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Abstract— In this paper, we explore the application of total
variation regularization method for bioluminescence tomogra-
phy (BLT) with an adaptive regularization parameter choice
approach. Since BLT is a seriously ill-posed problem, therefore,
l2 regularized methods are frequently adopted to recover the bi-
oluminescent sources. However, l2 regularized methods typically
lead to smooth reconstructions. In this paper, we investigated
the use of total variation (TV) regularization to improve the
quality of BLT reconstruction. Furthermore, the regularization
parameter in TV method was chosen adaptively to make
the proposed algorithm more stable. Results on simulation
data provide evidence that the reconstructed source can be
localized accurately compared with l2 method. Meanwhile, the
effectiveness of utility of the parameter choice were illustrated.
Finally, different levels of noisy data were added to validate the
performance of the proposed algorithm.

I. INTRODUCTION

Molecular imaging is a sensitive, specific, quantitative, and
noninvasive imaging, which is aimed at detecting, capturing,
and monitoring molecular/cellular abnormalities in vivo that
cause diseases and associated symptoms [1], [2], [3]. Optical
molecular imaging, a developing modality of molecular
imaging, has become an essential in vivo small animal tool in
recent years. Bioluminescent tomography (BLT), one of most
important technique of optical molecular imaging, provides a
technique to study disease and treatment response in the same
animal, thus offers the potential to accelerate basic research
and drug discovery. The central problem for BLT is to
reconstruct the underlying bioluminescent source distribution
in tissue by recording tomographical data sets and employ-
ing appropriate tomographic image reconstruction schemes.
However, the problem is a challenging problem since the
inverse source problem is ill-posed and underdetermined and
large heterogeneity in tissue optical properties caused by
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complex tissue morphology further challenges the tomog-
raphy reconstruction algorithm [4], [5].

Wang et al. established a mathematical foundation on the
uniqueness for reconstruction of a bioluminescent source
distribution in BLT [4]. Based on the foundation, various
reconstruction algorithms have largely focused on solving
the ill-posed inverse problem. In particular, it is becoming
increasingly common to incorporate a priori information
to reduce the ill-posedness and improve the quantitative
accuracy of BLT reconstruction. Initially, a priori permissible
source region strategy is used to constrain the possible
solution by combining other anatomic imaging modality
such as magnetic resonance imaging (MRI) and computed
tomography (CT) [6], [7], [8], [9], [10]. And variations in the
permissible source region strategies are also reported [11],
[12]. Recently, the importance of spectrally-resolved BLT has
been realized and using measurements of a single wavelength
can lead to multiple solutions of internal bioluminescent
source distribution [13], [14], [15]. The spectrum of the
bioluminescent source as a priori information can improve
the reconstructed results largely.

Utilizing the above mentioned a priori information, the
BLT problem can be finally converted to minimize an ob-
jective function with a quadratic (l2) data fidelity term and
a regularizater. Typically, the regularizater is l2 norm, or
named as Tikhnov term. In general l2 norm tends to penalize
the large elements and create spurious small elements which
over-smooths the reconstructed images. However, the total
variation (TV) regularization can take care of the edge
information of the recovered image, and thus usually obtains
much better results than the l2 regularized methods [16].

As for regularization methods, the choice of the regu-
larization parameter has a profound effect on the recon-
struction quality of BLT because regularization parameter
controls the smoothness of the regularized solution and
balances the influence of the noise. The most straightforward
and most popular-method to choose the parameter is to
examine solutions for a range of regularization parameter
heuristically by eye and to select the one that results in
the most acceptable reconstruction [17]. But the method is
subjective and non-repeatable [17], [18]. In addition, it is
time-consuming and usually requires trial-and-error. In spite
of the importance of regularization parameter, the method
for selecting regularization parameter has not received much
attention in BLT.

In this paper, we investigated a TV regularization method
for BLT and addressed an adaptive regularization parameter
choice strategy. To our knowledge, no results have been
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reported for TV method with automatic regularization param-
eter in BLT, even in optical molecular tomography. Finally,
the feasibility and the effectiveness of the proposed were
evaluated by the simulation experiments.

II. METHODS

A. Forward model for BLT

In bioluminescence imaging, regarding the forward model
of photon migration, radiative transfer equation (RTE) is
regarded as a golden standard. However, considering its dif-
ficult to be solved and computational burden, in practise, the
most popular forward model is its diffusion approximation
(DA). Assuming the bioluminescent source density is stable
when photons are collected, then the steady-state diffusion
equation and Robin boundary condition can be used to model
the propagation of photons in biological tissues [19], [20].
Taking the influence of light wavelength λ on tissue optical
property into account, the following model is given [21]:

−∇ · (D(r, λ)∇Φ(r, λ))) + µa(r, λ)Φ(r, λ) = S(r, λ)
(r ∈ Ω) (1)

Φ(r, λ) + 2A(r;n, n′)D(r, λ)(ν(r, λ) · ∇Φ(r, λ)) = 0
(r ∈ ∂Ω) (2)

where Ω is a bounded smooth domain in the three-
dimensional Euclidean space R3 that contains an object
to be imaged; ∂Ω is the corresponding boundary; Φ(r, λ)
denotes the photon flux density [Watts/mm2]; S(r, λ) is the
bioluminescent source density [Watts/mm3]; µa(r, λ) is the
absorption coefficient [mm−1]; D(r, λ) = 1/(3(µa(r, λ) +
(1−g)µs(r, λ))) is the optical diffusion coefficient, µs(r, λ)
the scattering coefficient [mm−1], and g the anisotropy
parameter; ν(r) the unit outer normal on ∂Ω. Given the
mismatch between the refractive indices n for Ω and n′

for the external medium, A(r;n, n′) can be approximately
represented:

A(r;n, n′) ≈ 1 + R(r)
1−R(r)

(3)

where n′ is close to 1.0 when the mouse is in air; R(r) can
be approximated by R(r) ≈ −1.4399n−2 + 0.7099n−1 +
0.6681+0.0636n [22]. The measured quantity is the outgoing
flux density Q(r, λ) on boundary ∂Ω and it can be expressed:

Q(r, λ) = −D(r)(ν ·Φ(r, λ)) =
Φ(r, λ)

2A(r;n, n′)
(r ∈ ∂Ω) (4)

In BLT experiments, the outgoing flux density can be
detected with a group of bandpass filters, so the continuous
spectral range of bioluminescence light can be divided into
m bands τ1, . . . , τm, with τl = [λl−1, λl], l = 1, 2, . . . , m.
Here λ0 < λ1 < . . . < λm is a partition of the spectrum
range. Calculation of multispectral forward model requires
solution for the monochromatic case for each wavelength τl.
Since finite element method can easily deal with the complex
boundary and biological tissues, finite element method is
applied to compute the forward model for each band τl

[23]. We use the vector x to denote the set of unknown
source density. Finally, a vector function f(x) is obtained

by integrating the monochromatic models over the source
spectrum [10], [11], [12].

B. TV regularization algorithm

The BLT problem is an ill-posed inverse problem, and
the unique solution of BLT has been theoretically proved.
Generally, to reconstruct the bioluminescence source, the
popular way is to formulate BLT as a least-square minimiza-
tion problem with l2 regularization term, i.e.,

min
x≥0

H (x) = ‖y − f(x)‖22 + γ‖x‖2 (5)

where y is the multispectral boundary measured data, y =
[y(τ1), y(τ2), . . . , y(τm)]T . And γ is regularization parame-
ter. However, the l2-based reconstruction algorithm can over-
smooth the reconstructed results. And the recently research
reveals that reconstructed results can benefit from TV-based
reconstruction algorithms. Therefore, we regularize TV norm
instead of l2 norm as follow

min
x≥0

C (x) = ‖y − f(x)‖22 + γ‖x‖TV (6)

where ‖ · ‖TV denotes the TV norm, which can be defined
as

‖x‖TV :=
∫
| 5 x|dr (7)

Based on finite element method, ‖x‖TV can be simply
converted in the following matrix form [24], that is

‖x‖TV = ‖Dx‖1 (8)

C. Adaptive regularization parameter choice strategy

For regularization method, the choice of regularization pa-
rameter is crucial. To estimate the regularization parameter γ
in an efficient manner, an iterative algorithm was investigated
in this paper, which was developed based on the balancing
principle derived by the model function approach [16].

Given an initial guess γ0, generate a sequence of γ1, γ2,. . .
according to

γk+1 = (α− 1)
‖y − f(xk)‖22
‖Dxk‖1 (9)

where α is a positive number and α satisfies α > 1, xk

represents the reconstructed source distribution for the given
γk. When |(γk+1 − γk)/γk+1| < tol or k ≥ Kmax, the
iteration terminates, where tol is a small positive number
and Kmax the maximum iterative number.

III. RESULTS

To validate the proposed algorithm, numerical simulations
are performed on a 2D circle with 10 mm radius. For the
simulated measurements, two bands (600 nm and 630 nm)
were adopted. And the corresponding optical parameters
could be found from the literature [14]. In order to avoid
the “inverse crime”, the measured data was generated on
a finer mesh which was different from the mesh used in
reconstruction. Approximately 1300 variables need to be
recovered using 250 measurements. Three bioluminescent
sources with 2 mm diameter was centered at (-5 mm, 0 mm),
(0 mm, 5 mm) and (5 mm, -5 mm).
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A. Comparisons between TV and l2 regularization
In this section, to illustrate the performances of TV and

l2 regularization, the regularization parameter used in this
section was fixed as a constant, and its value was set to
γ = 1.0 × 10−8. The l2 regularized reconstruction was
shown in Fig. 1(a). For the TV reconstruction, the result was
shown in Fig. 1(b). It is clearly visible that the l2 recon-
struction exhibits artifacts near the bioluminescent sources
which degrades image quality significantly. Meanwhile, the
reconstructed sources were hardly distinguished from the
other sources, which revealed a bad spatial resolution for
l2 reconstruction.

Fig. 1. The comparison between l2 and TV regularization. (a) is the result
with l2 reconstruction; (b) is the result with TV reconstruction. The white
circle denotes the actual source position.

B. Validation of adaptive regularization parameter
For choosing the regularization parameter, α and tol were

set to 1.05 and 6.0×10−2. As for the initial value of γ0, we
set to γ0 = 0.8∗‖AT y‖, where A is the system matrix. The
maximum iterative number Kmax was 10. The iteration was
terminated after 8 iterations, and the estimated regularization
parameter was 1.03 × 10−5. Figure 2 shows the evolution
results at kth iteration. From the figure, we can see that the
regularization parameter has an important influence on the
reconstructed images. The reconstructed result was poor with
the initial value γ0 = 5.90× 10−2, and the sources were not
located accurately. As the number of iterations increased, the
estimated parameter was approach to the real value, so the
reconstructed sources were located accurately and the image
quality could be improved greatly. Although there exists an
artifact in the Fig. 2(e)-(h), the artifact can be removed by
choosing proper threshold since its value is much small than
that of other sources.

C. Influence of data noise
The performance of the proposed algorithm was analyzed

with noisy data, and the noisy measurements (ynoise) were
obtained by:

ynoise = y +
N

100
∗ n ∗ y (10)

where N denotes the digital number of percentage of noise,
and n is the random numbers which varies between −1 and
1.

Fig. 3 shows the images reconstructed with l2 and TV
regularization at 1%, 3%, 5% and 10% noise levels, re-
spectively. As seen from the figure, TV regularization can

Fig. 2. The evolution reconstructed results with automatic regularization
parameter choice strategy. (a)-(h) are the results at kth iteration. The white
circle denotes the actual source position.

TABLE I
THE ESTIMATED REGULARIZATION PARAMETER FOR DIFFERENT NOISE

LEVELS IN FIG. 3.

Noise level The estimated γ The iteration number
1% 1.43× 10−5 9
3% 2.81× 10−5 8
5% 5.06× 10−5 8
10% 1.29× 10−5 8

all exhibit good image quality than the images obtained
using the l2 regularization and the images of l2 method are
over-smoothed. As the results indicate, TV regularization is
stable with noisy measurements. Note that the regularization
parameters were selected automatically, which were listed in
Table I and the required iterative numbers were also compiled
in the table.

IV. CONCLUSION

Bioluminescence tomography suffers from the low resolu-
tion compared with computed tomography due to its diffu-
sion nature. Generally, to recover the bioluminescent source,
regularization is indispensable. However, the reconstructed
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Fig. 3. The results reconstructed with noisy data. The images of the first
column are with 1% noise, the second and third rows with 3% and 5%
noise, and 10% for the last row. The left column are the results with l2
and the right column are TV method. The white circle denotes the actual
source position.

images are over-smoothed using l2 regularization term. Using
TV norm as a regularization term, the reconstructed images
could be improved compared with l2 norm. Additionally, the
choice of regularization parameter usually requires a trial-
and-error process, which limits the application and efficiency
of reconstruction algorithms. In contrast, the regularization
parameter used in the proposed algorithm was estimated
based on an iterative method, which could be used to locate
sources accurately. The proposed algorithm are stable with
noisy measurement data. In the 3D case, the computa-
tional burden for TV method increase significantly, and our
computer was inaccessible. Our future work will focus on
parallelization of the TV regularization.
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