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Abstract— In this paper, we propose a new method for the
extraction of blood vessels in retinal images. This approach
starts with a Hessian-based multiscale filtering method to
enhance blood vessels in gray retinal images. Subsequently,
a new radial symmetry transformation, which is based on
line kernels, is proposed to improve the detection of vessel
structures and restrain the response of nonvessel structures.
Finally, an iterated segmentation algorithm is used to extract
retinal vessels. The proposed approach has been tested on
the two publicly available databases, DRIVE and STARE.
The experimental results show the feasibility of the proposed
method.

I. INTRODUCTION

The extraction of blood vessels is an especially challeng-
ing problem in fundus imaging. This is due to the complexity
and variability of their anatomic structures. As one of the
main structures in retinal images, retinal vessel trees are usu-
ally distorted and deformed by various retinopathies such as
glaucoma, artery occlusion, microaneurysms and choroidal
neovascularization [1], [2], [3], [4]. Various non-ophthalmic
diseases such as diabetes, hypertension, and cardiovascular
disease may lead to blood vessels pathological changes [5]
and retinal diseases [6].

Tremendous amount of dedicated researches have been
done to develop better retinal vessel extraction algorithms
in recent years. Some approaches were presented based on
a combination of multiscale filtering and classification [7],
[8]. Many other approaches have been introduced, centerline
tracking [5], hermite model [9], and multiconcavity modeling
[6] etc. In this paper, we propose a new method for the
extraction of blood vessels in retinal images. In the prepro-
cessing step, a Hessian-based multiscale filtering method is
used to enhance blood vessels in gray retinal images, and to
obtain the direction and radii of blood vessels. Subsequently,
a new radial symmetry transformation, which is based on line
kernels, is introduced to remove the response of nonvessel
structures. Finally, an iterated segmentation algorithm is used
to extract the retinal vessels.
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II. METHOD

A. Preprocessing

In order to enhance tubular structures of various widths, it
is necessary to consider a multiscale filtering method. In this
framework, the images are convolved with a set of 2D Gaus-
sian derivative filters at multiple scales and a few response
functions are formulated according to the eigenvalues of the
Hessian matrix to detect interested structures (see Fig.4(b)).
Let λs,1, λs,2 are the eigenvalues of Hessian matrix at a scale
s, vascular structures can be enhanced by the multiscale line
response function [10],

V = max
smin≤s≤smax

vs (1)

where,
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, λ1,s, λ2,s < 0
0, otherwise

;

c is a constant. We can obtain the scales of vascular structures
in the enhanced images. The contours of structures with the
scales are determined by Canny edge detector.

B. Radial Symmetry Transform

Though the multiscale filters enhanced tubular struc-
tures, they produce boundary effects around the pathological
changes, the optic disc (shown in Fig.2 (a)-(b)). These
spurious responses are sometimes stronger than the responses
to narrow vessels and low contrast vessels (shown in Fig.2
(c)-(d)). A further process is a requisite for the removal
of nonvessel responses [7]. We now introduce a fast radial
symmetry transform [11] to suppress those artifacts.

Fig. 1. The radial symmetry transform. (a) The contribution S to vessels
from their neighboring pixels along the direction of the vessels and the the
gradient of edges. (b) Fourteen line kernels.

The basic idea is illustrated in Fig.1(a). The radial symme-
try transform is achieved by computing the contribution S for
each pixel from their neighboring pixels along the direction
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of the gradients. A oriented line kernel Ln with its size
n× n is then applied along the tangential direction in order
to disperse the influence of the effected pixels and produce
smoothed vessels. We have noticed that the boundary effects
unilaterally proliferate. For bilateral structures like vessels
the symmetry contribution values from edges are at lest as
two times as that from unilateral structures.

(a) (b)

(c) (d)

(e) (f)
Fig. 2. Some results after radial symmetry transform. (a) Optic disk;
(b) Pathological changes; (c)-(d) The multiscale filtered results; (e)-(f) The
results after radial symmetry transform.

After compute the gradient field −→
G (p) for each pixel

p (i, j) on the contours, the gradient vectors are normalized
as −→g (p) = −→

G (p) /||−→G (p) ||. Then, the coordinates of the
affected pixels are given by

pr (p) = p + round (r · −→g (p)) (2)

where r denotes the distance between a pixel on the edge and
the corresponding affected pixel, r = 0,∆r, · · · , 2R; R is
the radius of a vessel obtained from the proposed multiscale
filters. The orientation projection image O is updated by

O (pr (p)) ← O (pr (p)) + 1 (3)

In [11], the magnitude projection image is incremented by
||−→g (p) ||. In order to preserve tubular structures, the radial
symmetry contribution however is determined by the local
value of the affected pixel,

F = V ·
(

O

k

)γ

(4)

where, k is a normalizing factor; γ is a radial strictness
parameter.

To obtain smoothed vessels, the radial symmetry contri-
bution F must be dispersed and convolved with an oriented
line kernel Ln. Before applying the convolution with a given
line kernel, all pixels, of which the angles are between d and
d + ∆d, are chosen out as a new image Fd from the image
F . The final radial symmetry transform is defined as

S =
∑

d=∆d,2∆d,···,180◦
Fd ∗ Ln (d) (5)

We choose the eigenvector of λs,1 as the orientation of Ln,
n = 7. Fourteen line kernels are generated with about a
∆d = 12.86◦ increment and then stored in a code book (see
Fig.1(b)). As shown in Fig.2(e)-(f), the responses from the
boundaries of optic disk and the pathological changes are
evidently filtered out and blood vessels are still left.

C. The Iterated Graph Cuts Algorithm

Having enhanced all potential tubular structures and sup-
pressed noise in the background, the final step is to accurately
segment vessels from the two previous processing results.
The image segmentation can be converted into a problem
that a label is properly assigned to each pixel. Such pixel-
labeling problems can be often formulated using the energy
function,

E (L) = Ed (L) + κEs (L) (6)

where, L is a labeling set; Ed (L) =
∑

p∈P
Up (lp) is the data

priori energy in the whole pixel set P of the observed data,
which measures the cost of giving a label lp ∈ L to an
given pixel p according to priori information; Es (L) =∑
N⊂P

∑
q∈N

Vpq (lp, lq) is the clique potential energy, which

measures the smoothness of a neighboring pixel system N ,
lq ∈ L; κ is a weighted parameter.

Traditional graph cuts methods are easily trapped in local
minima though extremely fast in convergence, because most
vessels are slim and spiky in a retinal image. To optimize
the energy function (6) and provide a better separation of
vessels from retinal images, centerline is used as shape prior
to guide the extraction process; meanwhile, radial symmetry
is also utilized to constrain the graph cuts algorithm. A
thresholding method is applied to the results S obtained
from radial symmetry transform such that pixels S ≥ th are
picked out, and then thin the thresholded image. We discard
segments with less than 20 pixels to further remove non-
vessel structures.

In our framework, a graph G = 〈V, E〉 is created with
nodes corresponding to pixels p ∈ P of a retinal image,
where V is the set of all nodes and E is the set of all
links connecting neighboring nodes. The neighboring pixel
system N is constructed with eight neighboring pixels. The
terminal nodes are still defined as: source S and sink T .
The unlabeled nodes are defined with another thresholding
value as another two types: candidate foreground Fc and
candidate background Bc. Initially, the pixels on the cen-
terline are considered as the nodes in definite foreground
Fd, and the pixels S ≤ tl are classified as the nodes in
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definite background Bd. That is, L = {fd, bd, fc, bc} and
V = {S, T } ∪ {Fd,Bd} ∪ {Fc,Bc}.

We compute the minimum distance df (p) and db (p)
between a pixel p ∈ {Fc,Bc} to S and T [12]. The cost
of t-links can be computed via,





US (p) = ∞, UT (p) = 0, p ∈ Fd;
US (p) = 0, UT (p) = ∞, p ∈ Bd;

US (p) = ω1S(p)
DF (p) , UT (p) = ω2S(p)

DF (p) , p ∈ Fc;

US (p) = ω2S(p)
DF (p) , UT (p) = ω1S(p)

DB(p) , p ∈ Bc;

(7)

where, DF (p) = df (p)
df (p)+db(p) , DB (p) = db(p)

df (p)+db(p) , and
ω1 > 1 > ω2 > 0. The nodes in Fd and Bd are definitely
labeled as fd and bd respectively, and will not be relabeled
any more. We encourage candidate foreground pixels to be
labeled as foreground seeds while discourage them to be
classified as background pixels, vice versa.

The weight of n-link describes the labeling coherence
of a pixel with its neighbors. We utilize radial symmetry
information again to improve the segmentation. Then, the
cost of n-links can be defined as,

Vpq (lp, lq) =
1

|V (p)− V (q)| · |S (p)− S (q)| (8)

This equation allows an effective simultaneous parameter
estimation and optimization, which is less affected by the
possibly negative role of pathological changes, optic disc,
etc.

The proposed graph cuts method works iteratively, with
each iteration an optimization process for finding a local
minimum of the objective energy function (6). The process
begins with a coarse labeling configuration with totally four
classes and tries to reduce to two classes. Examining each
pixel in Fc and Bc, its local energy is defined as

ep (lp) = up (lp) + κeN (lp) (9)

where,

up (lp) =
{

DF (p) , lp = fc;
DB (p) , lp = bc;

(10)

eN (lp) =
∑

q∈N
vpq (lp, lq), and vpq (lp, lq) is given in the

following table,

lq = bd lq = bc lq = fc lq = fd

lp = bc −1 −ζ ζ 1
lp = fc 1 ζ −ζ −1

0 ≤ ζ ≤ 1, the local energy is divided into three intervals. If
ep achieves a level, a label change is justified. The relabeling
process can be formulated as,

l
′
p =





bc, ηfc,1 ≤ ep (lp = fc) ;
fc, ηfc,2 ≤ ep (lp = fc) < ηfc,1;
fd, ep (lp = fc) < ηfc,2.

or,

l
′
p =





fc, ηbc,1 ≤ ep (lp = bc) ;
bc, ηbc,2 ≤ ep (lp = bc) < ηbc,1;
bd, ep (lp = bc) < ηbc,2.

(11)

where, ηfc,1 and ηfc,2 are two local energy level constants

for the pixels labeled as candidate foreground; ηbc,1 and ηbc,2

are two local energy level constants for the pixels labeled as
candidate background.

After the label growing and changing process is com-
pleted, the graph cuts algorithm is repeatedly applied [13]
till it achieves a maximum number of iterations (niter = 8).
The graph is re-parameterize such that it maintains the flow
properties after updating the weights of edges by the formula
(7) and (8) according to the current labeling configuration.
Label change and re-parametrization are two basic proce-
dures involved in the dynamic graph cuts algorithm. The
label change procedure works in a greedy way to find a
proper label for each pixel in the retinal images obtained by
a local energy criterion from the previous iteration.

III. EXPERIMENTS AND RESULTS
A. Images and Evaluation

We have tested our method on the two publicly available
databases, STARE [14] (20 images) and DRIVE [15] (20
images). Three measures sensitivity (SE), specificity (SP)
and accuracy (AC) are used to evaluate the performance of
our method in the image field of view (FOV). The sensitivity
is defined as the ratio of the number of correctly classified
vessel pixels by the number of the vessel pixels in ground
truth. The specificity is computed by the ratio of the number
of correctly classified non-vessel pixels by the number of the
non-vessel pixels in ground truth. The accuracy is calculated
as the number of correctly classified vessel pixels plus the
number of correctly classified non-vessel pixels divided by
the number of all pixels in FOV.

B. Results

(a) (b) (c)

(d) (e) (f)
Fig. 3. Two examples of vessel extraction for normal images. (a) The final
segmentation by the proposed method (STARE); (b)-(c) Manual segmenta-
tions; (d) The final segmentation by the proposed method (DRIVE); (e)-(f)
Manual segmentations.

Fig.3 shows two normal cases of vessel extraction by
the proposed method. The first results are obtained from
the STARE database shown in Fig.3(a)-(c), and the second
results are obtained from the DRIVE database shown in
Fig.3(d)-(f). The first column images are the final seg-
mentation results. The other two columns are the manual
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segmentation results. Fig.2 and Fig.4 show an example of
vessel extraction for a pathological image.

(a) (b) (c)

(d) (e) (f)
Fig. 4. An example of vessel extraction for a pathological image. (a) The
original gray image; (b) The multiscale filtered result; (c) The segmentation
by a thresholding method; (d) The final segmentation by the proposed
method; (e)-(f) Manual segmentations.

The running time is about 25 seconds. Quantitative com-
parisons are given in Table I and Table II. The two tables
compare the proposed approach with the methods developed
by Staal [15], Mendonça [5], Wang [9], Chen [16], and also
with the manual method (Set B). The two tables are incom-
plete since some values are unavailable in the literatures. The
results shows an improvement of our method in sensitivity
and accuracy.

TABLE I
COMPARISON OF DIFFERENT SEGMENTATION METHODS (STARE)

STARE SE SP AC
Staal [15] 0.6898±0.1558 0.9793±0.0133 0.9516

Mendonça [5] 0.7123 0.9758 0.9479±0.0123
Wang [9] 0.7543±0.0596 0.9785±0.0106 -
Chen [16] 0.7737±0.0735 0.9738±0.0169 0.9490±0.0109

Ours 0.7208±0.0695 0.9759±0.0076 0.9503±0.0089
Set B 0.8951±0.1085 0.9385±0.0260 0.9350±0.0168

TABLE II
COMPARISON OF DIFFERENT SEGMENTATION METHODS (DRIVE)

DRIVE SE SP AC
Staal [15] 0.7194±0.0694 0.9773±0.0087 0.9441±0.0065

Mendonça [5] 0.7315 0.9781 0.9463±0.0065
Wang [9] 0.7810±0.0340 0.9770±0.0071 -
Chen [16] 0.7589±0.0449 0.9778±0.0064 0.9462±0.0057

Ours 0.7732±0.0345 0.9685±0.0064 0.9445±0.0049
Set B 0.7760±0.0594 0.9725±0.0083 0.9473±0.0048

IV. CONCLUSIONS AND FUTURE WORKS
The paper presents a hybrid method based on Hessian-

based multiscale filtering, radial symmetry transform and
iterated graph cuts, so as to perform vessel extraction from
retinal images. The experimental results demonstrate the ef-
ficiency of the proposed method on the two public databases.

It can remove boundary effects around the pathological
changes, the optic disc by using the radial symmetry trans-
form method. In the future, we plan to improve the efficiency
of the iterated graph cuts algorithm. The max-flow/min-cut
algorithm proceeds iteratively but it can be parallelized for
acceleration.
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[15] J. Staal, M. Abràmoff, M. Niemeijer, M. Viergever, and B. van
Ginneken, “Ridge-based vessel segmentation in color images of the
retina,” Medical Imaging, IEEE Transactions on, vol. 23, no. 4, pp.
501–509, 2004.

[16] J. Chen, J. Tian, Z. Tang, J. Xue, Y. Dai, and J. Zheng, “Retinal vessel
enhancement and extraction based on directional field,” Journal of X-
Ray Science and Technology, vol. 16, no. 3, pp. 189–201, 2008.

3953


