41, 50].

Despite its great success, one of the predominate problems of most GNNs is that they are estab-
lished in (semi-)supervised settings and thus require a substantial amount of high-quality labeled
data, which in turn, has sparked an effort of unsupervised training for GNNs. During unsupervised
training, the main hurdle lies in the absence of label information. Therefore, we have to leverage
other supervisory signals captured from intrinsic graph properties to train the model. Previously,
classical approaches formulate unsupervised learning as a link prediction problem [17, 31, 32].
They mask a portion of links in the graph and then train the model by enforcing it to predict the
masked links. However, they are limited to fine-grained structures in the graphs and have diffi-
culty in leveraging the node attributes in the learning process. In network science, clusters group
nodes that share similar functionalities in a graph. The cluster assignments can thus reflect se-
mantic meanings of nodes in graphs and are often informative for downstream tasks. For example,
clustering assignments may correspond to item categories in co-purchase networks and authors’
research domains in academic co-authorship networks. Therefore, node clusters, as a natural char-
acteristic of graph data, can be used as a good supervision signal to guide the learning of graph
embeddings.
However, it is non-trivial to train the GNN model with node clustering, due to the following

two reasons. First, if we simply combine the cross-entropy loss with an off-of-the-shelf clustering
algorithm, then the model will easily collapse into a trivial solution, which maps all nodes into
a point in the embedding space [2, 6]. To avoid the degenerate solution, we formulate node clus-
tering as an optimal transportation problem and add a constraint to regularize the clusters to be
balanced. Second, when leveraging clustering assignments to optimize the model, the quality of
produced graph representations highly depends on node clusters. If the clusters align well with the
ground-truth label of downstream classification tasks, then they can enforce the model to capture
essential semantic information and thus improve representation quality. However, we observe that
graphs often contain noisy edges, which connect nodes belonging to different clusters. Such edges
may mislead the clustering algorithm and further confine the model from learning useful class in-
formation. In a graph with many inter-class edges, when performing graph convolutions through
neighborhood aggregation, the learned node embeddings tend to be indistinguishable from dif-
ferent classes [7, 8, 24, 47] and result in misaligned clustering assignments. Therefore, we argue
that a key to improving the quality of embeddings is to alleviate the impact of potentially noisy
edges and strengthen edges between nodes of the same class, which will help preserve the cluster
structures and obtain better-separated node embeddings.
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Fig. 1. The pipeline of the proposed CLEARmodel. Overall, the CLEARmodel alternates between node repre-

sentation learning and clustering. We first obtain node embeddings using Graph Neural Networks (GNNs).

Then, we perform clustering and use the cluster labels as the self-supervision signals. Following that, we

leverage a novel cluster-aware topology refining mechanism that reduces inter-cluster edges and strength-

ens intra-class connections to mitigate the impact of noisy edges.

In this article, we propose a novelCluster-aware Self-training andRefining (CLEAR)model
for unsupervised GNNs. As illustrated in Figure 1, our CLEAR model consists of three stages. At
the first stage, we perform graph convolutions to obtain node embeddings. Then, the model con-
ducts clustering on the node embeddings and updates the model parameters by predicting the
corresponding cluster assignments. To avoid degenerate solutions, we employ a cluster balancing
strategy, which formulates the cross-entropy minimization as an optimal transport problem that
can be effectively solved in near-linear time with the Greenkhorn algorithm [1]. Furthermore, to
alleviate the impact of noisy edges and better preserve cluster structures in the embedding space,
we propose a novel graph topology refining scheme based on cluster assignments. The proposed
refining scheme strengthens intra-class edges and weakens potentially noisy edges by isolating
neighborhood nodes of different clusters.
To summarize, the core contribution of this article is threefold. First, we propose a novel un-

supervised GNN model with cluster-aware self-training, which learns embeddings using intrinsic
network cluster properties and thus needs no direct supervision from labels. Second, unlike other
GNN models that rely on a static graph structure, CLEAR further proposes a topology refining
scheme that reduces inter-cluster connections of neighbor nodes to alleviate the impact of noisy
edges. Third, extensive experiments conducted on public benchmark datasets demonstrate the su-
periority over existing baseline methods. It is worth mentioning that the proposed method gains
over 7% performance improvement in terms of accuracy on node clustering over state-of-the-arts.
The organization of the remaining of the article is summarized below. We first review prior arts

in relevant domains in Section 2. Then, in Section 3, we introduce our proposed CLEAR model in
detail. After that, we present empirical studies in Section 4. Finally, we conclude the article and
point out future research directions in Section 5.

2 RELATEDWORK

2.1 Unsupervised Representation Learning on Visual Data

To alleviate the dependency on abundant manual annotations, unsupervised learning techniques
that train the model with predefined pretext tasks is attracting increasing interests. The pretext
tasks constructed from the raw labels can produce general embeddings for various downstream
machine learning tasks of interest. Many strategies for pretext learning tasks, such as image
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in-painting [29], jigsaw puzzles [27, 28], grayscale image colorizing [23, 51], and geometric trans-
formation recognition [16], have been proposed recently. However, the methods using the classi-
fication objective, which minimizes the cross-entropy loss, still obtain the best performance [2, 6].
Along this line, many methods focus on how to obtain proper labels for the classification task.
For example, DeepCluster [6] is proposed to iteratively cluster images using kMeans; the cluster
assignments are then fed as supervision to train the convolutional network. NAT [3] proposes to
fix a set of randomly initialized target vectors and train the network by aligning the embeddings
to targets. Recently, Asano et al. [2] combine representation learning and clustering and propose
a novel self-labeling scheme to balance the size of clusters, which outperforms existing methods.

2.2 Unsupervised Representation Learning on Graphs

Representation learning on graphs is far more complex than image data due to the non-Euclidean
property and the lack of spatial locality. Classical methods learn unsupervised graph representa-
tion based on random walks [4, 17, 31, 33], which sample random walk sequences from the graph
and learn node embeddings using sequential models. Apart from random-walk-based methods,
another line of development focuses on matrix factorization techniques [37, 44], which produce
node embeddings by explicitly factorizing the proximity matrix. Notably, Qiu et al. [32] manage
to theoretically unify random walks and matrix factorization techniques into a cohesive frame-
work. Recently, to accelerate computational tasks on large-scale graphs, NRL-MF [25] proposes a
network representation lightening framework based on matrix factorization. This approach em-
ploys both hashing and quantization approaches and has delivered remarkable performance in
node classification and recommendation tasks. However, traditional network embedding methods
may suffer from insufficient representation ability, because they generate embedding for each node
independently and no parameters are shared between nodes [18].
GNNs, however, encode both structure and node features into dense embeddings via message

passing in the local neighborhood and achieve strong expressive power [22, 40, 45, 46]. Never-
theless, most GNNs are established in the (semi-)supervised setting, and requires substantial label
annotations to be trained. In reality, it is expensive to obtain high quality label annotations. To mit-
igate the problem of label scarcity, there is a growing body of literature focusing on unsupervised
training of GNNs. One line of research work proposes to employ GNNs as autoencoders [21, 43],
which formulates unsupervised learning as a link prediction problem and leverages the raw graph
structures as supervision. The representative GAE method [21] optimizes node embeddings by
reconstructing the original graph topology from learned representations. To take node attributes
into consideration, Gao and Huang [14] propose to use two graph autoencoders to preserve the
proximity of both graph topology and node attributes, respectively. As another promising research
direction, a number of researchwork focuses on training unsupervisedGNNs based on the InfoMax
principle [26]. Pioneering work DGI [41] utilizes a contrastive objective that discriminate node em-
beddings from the original graph and a corrupted graph, whose training objective is proved to be
a lower bound of the Mutual Information (MI) between the input graph and the learned repre-
sentations. Follow-up work proposes the graphical mutual information (GMI) [30] that takes
mutual information between edges into consideration. Following this work, Zhu et al. [53] propose
to generate graph views with stochastic graph augmentation functions and directly maximize the
agreement between node embeddings across views.
Despite their success, Tschannen et al. [38] point out that the embedding equality is not strongly

correlated with the MI bound and the stricter bound can even bring worse performance. In other
words, the success behind the above contrastive learning models may be attributed to the design
of augmentation and contrastive architectures. Similarly, our proposed CLEAR approach also in-
volves information maximization. However, different from maximizing the mutual information
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between graph representation, our approach directly optimize the information between represen-
tation and clustering assignments using the cross-entropy objective.

2.3 Graph Clustering with Graph Neural Networks

In the deep learning era, a number of methods solve the graph clustering problem using GNNs.
Zhang et al. [52] propose to address the graph clustering problem via a plain neighborhood aggre-
gation scheme; their proposed method simply aggregates information from neighborhood nodes
without parameters to learn from data. Wang et al. [42] propose to use a deep-clustering-based
method on node embeddings for graph clustering, where a cluster hardening loss [39] is intro-
duced to emphasize the clusters with high confidence. Moreover, the same deep clustering scheme
has been applied to semi-supervised learning with few labels as well [36]. In this work, the clus-
tering algorithm incrementally generates labels for unlabeled data from labeled nodes belonging
to the same cluster.
Among the aforementioned methods, none tries to directly solve the unsupervised graph repre-

sentation problem. On the contrary, our work aims to learn discriminative graph representations
without label supervision. By utilizing cluster information as supervision signal, which reveals
an intrinsic property of the graph, our approach produces high quality embeddings that benefit a
variety of downstream tasks.

3 THE PROPOSED METHOD: CLEAR

In this section, we first formulate the problem of unsupervised graph representation learning. Then,
we describe our proposed CLEAR method in detail with discussions on the time complexity and
connections to information maximization.

3.1 Problem Formulation and Notations

Consider an input graphG = (V,E), whereV = {v1,v2, . . . ,vN } denotes the set of nodes and E ⊆
V ×V denotes the set of edges. We denote X ∈ RN×M andA ∈ RN×N as the node feature matrix
and the adjacency matrix, respectively, where Ai j = 1 iff (vi ,vj ) ∈ E and Ai j = 0 otherwise. The
goal of unsupervised graph representation learning is to learn a low-dimensional representation
hi ∈ RD for each node vi ∈ V with no access to ground-truth labels, where D is the dimension
of node representations and D � M . We summarize all notations used throughout this article in
Table 1 for better readability.

3.2 Graph Representation Learning by Cluster-aware Self-training

Typically, GNN models are trained using the classification objective in a supervised manner. In
our unsupervised model where no ground-truth labels are given, we generate pseudo-labels to
provide self-supervision by iteratively performing clustering on the embeddings. To be specific, in
this unsupervised training phase, CLEAR alternates between optimizing parameters of the GNN
model by predicting cluster labels and adjusting the cluster assignments of nodes.

Representation learning via graph convolutional networks. We use Graph Convolutional Net-

works (GCNs) [22] as the base model to learn node embeddings. GCN is a multilayer feedforward
network in the graph domain that generates node embeddings by aggregating and transforming in-
formation from neighboring nodes. We defineH (t ) as the output of the t th layer. The propagation
rule of each layer can be defined as

H (t ) = σ (D̃−
1
2 ÃD̃−

1
2H (t−1)W (t ) ), (1)

where Ã is the normalized adjacency matrix ofAwith self-loops added, D̃ is the degree matrix for
Ã with entries D̃ii =

∑N
j=1 Ãi j , σ denotes the activation function, e.g., ReLU(·) = max(0, ·), and
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Table 1. Notations Used Throughout this Article

Notation Description
G input graph
V set of vertices
E set of edges
vi node with index i
A adjacency matrix of graph G
Ã adjacency matrix with self-loops added

D̃ degree matrix of Ã
X feature matrix
xi feature of node vi
H output embedding matrix
hi embedding of node vi

W (t ) trainable weight matrix in the t th layer GCN
H (t ) output embedding of the t th layer
yi cluster label of vi
C cluster-assignment matrix
ci cluster assignment of vi
μyi embedding of the centroid that belongs to yi
ϕp (·) graph purity function
τa threshold for adding edge in topology refining
τr threshold for removing edge in topology refining

W (t ) is the trainable weight parameter of the t th layer. The input to GCN is the feature matrix, i.e.,
H (0) = X . We employ an L-layer GCN to produce node embeddings for nodes, i.e., H = H (L) .

Self-training with cluster assignments. In CLEAR, cluster labels are used as pseudo-supervision
for model training. A cluster in the graph is a group of nodes that are closely correlated to each
other in terms of both topology structures and features. A variety of clustering methods have been
developed, and in our article, we choosekMeans due to its simplicity. Assume that the cluster labels
of vi ∈ V is denoted by yi ∈ {1, 2, . . . ,K }, drawn from a space of K possible clusters. We denote
the cluster assignments by C ∈ {0, 1}N×K , where each row represents the cluster assignments of
one node using one-hot encoding. Conventional kMeans aims to learn the centroids μ1, μ2, . . . , μK
and cluster assignments y1, . . . ,yN by optimizing

min
µ1, ...,µK

1

N

N∑

i=1

‖hi − μyi ‖. (2)

Here, we slightly abuse the notation μyi being the centroid that has the label yi .
To train the model without human annotations, we ask the model to predict cluster labels. To

this end, we employ a MultiLayer Perception (MLP) network as the classifier. The MLP takes
node embeddingsH as input and predicts correct labels on top of these embeddings. For a typical
classification problem with deterministic labels, we solve the following optimization problem:

min − 1

N

N∑

i=1

y logp (y | vi ), (3)

where p (y | vi ) = softmax(MLP(hi )) is the prediction for node vi .
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Cluster reassignment with equipartitioning. We note that it is nontrivial to directly adopt
kMeans for clustering-based self-supervised representation learning. This can be seen by a fact
that when we optimize the embeddingsH along with cluster assignments y, a trivial solution can
be obtained by mapping all nodes to the same point in the embedding space and treating them as
a single cluster [6].
To address this problem, we propose to adjust the cluster assignments with a novel equipartition

strategy. Formally, we first treat the cluster assignments C as probability distributions c (y | vi ).
We further restrict each cluster to be equally partitioned [2]. With that requirement, Equation (3)
can be rewritten as follows [2]:

min − 1

N

N∑

i=1

K∑

y=1

c (y | vi ) logp (y | vi ),

subject to ∀y : c (y | vi ) ∈ {0, 1},
N∑

i=1

c (y | vi ) = N

K
,

(4)

where c (y | vi ) = ciy is the cluster assignment for node vi . The first requirement guarantees that
each node belongs to exactly one cluster and the second ensures that all N nodes are equally split
intoK clusters. Then, optimizing with respect to c (y | vi ) for all nodes is equivalent to reassigning
cluster labels that satisfy the equipartition requirement.
Please kindly note that the equipartition requirement should be regarded as a regularization that

aims to avoid the downgraded trivial solution, rather than a constraint that requires the input data
to be in equally sized clusters. Moreover, considering we are agnostic to the number of classes in
an unsupervised setting, we set the number of classes to be relatively larger to the real numbers (to
which we refer as the overclustering strategy) following previous work [2, 6]. The overclustering
strategy decomposes each data cluster into smaller sub-clusters and thereby allows these smaller
sub-clusters to be in a similar size.
Due to the combinatorial nature of Equation (4), we resort to optimal transportation to solve it

efficiently [2]. Specifically, we relax the cluster assignments C to be an element of the transporta-
tion polytope [12], given by

U (r ,c ) :=
{
C ∈ RN×K+

���C�1 = r ,C1 = c
}
, (5)

where r = 1 ∈ RN and c = N
K
1 ∈ RK , which corresponds to our equipartition regularization.

Finally, the solution to Equation (4) is equivalent to solving the following problem (up to a
constant shift − logN ):

min
C ∈U (r ,c )

〈C,P〉, (6)

where P ∈ RN×K with entries piy = − log(p (y | vi )) is the cost matrix and 〈·, ·〉 is the Frobenius
dot-product between two matrices.
Note that although we relax C to be continuous, the solution to Equation (6) is guaranteed to

be integral, which can be obtained in near-linear time using the Sinkhorn-Knopp matrix scaling
algorithm [12]. Specifically, we can solve the problem by approximating the Sinkhorn projection
of eμP using the scaling algorithm, where μ is a hyper-parameter. In CLEAR, we employ a greedy
version of the Sinkhorn algorithm, Greenkhorn [1], to approximate the solution, which is proven
to outperform the original version significantly in practice. The cluster reassignment algorithm is
given in Algorithm 1. For the details of the Greenkhorn algorithm, we refer the readers of interest
to Appendix A.
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ALGORITHM 1: CLEAR cluster reassignment with equiparitioning

1 P ← − log(softmax(MLP(H )))

2 M ← e−ηP
3 r ← 1

4 c ← N
K 1

5 M ← Greenkhorn(M,r ,c )

6 C ← M

3.3 Topology Refining

After obtaining cluster assignments, we further refine the graph topology by strengthening
intra-class edges and reducing inter-class connections. Specifically, given cluster assignments C ,
for each edge (vi ,vj ), we remove it if the probability that vi and vj fall into the same cluster is
less than a threshold τr , i.e., c�i c j < τr . Additionally, for each node pair (vi ,vj ), if the probability
that vi and vj belong to the same cluster is greater than another threshold τa , we add the edge
(vi ,vj ) to the graph.
Note that in each iteration, we refine the graph topology based on the original graph instead of

the previously refined graph, since informative edges might be accidentally removed at the early
stage of the training procedure. Additionally, when adding edges, we consider (vi ,vj ) as candidates
only when they connect nodes belonging to the same cluster, i.e., argmaxk cik = argmaxl c jl to
reduce excessive computation.
The topology refining procedure is designed to increase the purity of the whole graphϕG , which

is defined as the probability of an edge in G connecting nodes from the same cluster. Formally, we
define graph purity as

ϕp (G) = 1

|E |
∑

(vi ,vj )∈E
P (yi = yj ) =

1

|E |
∑

(vi ,vj )∈E
c�i c j . (7)

We can see that topology refining can increase graph purity when the threshold is less than or
equal to the current purity, i.e., τ ≤ ϕp (G). In practice, τ is chosen dynamically with τ = 1

2ϕp (G).
Our motivation is that learning embeddings for a graph with higher purity will better preserve

cluster structures. Considering that embeddings of neighboring nodes are smoothed in graph
convolutions, embeddings of nodes belonging to different clusters will become similar due to
inter-cluster edges, resulting in indistinguishable node embeddings. We further illustrate this idea
through visualization. On the Karate club dataset [49], we conduct topology refining to increase
graph purity and add noise edges to decrease graph purity. The learned embeddings are shown in
Figure 2. We can see that the modified graph (Figure 2(b)) with higher purity produces embeddings
with well-separated clusters, while the clusters are indistinguishable in the graph (Figure 2(c)) with
lower purity.

3.4 Model Training

To train the proposed CLEARmodel, we first initialize the parameters of GCN by training it with a
reconstruction loss [21], which forces the node embeddings to preserve pairwise similarity. Then,
we initialize the cluster assignments by employing kMeans on the node embeddings.

After initialization, the node embeddings will be improved in further steps using cluster-aware
self-training. Specifically, we iteratively update model weights in three stages, namely, graph rep-
resentation learning, cluster reassigning, and topology refining. At first, when we perform graph
representation learning by solving Equation (3), we fix the cluster assignments C . Then, with
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Fig. 2. Visualization of node embeddings with different graph purity on the Karate club dataset. Node colors

indicate classes. Green lines indicate inter-class edges while red lines indicating intra-class edges.

node representations H fixed, we adjust the cluster assignments by solving Equation (6) using
the Greenkhorn algorithm. Following Asano et al. [2], to stabilize training, we distribute cluster
reassignment and topology refining steps throughout the whole training process. We denote S
as the set of epochs where cluster assignments will be adjusted. S can be chosen freely as long
as cluster reassignment is performed at proper intervals. In our implementation, we set updating
epoch si ∈ S as si = (E−W ) i

U+1 +W , i = 1, 2, . . . ,U , whereU is the total number of reassignment
steps throughout training,W is the number of warm-up epochs where cluster reassignment will
not be performed, and E is the total number of training epochs. The whole training algorithm is
summarized in Algorithm 2.

ALGORITHM 2: CLEAR training algorithm

1 E0 ← E;
2 Initialize the weights of GCN by reconstruction objectives;

3 Generate initial embedding H using GCN with Equation (1);

4 Initialize initial cluster assignments using kMeans;

5 for epoch ← 1, 2, . . . do
6 Update weights of GCN and MLP by solving Problem (3);

7 if epoch ∈ S then

8 Adjust cluster assignments by solving Problem (6) using the Greenkhorn algorithm;

// Perform topology refining

9 τr ← 1
2ϕp (G);

10 E ← {(vi ,vj ) | (vi ,vj ) ∈ E0,c�i c j ≥ τr }; // Remove inter-class edges

11 for y ← 1, 2, . . . ,K do

12 Vy ← {vi ∈ V | argmaxl cil = y};
13 E ← E ∪ {(vi ,vj ) ∈ Vy ×Vy ,c�i c j > τa }; // Add intra-class edges

3.5 Discussions

3.5.1 Time Complexity Analysis. The time complexity of updating cluster assignments using
the Greenkhorn algorithm is O (NK ). In the topology refining procedure, we compute the cor-
relation between each connected node pair and delete edges with low correlation, which re-
sults in the time complexity of O ( |E |(K + 1)). Note that in the real world, graphs are usually
sparse, i.e., |E | � N 2. Therefore, the overall time complexity of each cluster updating iteration is
O (NK + (K + 1) |E |).

3.5.2 Comparison with Graph Structure Learning. We note that the proposed topology re-
fining scheme is conceptually similar to graph structure learning [15, 20], which proposes to
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simultaneously refine the given graph topology and learn the node representations to mitigate the
noise in graph structures. In particular, both these two models propose to quantify the connection
strengths of every N 2 pairs of nodes using cosine similarity. Though they further employ kNN
thresholding on the similarity graph to create a sparse graph, which mitigates the computational
burden for GNNs, they have the potential problem of inflexibility in setting a fixed k value (e.g.,
k = 20 for all datasets, as done in Jin et al. [20]). Our CLEAR model, on the contrary, preserves
the sparsity, an important graph prior of real-world graphs, by thresholding the purity of edges.
The threshold values controlling the number of modified edges could be dynamically adjusted
according to the cluster assignments as the training progresses. Moreover, most existing graph
structure learning models target at supervised settings [9, 55], while our approach considers
unsupervised learning, which is conceptually harder.

3.5.3 Connection with the Information Maximization Principle. Finally, we interpret the pro-
posed CLEAR approach from information theoretic perspectives. Different from contrastive learn-
ing methods [41, 53] that maximize the mutual information between input graph and learned rep-
resentation, our approach maximizes the lower bound of mutual information between the learnt
node embeddings and the cluster labels [2]. As shown in experiments, the cluster labels produced
by CLEAR have strong a correlation to the ground-truth classes of downstream node classification
tasks, which explains why CLEAR can produce high quality node embeddings that improve the
performance of downstream tasks.

4 EXPERIMENTS

In this section, we present the results and analysis of empirical evaluation of our proposed method.
These experiments are conducted to answer the following four research questions:

• RQ1: How does the proposed method compare with existing baselines in traditional graph
mining tasks?
• RQ2: How does the cluster-aware topology refining mechanism help improve the quality
of node embeddings? How does adding intra-class edges and removing inter-class edges
independently contribute to improve the quality of node embeddings?
• RQ3: Does the soft topology refining scheme outperform the proposed hard refining
scheme?
• RQ4: How do key hyper-parameters affect model performance?

To answer RQ1, in the experiments, we extensively compare the proposedCLEAR for two graph
mining tasks, node classification and node clustering. Then, we conduct detailed ablation studies
on the cluster-aware topology refining procedure to answer RQ2. Following the ablation study
of the cluster-aware topology refining module, we further compare the proposed hard refining
scheme with its “soft” variant to answer RQ3. After that, to answer RQ4, we perform parameter
sensitivity analysis on several key hyper-parameters of themodel. Finally, we provide visualization
of node embeddings to give qualitative results of our proposed methods.

4.1 Experimental Setup

Datasets. For a comprehensive comparison with state-of-the-art methods, we evaluate our
model using four widely used datasets: among them, three are citation networks Cora, Citeseer,
and Pubmed, for predicting article subject categories [34, 48], and the other co-authorship network
Coauthor-CS (CS) [35] is for predicting the research fields of the authors. In the three citation
datasets, graphs are constructed from computer science papers of various subjects. Specifically,
nodes correspond to articles and undirected edges correspond to citation links. Each node has
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Table 2. Statistics of Datasets Used

Throughout the Experiments

Dataset #Nodes #Edges #Features #Classes
Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3

CS 18,333 81,894 6,805 15

a sparse 0/1 bag-of-words feature and a corresponding class label. In the co-authorship dataset,
nodes represent authors and they are connected if the two authors have co-authored a paper. Each
node has a bag-of-words feature representing keywords for each author’s papers. The statistics of
these datasets is summarized in Table 2.

Experimental configurations. We train the model using the Adam optimizer with a learning rate
of 0.01. Initially, we train the GCN model with the reconstruction loss for 500 epochs on Cora
and PubMed, 250 epochs on CiteSeer, and 200 epochs on CS. Following that, in the self-supervised
learning phase, we train the whole model for 15, 60, 50, and 800 epochs on Cora, Citeseer, Pubmed,
and CS, respectively. On all the datasets, the optimal transportation solver is run for a fixed number
epochs Eot and with the same hyper-parameter μ. Prior to training, we initialize the weight of the
encoders by training it with reconstruction loss. Technically, we optimize the loss by negative sam-
pling. It is also possible to initialize the parameters in GCN with a variant of reconstruction loss
proposed in VGAE [21]. In our experiments, we initialize our model with the standard reconstruc-
tion loss on Cora, Pubmed, and CS, while on Citeseer, we use the variational reconstruction loss.

Hyper-parameter settings. We set the dimension of the node embeddings to 64, the weight decay
to 0.0008 in all datasets. For the number of clusters, to avoid trivial solution [6], we set the number
of clusters to be around twice the number of ground-truth classes. Specifically, we set the number
of clusters to 10, 11, 5, and 20 on Cora, Citeseer, Pubmed, and CS, respectively. For the set of epochs
where we perform cluster reassignment,W is set to 10, 80, 20 and, 50 in Cora, Citeseer, Pubmed,
and CS, respectively; U is set to 7, 7, 6, and 4 in the four datasets, respectively. Besides, for the
optimal transportation solver, Eot is set to 1,000 and μ is set to 20.

4.2 Node Clustering (RQ1)

To demonstrate the performance of the proposed approach, we first evaluate it on an unsupervised
task—we conduct node clustering algorithms on top of the learned node embeddings. In this ex-
periment, we employ kMeans as the clustering method. We run the algorithm for ten (10) times
and report the averaged performance as well as standard deviation. We choose two widely used
metrics accuracy and Normalized Mutual Information (NMI) in reporting the performance.

Baselines. For a comprehensive comparison, we compare our methods against various unsuper-
vised methods. These methods can be grouped into four categories.

• Traditional methods that only make use of input features. We run two methods kMeans
and Spectral Clustering (SC) directly on the input features, which means that no graph
structures are used at all.
• Network embedding methods that use graph structures only.
– DeepWalk [31] is a representative random-walk-based method, which generates node em-
beddings by sampling random walks on graphs and feeds them into language models.

– DNGR [5] adopts a random surfing model to capture the graph structures. These methods
only utilize graph structural information and neglect the input features.
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Table 3. Performance of Node Clustering on the Four Datasets in Terms of Accuracy and

Normalized Mutual Information (NMI)

Method
Cora Citeseer Pubmed CS

Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI
kMeans 34.65±0.83 25.42±0.83 38.49±0.99 30.47±0.85 33.37±1.39 57.35±0.54 56.70±2.86 50.23±2.05

SC 36.26±1.15 25.64±1.38 46.23±1.27 33.70±0.76 59.91±1.46 58.61±0.92 52.69±2.45 54.57±2.30
DeepWalk 46.74±1.38 38.06±0.62 36.15±0.99 26.70±0.71 61.86±1.26 47.06±0.71 55.78±0.25 39.17±0.22
DNGR 49.24±1.18 37.29±1.36 32.59±1.15 44.19±1.07 45.35±1.15 17.90±0.89 42.12±0.23 55.21±0.18
GAE 53.25±0.87 41.97±1.26 41.26±0.95 29.13±0.87 64.08±1.36 49.26±1.09 54.57±2.01 58.73±2.48
VGAE 55.95±0.74 41.50±0.76 44.38±1.00 31.88±0.94 65.48±0.64 50.95±1.25 57.94±1.78 60.10±2.12
MGAE 63.43±1.35 38.01±1.33 63.56±1.03 39.49±0.64 43.88±0.88 41.98±0.79 61.91±2.03 62.54±1.01
ARGE 64.00±1.01 61.90±1.49 57.30±1.34 54.60±0.65 59.12±0.68 58.41±0.99 62.12±2.10 63.11±0.98
ARVGE 63.80±1.05 62.70±0.63 54.40±1.20 52.90±0.58 58.22±0.82 23.04±1.07 61.18±1.99 62.75±1.25
DANE 70.27±1.25 68.93±0.76 47.97±1.44 45.28±1.43 69.42±1.00 65.10±0.81 62.13±2.03 63.72±1.02
AGC 68.92±0.87 65.61±1.04 67.00±0.23 62.48±0.52 69.78±1.45 68.72±1.36 63.23±1.67 62.16±1.58
AGE 74.74±1.22 72.34±0.83 58.58±0.57 55.91±0.23 49.63±0.81 34.58±0.35 60.57±1.12 54.23±1.05
DGI 65.28±0.73 58.90±1.22 60.37±1.31 55.63±0.78 51.22±1.29 46.73±0.76 63.00±1.78 58.55±1.21
GMI 67.10±0.91 65.75±2.01 59.82±0.11 56.47±0.82 OOM OOM OOM OOM

CLEAR 77.37±2.52 75.24±2.88 67.30±0.55 62.20±0.58 71.03±0.13 70.72±0.13 69.01±1.32 63.82±1.02

• Attributed graph clustering models that use both structures and attributes.
– Graph autoencoders (GAE [21], VGAE [21], and MGAE [43]) use GCN [22] as the encoder
and enforce the model to reconstruct graph structures specified by a graph proximity ma-
trix (e.g., the adjacency matrix that represents one-order proximities).

– DANE [14] employs two autoencoders to preserve proximities for both graph structures
and node attributes.

– AGC [52] directly applies graph convolutions to the input features and runs spectral clus-
tering on the obtained embeddings.

• Deep graph embedding models that use both structures and attributes.
– AGE [10] applies a Laplacian smoothing filter to alleviate the high-frequency noise in node
features and employs an adaptive encoder for better node embeddings.

– DGI [41] applies contrastive learning techniques that aims to maximize mutual informa-
tion between global graph embeddings and local node embeddings.

– GMI [30] proposes graphical mutual information, whichmeasures the correlation between
the graph and the embeddings from both structural and feature aspects.

Results and analysis. The performance is summarized in Table 3 with the highest performance
highlighted in bold. We report the performance of baselines in accordance with their original pa-
pers [14, 52]. From the table, it is evident that our proposed CLEAR surpasses other baseline meth-
ods in terms of accuracy on all four datasets. It is worth mentioning that we exceed the existing
state-of-the-art model by a large margin of over 7% in terms of absolute accuracy improvements
on Cora.
The results can be analyzed in three aspects. First, we observe that traditional algorithms

such as kMeans and spectral clustering, which simply rely on node attributes perform poorly on
graph data. Second, conventional network embedding methods outperform traditional clustering
methods, but their performance is still inferior to that of attributed graph clustering methods.
This demonstrates the power of modern deep learning techniques on graphs that can better
leverage both graph structures and node attributes. Last, it is observed that our proposed
method outperforms attributed graph clustering baselines by considerable margins. Previous
graph clustering methods merely perform node representation learning on the node level, while
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Table 4. Performance of Node Classification on the Four Datasets in

Terms of Micro-F1 (Mi-F1) and Macro-F1 (Ma-F1)

Method
Cora Citeseer Pubmed CS

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1
DeepWalk 75.68±0.20 74.98±0.73 50.52±0.72 46.45±0.69 80.47±0.39 78.73±0.61 74.12±0.01 70.42±0.04
node2vec 74.77±0.65 72.56±0.29 52.33±0.07 48.32±0.12 80.27±0.41 78.49±0.31 75.69±0.20 72.54±0.11
GraRep 75.68±0.74 74.41±0.23 48.17±0.53 45.89±0.01 79.51±0.42 77.85±0.24 72.12±0.21 71.95±0.43
ANE 72.03±0.24 71.50±0.72 58.77±0.15 54.51±0.47 79.77±0.44 78.75±0.10 81.21±0.76 74.55±0.71
GAE 76.91±0.42 75.73±0.14 60.58±0.25 55.32±0.11 82.85±0.65 83.28±0.28 82.15±1.12 75.67±0.88
VGAE 78.88±0.58 77.36±0.21 61.15±0.38 56.62±0.29 82.99±0.28 82.40±0.02 83.25±1.06 78.21±0.25
DANE 78.67±0.74 77.48±0.70 64.44±0.20 60.43±0.18 86.08±0.67 85.79±0.15 83.11±0.45 77.01±0.21
AGE 74.79±0.73 73.09±0.73 63.47±0.50 58.85±0.02 81.69±0.74 81.32±0.44 75.68±0.89 75.12±2.01
DGI 82.53±0.20 81.09±0.35 68.76±0.23 63.58±0.73 85.98±0.59 85.66±0.07 84.35±1.28 67.13±2.14
GMI 82.19±0.13 80.84±0.48 69.44±0.53 63.81±0.12 OOM OOM OOM OOM

CLEAR 82.56±0.32 81.16±0.64 69.56±0.72 61.59±0.24 85.76±0.52 83.49±0.02 88.84±1.01 75.92±0.98

our method exploits underlying cluster structures in graphs to guide representation learning.
Additionally, we utilize cluster information to reduce the impact of noisy inter-class edges, which
further improves the quality of embeddings. The improvements show that our proposed CLEAR

helps generate embeddings that better preserve cluster structures.
Note that the proposed CLEAR is slightly inferior to AGC on Citeseer in terms of NMI score.

However, CLEAR still outperforms it in terms of accuracy and on other datasets by a considerable
margin. In all, these results verify the effectiveness of our proposed CLEAR.

4.3 Node Classification (RQ1)

We further evaluate the quality of embeddings generated by CLEAR on a supervised task—node
classification. After training the model, we conduct node classification on the learned node rep-
resentations. For a fair comparison, we closely follow the same experimental settings as Gao and
Huang [14]. Specifically, we train a linear logistic regression classifier with �2 regularization. For
training/test set splitting, we randomly select 10% nodes as the training set and the remaining
nodes are left for the test set. Then, we use cross-validation to select the best model. We report
the performance on the test set in terms of two widely used metrics, Micro-averaged F1-score

(Mi-F1) andMacro-averaged F1-score (Ma-F1). As with the previous experiment, we report the
averaged performance and standard deviation of ten (10) runs.

Baselines. In node classification, we include two sets of baseline algorithms: (1) traditional
network embedding methods, which only leverage graph structures and ignore node attributes,
and (2) attributed graph representation learning methods, which use both graph structures
and node attributes. The former category includes representative random-walk-based methods
DeepWalk [31], node2vec [17], and GraRep [4]. The latter one includes attributed network
embedding methods ANE [19] and DANE [14], and graph neural networks GAE, VGAE [21],
DGI [41], AGE [10], and GMI [30].

Results and analysis. We report the performance in Table 4, with the best performance high-
lighted in boldface. The baseline performance is reported as in their original papers [14]. In general,
the results confirm the effectiveness of the proposed method. As shown in the table, the proposed
CLEAR performs best on the Cora and Citeseer datasets, compared with state-of-the-art baselines
and shows competitive performance on Pubmed and CS, compared with other graph representa-
tion learning methods.
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As with the conclusions drawn from the experiment of node clustering, traditional network
embedding methods such as DeepWalk and node2vec perform worse than deep-learning-based
graph representation learning methods, which highlights the importance of incorporating node
attributes when training the model. Instead of merely leveraging graph structures, GNNs combine
information of graph topology and node attributive information, resulting in better node embed-
dings. Our proposed method further utilizes cluster information in self-training and refines graph
topology by removing inter-class edges that potentially hinder the model from preserving cluster
structures in the embedding space. The proposed method produces better node embeddings, so
that it achieves significant improvement over existing GNN-based methods.
Note that while DANE is a strong baseline on Pubmed, our proposed CLEAR still outperforms

it in terms of accuracy and Macro-F1 score on the other two datasets. We observe that the NMI
between cluster labels and ground-truth labels on Pubmed is the lowest among the four datasets,
which can help explain the slightly inferior performance of CLEAR on Pubmed. Through the topol-
ogy refining procedure that is based on cluster labels, our proposed CLEAR may accidentally re-
move informative edges, which results in performance loss. Recent work DGI and GMI marry the
power of contrastive learning into graph representation learning. However, they only optimize
node representations in the latent space, which neglect cluster structures that align with the in-
trinsic properties of the graphs. On the contrary, our proposed CLEAR significantly outperforms
them on graph clustering tasks and achieves comparable performance with them in node classi-
fication. This can be attributed to our novel approach of leveraging cluster-aware self-training
and refining graph topology, which not only enhances cluster structures but also provides more
discriminative representations that can benefit node classification tasks. By refining the graph
topology and strengthening intra-class edges, our method can generate more informative node
embeddings, ultimately leading to improved performance in both tasks.

4.4 Ablation Studies (RQ2)

To further validate the proposed cluster-aware topology refining procedure and justify our ar-
chitectural design choice, we conduct ablation studies by removing specific components in the
topology refining module. Then, we conduct node clustering using the same setting described in
previous sections.

4.4.1 Impact of the Proposed Topology Refining Module. First, to further validate the proposed
cluster-aware topology refining module, we conduct ablation studies by removing this module. We
term the resulting model asCLEAR– hereafter. To compare the performance of the originalCLEAR
and CLEAR–, we conduct node clustering using the same setting described in previous sections,
where the performance is reported in Figure 3. From the figure, we observe that the topology
refiningmodule improves the performance of CLEAR– on node clustering by considerablemargins
in terms of three evaluation metrics, i.e., Micro-F1, Macro-F1, and NMI, which once again verifies
its effectiveness. Moreover, we calculate graph purity against ground-truth classes to reflect the
modification to topology of the original graph. From the figure, it is apparent that the proposed
topology refining procedure is able to alleviate the impact of noisy inter-class edges and further
better preserve cluster structures.

4.4.2 Impact of Different Schemes of Topology Refining. To further validate the proposed topol-
ogy refining schemes, we perform ablation studies by comparing the model performance with
different components of the refining module enabled. We report the clustering accuracy of the
following three variants: (1) CLEAR-Add, which only adds intra-class edges, (2) CLEAR-Remove,
which only removes inter-class connections, and (3)CLEAR-Hybrid, which is our proposedmodule
with both schemes enabled. The performance of the three variants is presented in Figure 4.
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Fig. 3. Performance of node clustering and graph purity on the Cora dataset with and without the topology

refining module.

Fig. 4. Performance of node clustering on Cora with different schemes enabled in the topology refining

module.

From the figure, it is clear that enabling both schemes benefits model performance in terms
of Micro-F1, Macro-F1, and Purity. However, we note that, CLEAR-Remove outperforms CLEAR-
Hybrid in terms of NMI slightly. This may be explained from the fact that CLEAR-Hybrid intro-
duces some noisy edges when adding intra-class edges, as the model makes wrong prediction
about the ground-truth classes. In summary, the proposed hybrid scheme generally outperforms
better, compared with CLEAR-Add and CLEAR-Remove, which justifies our design choice of the
proposed topology refining module.

4.5 Discussions of Hard and Soft Topology Refining Schemes (RQ3)

Following the ablation study of the proposed topology refining scheme, we further conduct ad-
ditional experiments using a soft topology refining scheme. For the proposed topology refining
scheme, we regard the edge deletion as a “hard” operation, where the intra-class edges will be
completely removed for node representation learning. Considering the discrepancy between our
model prediction about clusters and ground-truth labels, contrary to hard removal, we may con-
sider an alternative “soft” scheme, where one intra-class edge are reassigned probabilities that
express the strength of connection. In this experiment, for each edge (vi ,vj ), we reassign each
intra-class edge with a weight A′i j = c�i c j ; other edge weights are not modified. Since in the orig-
inal graph, we represent each edge by Ai j = 1, our soft modification A′i j < 1, which is able to
reduce the connection of intra-class nodes.
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Fig. 5. Performance of node clustering on Cora with hard and soft topology refining schemes.

The results are shown in Figure 5. We observe that our proposed hard scheme evidently outper-
forms its soft variant in terms of Micro-F1 and Macro-F1, and performs slightly lower in terms of
NMI. The result provides the rationale of using a hard removal scheme. The reason why the soft
topology refining scheme performs worse than the hard scheme may be explained from the fact
that via the soft removal scheme, there are still many inter-class edges remained, which deteriorate
the quality of node embeddings.

4.6 Parameter Sensitivity Analysis (RQ4)

In this section, we examine the impact of four key parameters in our model, i.e., the cluster size,
the two thresholds for topology refining, and the interval of reassigning clusters. We conduct node
clustering on the Cora dataset by varying these four parameters independently. While one hyper-
parameter studied in the sensitivity analysis is changed, the other hyper-parameters remain the
same as previously described.

4.6.1 Impact of the Cluster SizeK . To investigate the influence of cluster numbers on ourmodel,
we run CLEAR by varying the number of clusters from 7 to 18. The results on Cora with different
numbers of clusters are plotted in Figure 6(a). From the figure, we observe that the model perfor-
mance first benefits from the increase of cluster numbers, but soon the performance decreases.
This indicates that the over-clustering strategy does boost the performance of CLEAR, since it can
alleviate inconsistency between the clusters discovered in self-training and real-world datasets.
Specifically, when we enforce each cluster to be equally balanced, classes in real-world graphs
usually vary greatly in their sizes. However, dividing nodes into too many clusters will in turn
deteriorate the performance, since the proposed cluster-aware topology refining mechanism will
unnecessarily remove informative inter-cluster edges.

4.6.2 Impact of the Threshold τr in Topology Refining. To further investigate the impact of τr
on the model performance, we run CLEAR by setting τr from 0 to 0.7, with a constant interval of
0.1. From the results in Figure 6(b), we observe that clustering accuracy is first boosted from the
increase of τr , then it stops increasing and decreases. This can be explained that a higher thresh-
old may result in the accidental removal of possibly useful intra-cluster edges. The observation is
consistent with our previous study on the impact of cluster size. Moreover, we note that the per-
formance achieved with our proposed scheme that selecting τr dynamically is close to the highest
performance when directly fixing τr to a certain value, which prove the validity of the dynamic
selection scheme. Since in the real world, ground-truth labels may be inaccessible, it is infeasible
to fix τr to be the best value based on performance.
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Fig. 6. Sensitivity analysis under different cluster sizes, thresholds τ , τa , and cluster updating intervalsU , in

terms of node clustering accuracy on the Cora dataset.

4.6.3 Impact of the Threshold τa in Topology Refining. To investigate the impact of τa on the
performance of CLEAR, we run CLEAR by setting τa to different values and report the clustering
accuracy on Cora. Due to the high sparse nature of edges in the original graph, we set (1 − τa )
from 10−1 to 10−7 by taking exponential scales. We report the performance under different τa in
Figure 6(c). From the figure, we can see that model performance first benefits from the increase
of (1 − τa ), indicating adding more edges, but soon the accuracy decreases. The performance gain
when (1−τa ) is set to 10−7 or 10−6 verifies the effectiveness of our proposed adding edge scheme for
topology refining.While themodel benefits from the adding edge scheme initially, the performance
becomes inferior to the base model when (1 − τa ) is large. This can be attributed to the fact that
a large (1 − τa ) will result in a dense neighborhood, which leads to the over-smoothing problem
and tends to bring noise into node representations.

4.6.4 Impact of the Cluster Reassignment IntervalU . To investigate the impact of the interval of
cluster reassignmentU , we runCLEAR in variedU values with node clustering accuracies on Cora
reported in Figure 6(d). From the results, we can make observations such that model performance
first benefits from the increase ofU , but soon the accuracy levels off. The performance gain when
U increases can be explained by the fact that reassignments can result in more reliable pseudo-
labels, which can better guide the learning of our model. This is consistent with our motivation
that the learning of model and the pseudo-labels can benefit from the progress of each other and
jointly boost the quality of learned representations. However, adjusting cluster assignments too
frequently may bring instability to model training and thus leads to inferior model performance.
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Fig. 7. Visualization of raw features and embeddings learned with CLEAR on the Cora dataset. T-SNE [39]

is applied to project features and embeddings into two-dimensional spaces. Each node is colored with its

corresponding ground-truth class label.

4.7 Visualizing Node Embeddings

Finally, we provide qualitative results by visualizing the learnt embeddings. Specifically, we lever-
age t-SNE [39] to project the embeddings onto a two-dimensional space and plot them with colors
corresponding to the class of each node. The node embeddings are extracted from the penultimate
layer of a CLEAR model that is pre-trained on the Cora dataset. For comparison, we also present
the visualization of the raw node features in Figure 7(a) as well as embeddings trained with a su-
pervised GCN in Figure 7(b). From the figures, we observe that the representations learned with
CLEAR exhibit discernible clusters in the projected two-dimensional space. Note that node colors
correspond to seven ground-truth node classes, which shows that the produced embeddings are
highly discriminative across seven classes in Cora. Compared to the supervised counterpart, the
embedding space learned byCLEAR is more well-clustered, verifying thatCLEAR is able to extract
and preserve essential information of the graphs.

5 CONCLUSION AND FUTURE WORK

In this article, we have developed a novel cluster-aware self-training and refining model (CLEAR)
for unsupervised graph representation learning, in which we train GNNs without human annota-
tions. Specifically, CLEAR performs clustering on the node embeddings and updates GNN param-
eters by predicting cluster assignments of nodes. Then, we propose an equipartition strategy to
reassign cluster assignments to avoid downgraded solution. Moreover, we leverage a novel graph
topology refining scheme that strengthens intra-class edges and isolates nodes from different clus-
ters based on cluster labels to improve node embedding quality. Comprehensive experiments on
two benchmark tasks using real-world datasets have been conducted. The results demonstrate the
superior performance of our proposed CLEAR over state-of-the-art baselines.
The study of unsupervised techniques for graph representation learning generally remains

widely open. It is seen from this work that accurately predicting the cluster labels is crucial for suc-
cessfully deploying the model. In our future work, we plan to further investigate combining other
self-supervised methods, e.g., contrastive learning methods [53, 54], to better model the latent
space of node embeddings and thereby improve the quality of node embeddings. Another possible
direction for future work could be to integrate a hierarchical clustering technique, which would
allow for a more refined representation of the internal structures. By considering sub-clusters at
different levels of granularity, we may be able to better capture the fine-grained relationships be-
tween nodes while still maintaining the benefits of our cluster-aware self-training and topology
refining approach.
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APPENDIX

A DETAILS OF THE GREENKHORN ALGORITHM

The Greenkhorn algorithm [1] aims to solve the matrix scaling problem: given a non-negative
matrix A ∈ RN×K+ , the goal is to find two vectors x ∈ RN ,y ∈ RK , such that the row sum and the
column sum inM = diag(x )A diag(y) satisfy that

r (M ) = r , (8)

c (M ) = c, (9)

where r (M ) = M1, c (M ) = M�1, r and c is the required row/column sum.
The vanilla Sinkhorn-Knopp algorithm approximates the solution by alternatively normalizing

the row and column sum of the matrix. Instead of normalizing all rows/columns at each iteration,
Greenkhorn greedily selects one row or column to update according to a distance function, ρ :
R
+ × R+ → [0,+∞], which is defined as

ρ (a,b) = b − a + a log a

b
. (10)

The details of the Greenkhorn algorithm are given in Algorithm 3, where Eot is the number of
iterations.

ALGORITHM 3: The Greenkhorn algorithm

1 function Greenkhorn(A,r ,c):
2 P ← − log(softmax(MLP(H )))

3 M (0) ← A

4 x ← 0,y ← 0

5 M ← M (0)

6 for epoch← 1 to Eot do
7 I ← argmaxi ρ (ri , ri (M ))

8 J ← argmaxj ρ (ci , ci (M ))

9 if ρ (rI , rI (M )) > ρ (c J , c j (M )) then
10 xI ← xI · rI

rI (M )

11 else

12 yI ← yI · c J
c J (M )

13 M ← diag(x )M (0)diag(y)

14 returnM
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