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   Abstract—In  this  tutorial  paper,  we  explore  the  field  of  quan-
tized feedback control, which has gained significant attention due
to  the  growing  prevalence  of  networked  control  systems.  These
systems require the transmission of feedback information, such as
measurements  and  control  signals,  over  digital  networks,  pre-
senting  novel  challenges  in  estimation  and  control  design.  Our
examination  encompasses  various  topics,  including  the  minimal
information  needed  for  effective  feedback  control,  the  design  of
quantizers, strategies for quantized control design and estimation,
achieving consensus control with quantized data, and the pursuit
of high-precision tracking using quantized measurements.
    Index Terms— Consensus  control,  high-precision  control,  net-
worked  control,  quantized  estimation,  quantized  feedback  control,
robust control.
  

I.  Introduction

CONTROL systems play a crucial role in diverse domains
of  modern  society,  with  applications  ranging  from auto-

nomous  vehicles  to  power  grid  management.  Traditionally,
control  theory  assumes  a  continuous  feedback  signal,  requir-
ing  analog  controller  processing  to  generate  an  appropriate
control  signal.  However,  in  networked  control  systems,  the
feedback  signal  undergoes  quantization,  where  it  is  discre-
tized  into  a  limited  number  of  levels  before  being  processed
by a digital controller.

In networked control systems, the feedback channel is sha-
red  with  other  network  functions  and  has  limited  data  trans-
mission  capacity.  This  introduces  several  undesirable  distor-
tions  to  the  feedback  signals  in  the  control  loop,  including
quantization errors, time delays, transmission errors, and pac-
ket  dropouts.  Overlooking  the  impact  of  quantization  effects
when implementing control designs can lead to degraded per-
formance, noise, oscillations, and even system instability.

To  address  these  challenges,  various  quantization  methods
have been developed to mitigate the adverse effects of quanti-
zation and enhance the performance of control systems. These
methods  aim  to  minimize  quantization  errors  and  optimize
control signal accuracy in the presence of limited communica-
tion resources.

Quantized  feedback  control  has  emerged  as  a  vital  tech-

nique  in  the  realm  of  networked  control  systems,  primarily
driven by the wide availability of digital sensors, communica-
tion  links  and  embedded  devices.  The  application  of  quan-
tized feedback control spans diverse fields such as power elec-
tronics,  communication  systems,  robotics,  and  aerospace.  In
power electronics, it enables precise regulation of voltage and
current  in  power  converters.  Communication  systems  benefit
from  quantized  feedback  control  by  facilitating  control  over
signal amplitude and phase. Robotics employs quantized feed-
back  control  to  govern  the  position  and  velocity  of  robotic
arms, while in aerospace, it ensures effective control over the
flight of aircraft and spacecraft.

The objective of this tutorial paper is to explore the field of
quantized  feedback  control,  addressing  the  challenges  posed
by networked control systems. We delve into various aspects
and topics, aiming to provide a comprehensive understanding
of  the  subject  matter.  Specifically,  we  examine  the  minimal
information required for effective feedback control, the design
of  quantizers  for  efficient  signal  quantization,  strategies  for
quantized control design and estimation, achieving consensus
control using quantized data, and the pursuit of high-precision
tracking using quantized measurements.

By  delving  into  these  topics,  we  aim  to  shed  light  on  the
current state of research and highlight key advancements and
methodologies  that  have  been  developed  to  tackle  the  chal-
lenges  posed  by  quantization  in  networked  control  systems.
Ultimately, this survey paper serves as a valuable resource for
researchers, engineers, and practitioners interested in the field
of quantized feedback control, providing insights, methodolo-
gies,  and avenues for  further  exploration and development in
this rapidly evolving domain.

The utilization of quantized information in control and esti-
mation  has  roots  in  the  early  stages  of  control  research.  The
investigation  of  the  quantized  linear  quadratic  Gaussian
(LQG)  control  problem,  wherein  the  feedback  information
must  be  quantized  by  a  fixed-rate  quantizer,  commenced  in
the early 1960s. Noteworthy contributions to this problem can
be found in the works of [1]−[5]. The early works by Kalman
[6] and Widrow [7] have significantly contributed to the field
of quantized feedback control. They investigated the effects of
quantization  errors  in  sampled-data  feedback  systems,  shed-
ding  light  on  the  challenges  and  limitations  imposed  by  the
quantization  process.  Their  research  provided  valuable
insights into the trade-offs between quantization levels, signal
resolution,  and  control  system  performance,  enabling  the
development of techniques to mitigate the detrimental effects
of  quantization  and  enhance  the  performance  and  robustness
of control systems operating under quantization constraints.

The advent of networked control systems, particularly in the
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realm of industrial control and automation, has reignited inter-
est  in  quantized  feedback  control.  Numerous  studies  and
advancements  have  been  made  in  this  area,  as  evidenced  by
the works of [8]−[27]. More specifically, [8] started the study
of  quantized  state  feedback.  The  works  of  [9],  [10]  initiated
the  research  on  finite  bandwidth  constraint  for  feedback.
These  issues  were  followed  up  in  [11]−[13],  [17].  Control
under noisy feedback channel  was studied in [18].  The prob-
lem of minimal feedback information rate for stabilization was
solved by [14], [15], which extended to the work of [23]. The
work  of  [16]  introduced  the  use  of  logarithmic  quantizers  in
static quantized feedback control. This led to the sector bound
approach  to  quantized  feedback  control  [19],  [20],  [22].
Markov  jump  systems  were  studied  in  [21].  The  quantized
LQG  problem  also  received  significant  attention,  as  demon-
strated by the research conducted by [24]−[27].

Similar  to  the  significance  of  state  estimation  in  classical
control  theory,  estimation  based  on  quantized  information
plays a pivotal role in quantized feedback control.

Just like how state estimation holds importance in classical
control theory, estimation using quantized data assumes a cen-
tral  role  in  the  realm  of  quantized  feedback  control.  This
aspect  has been duly recognized in the aforementioned refer-
ences,  as  well  as  in  the  works  of  quantized  state  estimation
(e.g.,  [9],  [28]).  Additionally,  the  applications  of  quantized
estimation  extend  beyond  feedback  control.  They  encompass
sensor  network-based estimation and tracking,  as  explored in
the works of [29], [30], as well as consensus networks exam-
ined  by  [31],  [32].  Notably,  there  are  instances  where  quan-
tized estimation contributes to the broader context of network-
based  estimation,  addressing  challenges  such  as  transmission
delays, packet dropouts, and related issues, as discussed in the
studies by [29], [30], [33].

The  quantized  average  consensus  problem  involves  a  net-
work of interconnected agents aiming to collaboratively com-
pute  the  average  of  their  initial  values  or  states,  despite  lim-
ited  communication  and  quantization  constraints  [34],  [35].
This  challenge  necessitates  the  design  of  quantization  strate-
gies  that  allow  agents  to  exchange  information  in  a  dis-
tributed  manner  while  mitigating  the  effects  of  quantization
errors, ultimately achieving consensus on the average value.

The  problem  of  quantized  regulation  control  (i.e.,  regula-
tion control  using quantized measurement)  [36]−[38]  aims to
control a system’s behavior using quantized measurements of
the  system  output.  This  challenge  entails  developing  control
strategies  that  can  effectively  utilize  coarse,  discretized  mea-
surements  to  steer  the  system towards  a  desired  trajectory  or
reference, despite the inherent limitations introduced by quan-
tization.

In  addition  to  the  works  on  quantized  control  above,  an
explosive number of recent developments have been reported
in the literature on quantized feedback control.  Here we only
provide  some  samples.  For  networked  control  systems,  [39]
gave  distributed  observer  designs;  [40]  investigated  dis-
tributed  quantized  feedback  designs  for  consensus  tracking;
[41]  carried  out  works  on  formation  tracking;  [42]  did  rese-
arch on distributed containment control. Adaptive schemes for

quantized feedback control were offered in [43]–[45]. Unreli-
able  feedback  channels  were  studied  in  [46].  Markov  jump
systems  were  treated  in  [47],  [48].  Switched  control  behav-
iors  for  quantized  feedback  systems  were  analyzed  in  [49].
Observer-based  feedback  with  quantized  inputs  and  outputs
was considered in [50]. The work of [51] studied the use of of
spherical  polar  coordinate  quantizers  in  feedback  control.
Event-triggered  quantized  feedback  control  was  discussed  in
[52]−[54].  Impact  of  network  attacks  to  average  consensus
was  dealt  with  in  [55].  Many applications  of  quantized  feed-
back  control  were  reported,  including  mobile  vehicles  [57],
unmanned  marine  vehicles  [56],  induction  machine  drives
[58], and quantized motion control for hysteresis systems [59].

In  the  rest  of  this  paper,  we  introduce  an  array  of  special-
ized  tools  and  findings  that  address  diverse  challenges  in
quantized feedback control  as  discussed above.  The topics to
be discussed include the utilization of minimal feedback infor-
mation  for  stabilization  (Section  II),  the  design  of  feedback
controls employing both static and dynamic quantization (Sec-
tions III and IV), quantized state estimation (Section V), quan-
tized  linear  quadratic  Gaussian  (LQG)  control  (Section  VI),
quantized average consensus control (Section VII), and quan-
tized regulation for periodic signals (Section VIII).

In  addition  to  its  tutorial  purpose,  the  paper’s  content  also
provides  a  glimpse  into  the  author’s  individual  exploration
and  perspective  within  this  realm  of  research,  which  is  why
the  cited  references  should  not  be  considered  exhaustive  in
any way.  

II.  Minimal Feedback Information for Stabilization

Nair  and  Evans  [14],  [15]  have  made  significant  contribu-
tions  to  the  field  of  stabilization  with  data-rate-limited  feed-
back, focusing on determining the tightest  achievable bounds
for  stabilizing  systems  under  such  constraints.  Their  work
addresses the challenge of limited communication capacity in
feedback systems and aims to establish fundamental limits on
the  achievable  performance.  By  applying  tools  from  control
theory  and  information  theory,  Nair  and  Evans  have  derived
rigorous  theoretical  bounds  that  characterize  the  trade-off
between  the  available  data  rate  for  feedback  and  the  achiev-
able  stability  and  performance  of  the  system.  Their  research
provides valuable insights into the fundamental limitations of
data-rate-limited feedback and offers guidelines for designing
controllers  that  optimize  the  trade-off  between  performance
and communication constraints.

Consider the following linear time-invariant system:
 {

x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)
(1)

x(k) ∈ Rn u(k) ∈ Rm

y(k) ∈ Rp A ∈ Rn×n,B ∈ Rn×m

C ∈ Rp×n (A,B,C)
u(k) y(k)

G(z)

where  is  the  state,  is  the  control  input,
 is  the  measured  output,  and
 are  given.  We  assume  that  is  a  minimal

realization.  The  transfer  function  from  to  will  be
denoted by .

The quantized feedback control problem is depicted in Fig. 1.
The  feedback  channel  involves  two  components:  a quantizer
and  a controller.  Between  the  quantizer  and  controller  is  a
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Zµ = {1,2, . . . ,µ} µ = 2R
channel with data rate of R, i.e., the quantizer’s output takes a
value  from  the  set  with .  In  the  most
general setting, the quantizer takes the form of an encoder
 

v(k) = γk(ỹ(k), ṽ(k−1)) (2)
and the controller takes the form below:
 

u(k) = δk(ṽ(k−1)) (3)
ỹ(k) = {y(i)}ki=0 ṽ(k) γk(·) :

Rp×(k+1)×Zk
µ→ Zµ δk(·) : Zk

µ→ Rm
where ,  is  similarly  defined,  and 

 and  are  (generally  time-
varying) encoder-controller functions to be designed.

x(0)
E[∥x(0)∥r+ϵ] <∞

r > 0 ϵ > 0
ϱ > 0

Nair  and  Evans  [14],  [15]  studies  the  so-called ϱ-exponen-
tial  stabilization  problem where  the  initial  state  is
assumed to a random variable satisfying  for
some  integer  and  any ,  and  the  objective  is  to
design the encoder-controller  pair  for a given  such that
the closed-loop system satisfies
 

ϱ−krE[∥xk∥r]→ 0, as k→∞. (4)
Theorem  1  [14]: The  system  (1)  admits  a  encoder-con-

troller (2) and (3) that ϱ-exponentially stabilizes the system in
the rth absolute moment sense (4) if and only if
 

R >
∑
|η j |≥ϱ

log2
|η j|
ϱ

(5)

η jwhere  are the eigenvalues of A, counting multiplicities.

n = 1 y(k) = x(k)
u(k) ϱ = 1

η1 |η1| ≥ 1

R > log2 |η1|
η1

R < log2 |η1|

η1

Proof: The proof of  the result  is  quite  technically involved
[15].  The  basic  idea  behind  the  proof  is  to  recursively  quan-
tize the initial state. We first consider the case the state dimen-
sion . In this case, A is a scalar, and so are  and

. Without loss of generality, we assume that  and that
the  only  eigenvalue  of  the  system  is  such  that .  At
each time instant, the scalar state is allocated a data rate of R,
which  is  used  to  quantize  and  transmit  its  state.  At  the  other
end  of  the  channel,  the  quantized  state  is  used  in  lieu  of  the
true state to design a controller with the aim to drive the state
to  zero  in  one  time  step.  Due  to  the  quantization  error,  the
state will be driven only to a small neighbourhood. At the next
time  instant,  this  state  is  magnified  by  the  unstable A.  This
process continues for every time instant. It can be argued that
when , the shrinkage of the state by the controller
will dominate the magnification of the state by , thus expo-
nential  stabilization  is  achieved.  But  when ,  the
shrinkage of the state by the controller becomes insufficient to
suppress the growth of the state by , causing instability.

n > 1For the general case of , the idea above can be general-
ized  by  decomposing  the  state  into  scalar  sub-systems,  each

ηi

ηi |ηi| ≥ 1
log2 |ηi|

corresponding to  an eigenvalue  of A.  By means of  a  time-
sharing protocol, each scalar state component with eigenvalue

 satisfying  is allocated an effective data rate slightly
greater than , which is used to quantize and transmit its
state  component.  At  the  other  end  of  the  channel,  the  con-
troller uses the constructed state estimate to drive the state to
zero. Again, the presence of quantization error means that the
state can never be driven to zero in general. But as long as the
data  rate R satisfies  (5),  the  controller  can  be  constructed  to
dominate the quantization error, leading to exponential stabil-
ity.  Conversely,  when  (5)  fails  to  hold,  the  state  growth  will
dominate the controller, causing instability.

|ηi| ≈ 1.99
ρ = 1

Remark 1: The work of Nair and Evans [14], [15] holds sig-
nificant  theoretical  values  because  it  offers  the  fundamental
limit on the data rate required for feedback stabilization. How-
ever,  designing  quantized  feedback  controllers  according  to
this data rate is not practical for several reasons. Firstly, most
practical systems do not have many very unstable eigenvalues,
meaning that the required minimum data rate R by (5) is typi-
cally  very  small.  For  example,  each  eigenvalue  of 
(which is very unstable for a discrete-time system!) with 
requires  only  1  bit  of  quantization.  This  limit  would  hardly
pose  any  implementation  difficulty  in  practice,  making  the
consideration of minimal data rate not meaningful in practice.
Secondly,  the  associated  encoder-controller  typically  causes
huge overshoot, making the resulting closed-loop behavior not
practical.  Finally,  control  performance  can  not  be  easily
accommodated. Typically, much higher data rate is required to
achieve  satisfactory  control  performances  in  practice.  Thus,
more practical quantized feedback control designs are needed.

■  

III.  Static Quantized Feedback Control

Elia and Mitter [16] have made notable contributions to the
field  of  stabilizing  linear  systems  with  limited  information.
Their work focuses on the use of a static quantizer (rather than
a dynamic quantizer as in the case of [14], [15]) in quantized
feedback  control  and  recognized  the  significance  of  logarith-
mic quantizers (as depicted in Fig. 2). Their work has advan-
ced our understanding of how to achieve stability and control
in practical scenarios where information constraints are preva-
lent, and it has paved the way for further research and devel-
opments in this important area.

 

u(k) y(k)

v(k)

System

Q(·)

ChannelController

 
Fig. 1.     Quantized feedback control.
 

 

y

v = (1 − δ)yv = (1 + δ)yv = Q(y) v = y

δ =
1 − ρ
1 + ρ—

 
Fig. 2.     Logarithmic quantizer.
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Returning to the system (1), the problem of quantized feed-
back control with static quantization is to design a static quan-
tizer
 

v(k) = Q(y(k)) (6)
and a feedback controller of the form
 {

x̂(k+1) = Ac x̂(k)+Bcv(k), x̂(0) = 0

u(k) = Cc x̂(k)+Dcv(k)
(7)

x̂(k) ∈ Rn

Q(·)

with , such that the closed-loop system is stable and
that  the  so-called  quantization  density  [16]  is  coarsest  (i.e.,
smallest).  The  quantization  density  of  is  defined  as  fol-
lows:
 

ηQ = limsup
ϵ→0

#g[ϵ]
− lnϵ

(8)

#g[ϵ]
[ϵ, 1/ϵ]

where  denotes  the number of  quantization levels  in  the
interval .

The optimal form of a static quantizer turns out to be a loga-
rithmic quantizer, which is described by
 

V = {µi = ρ
iµ0 : i = 0,±1,±2, . . .}∪ {0}, µ0 > 0 (9)

ρ ∈ (0, 1)where  and
 

Q(y) =


ρiµ0, if

1
1+δ
ρiµ0 < y ≤ 1

1−δρ
iµ0

0, if y = 0
−Q(−y), if y < 0

(10)

where
 

δ =
1−ρ
1+ρ

. (11)

y > 0

ηQ = 2/ ln(1/ρ)
ηQ

A pictorial representation is given in Fig. 2 (shown for 
only).  The  quantization  density  of  a  logarithmic  quantizer  is

, meaning that the smaller the ρ, the smaller the
. Thus, ρ can be interpreted as the quantization density.
The  description  above  is  for  an  infinite-level  logarithmic

quantizer.  In  practice,  it  is  truncated  when  the  input  is  too
large (by a saturator) or too small (by a dead zone) in magni-
tude.

Logarithmic quantization outperforms linear quantization in
several cases. Firstly, in quantized feedback control, where the
goal is to drive the output or state to the origin while quantiz-
ing the control or measurement signal [16], [19]. This applies
to  stabilization,  tracking,  and  disturbance  attenuation.  Loga-
rithmic  quantization  reduces  the  multiplicative  quantization
error  as  the  input  signal  decreases,  although  it  increases  for
larger  input  signals.  Secondly,  logarithmic  quantization  is
advantageous in quantized state estimation, where the system’s
state  needs to be estimated using quantized information [28].
While  direct  quantization  of  the  measured  signal  may not  be
suitable due to persistently large measurements, quantizing the
estimation  error  instead  benefits  from  logarithmic  quantiza-
tion.  It  provides  a  small  quantization  error  for  small  estima-
tion errors and allows for a larger quantization error when the
estimation  error  is  large.  Lastly,  logarithmic  quantization  is
beneficial  when  the  signal  to  be  quantized  already  contains
multiplicative noise. Many sensors, such as range sensors used
for  position  measurement,  specify  accuracies  using  relative

errors. Logarithmic quantization, which also introduces a mul-
tiplicative  error,  simply  magnifies  the  existing  noise  without
altering its structure.

H∞

The  primary  technical  finding  regarding  quantized  feed-
back  stabilization  using  static  quantization  is  presented  in
[19].  The  result  builds  a  fundamental  bridge  between  quan-
tized feedback control and robust control, paving way for a lot
of  further  research  on  networked  control.  According  to  this
study,  logarithmic  quantization  provides  the  optimal  quan-
tizer structure for achieving quadratic stabilization of (1). Fur-
thermore,  under  quadratic  stabilization,  quantized  feedback
control  is  equivalent  to  robust  control  with  uncertainty
bounded by a sector. The coarsest quantization density, corre-
sponding  to  the  smallest ρ,  can  be  determined  through  stan-
dard  optimization, as explained in the following.

Theorem 2: The following results hold for the system (1).
1)  If  the  system  (1)  is  quadratically  stabilizable1 via  static

quantized feedback control (6) and (7), then the quantizer with
the coarsest quantization density can take a logarithmic form.

ρ > 02) For a given quantization density ,  the system (1) is
quadratically  stabilizable  via  a  static  quantized  controller  (6)
and (7) if and only if the following auxiliary system:
 {

x(k+1) = Ax(k)+Bu(k)

v(k) = (1+∆)Cx(k), |∆| ≤ δ
(12)

is quadratically stabilizable via
 {

xc(k+1) = Acxc(k)+Bcv(k)

u(k) =Ccxc(k)+Dcv(k)
(13)

where δ, which is the sector bound produced by the quantiza-
tion error, and ρ are related by (10).

δsup
ρinf

3)  The  largest  sector  bound  for  quadratic  stabilization
(corresponding  to  the  coarsest  quantization  density )  is
given by
 

δsup = ( inf
H(z)
∥Ḡc(z)∥∞)−1 (14)

∥ · ∥∞ H∞where  denotes the  norm, and
 Ḡc(z) = (1−H(z)G(z))−1H(z)G(z)

H(z) = Dc+Cc(zI−Ac)−1Bc.

Proof: Define the quantization error function by
 

e = v− y = Q(y)− y = ∆(y)y.

|∆(y)| ≤ δ
Then,  any  quantizer  with  quantization  density ρ has  the

property that  with δ relating to ρ in (11). The closed-
loop system of (1) with (6) and (7) can be expressed as
 

x̄(k+1) =A(∆(y(k))x̄(k) (15)
x̄ = col{x, xc} A(∆) = Ā+ B̄K̄(C̄+ Î∆Ĉ)where ,  and

 

Ā =
 A 0

0 0

 , B̄ =
 0 B

I 0

 , C̄ =
 0 I

C 0


Î =

 0
I

 , Ĉ = [C 0], K̄ =
 Ac Bc

Cc Dc

 .
  
1 A system is said to be quadratically stable if its stability can be asserted by
using a quadratic Lyapunov function.
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P̄ = P̄′ > 0

The  first  step  is  to  show  the  equivalence  of  any  quantizer
with density ρ and a logarithmic quantizer with the same den-
sity in the context of quadratic stabilization. More specifically,
the  quadratic  stability  of  the  system  (15)  requires  the  exis-
tence of some  such that
 

x̄′[A′(∆(C̄ x̄))P̄A(∆(C̄ x̄))− P̄]x̄ < 0
x̄ , 0for all . This can be shown to be equivalent to

 

A′(∆)P̄A(∆)− P̄ < 0, ∀|∆| ≤ δ. (16)
The latter is the same as requiring the system (12) and (13)

to be quadratically stable.

H∞

G(z) = (zI−A)−1B
H(z) = Dc+Cc(zI−Ac)−1Bc

Ḡc(z) = (1−
H(z)G(z))−1H(z)G(z)

Ḡc(z)
H∞

δ∥Ḡc(z)∥∞ < 1

The next step is to convert the quadratic stabilization prob-
lem of the system (12) to an  control problem by borrow-
ing the robust control theory. More specifically, we define the
“nominal” open-loop transfer function , the
controller  transfer  function ,  and
the “nominal” closed-loop  transfer  function 

.  Then,  the  closed-loop  system  (12)  and
(13)  is  equivalent  to  the  closed-loop  system  with  the  open-
loop  block  equal  to  and  feedback  block  equal  to  ∆.
Using the relationship between quadratic stabilization and 
control  (see  [19]),  it  can  be  shown  that  the  closed-loop  sys-
tem  (12)  and (13)  is  quadratically  stable  if  and  only  if

.

∥Ḡc(z)∥∞
Finally,  the  largest δ can  be  obtained  by  minimizing  the

term . ■

G(z)
y(k) =

x(k) G(z)

Remark 2: Although the discussions above are for a single-
input-single-output  system,  similar  results  hold  for  multi-
input-multi-output  systems,  as  shown in  [19].  Also  shown in
[19]  is  that  if  the  observation  matrix C can  be  chosen,  the
largest  sector  bound  (or  coarsest  quantization  density)  for
quadratic  stabilization  is  obtained  when  the  nominal  open-
loop function  is  of  relative  degree  one  without  unstable
zeros.  In  particular,  if  state  feedback  is  available  (i.e., 

), one can always construct a matrix C first to make 
satisfy the above condition.  

IV.  Dynamic Quantized Feedback Control

A dynamic quantizer differs  from a static  quantizer  by uti-
lizing memory to consider past input-output values in order to
determine the quantization of  current  input.  This  added com-
plexity grants  dynamic quantizers greater  power and flexibil-
ity. The key concept behind dynamic quantization is the use of
dynamic scaling in conjunction with a static quantizer. By pre-
scaling the input signal to a range more suitable for quantiza-
tion  and  dynamically  adjusting  the  scaling  parameter  online,
researchers have explored various strategies. Notable works in
this area include [8], [13], [17], [18].

In [8], it is emphasized that, with the use of a quantizer hav-
ing  different  levels  of  sensitivity,  a  feedback  strategy  can  be
devised to drive the closed-loop state arbitrarily close to zero
for  an  extended  duration,  assuming  the  system  is  not  exces-
sively  unstable.  Building  upon  this  idea  of  a  quantizer  with
sensitivity,  [13]  extends  the  concept  by  demonstrating  the
existence of a dynamic adjustment in quantizer sensitivity and
a  corresponding  quantized  state  feedback  that  achieves
asymptotic  stabilization  of  the  system.  For  output  feedback
scenarios,  local  or  semi-global  stabilization  results  are  obtai-

ned.
The work of  [14],  [15]  introduced earlier  shows that  by an

appropriate  use  of  dynamic  scaling,  the  minimum feedback
information  rate)  (or  capacity)  can  be  achieved  for  dynamic
quantized  feedback  control.  But  as  we  cautioned  before,  this
line  of  work  may  be  impractical  due  to  lack  of  performance
guarantee and poor transient response. It is also pointed out in
[60] that capacity results are in general not valid for practical
communications channels which are not noise free.

2N
Q(·)

In order to mitigate these concerns, it is necessary to design
dynamic  scaling  with  a  focus  on  practical  control  objectives
rather than solely minimizing channel capacity. An investiga-
tion  into  a  straightforward  dynamic  scaling  approach  is  pre-
sented in [20]. This method combines a -level logarithmic
quantizer  with the following scaling technique:
 

vk = g−1
k Q(gkyk) (17)

gkwhere the scaling gain  is adjusted by
 

gk+1 =


gkγ1, if |Q(gkyk)| = µ0

gk/γ2, if |Q(gkyk)| = ρN−1µ0

gk, otherwise
(18)

g0 > 0 γ1,γ2 ∈ (0, 1)with  some  initial ,  where  are  design
parameters.  The  basic  idea  is  to  reduce  the  magnitude  of  the
subsequent  input  if  the  current  input  is  excessively  large,  or
conversely, amplify it if the current input is too small in mag-
nitude.

In [20], it is shown that when employing this dynamic scal-
ing method, we can achieve quadratic stabilization using only
a  finite  number  of  logarithmic  quantization  levels,  provided
that the system can be quadratically stabilized via static quan-
tized feedback control.

η ∈ (0, 1)

As explained in the previous section, quadratic stabilization
of  the  system  (1)  via  static  quantized  feedback  control  with
quantization  density ρ implies  (16).  Since  this  is  a  strict
inequality, we can choose some  such that
 

A′(∆)P̄A(∆) ≤ (1−η)P̄, ∀|∆| ≤ δ.
Defining

 

Â =
 A BCc

0 Ac

 , B̂ =
 BDc

Bc


the scaling parameters for (18) can be chosen according to
 √

1−η < γ2 < 1, γ2
1Ā′P̄Ā < (1−η)P̄

γ1
γ2 η1

which are always possible by taking  sufficiently small and
 sufficiently close to 1. Then, define  by

 

1−η1 = γ
−2
2 (1+τ)(1−η)

τ η1 ∈ (0, 1)with  sufficiently  small  to  ensure .  We  have  the
following main result from [20].

2N
N > N0

Theorem 3: Suppose the system (1) can be quadratically sta-
bilized  via  a  static  quantized  feedback  controller  (6)  and (7).
Let  the  scaled -level  logarithmic  quantizer  (9),  (10)  and
(17) be applied with , where
 

N0 = 1+
ln(η−1

1 γ
−2
2 (1+τ−1)B̂′P̄B̂ĈP̄−1Ĉ′)

2 ln(ρ−1)
.
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x̄(k)Then, the state  converges to zero asymptotically.
zk = gk

V(zk) = z′kP̄zk

η,γ1,γ2, τ η1 N0
2N

gk→∞ k→∞
x̄k→ 0 k→∞

Proof: The first step is to show that the scaled state 
is  bounded by showing that  the quadratic  Lyapunov function
for  the  scaled  state, ,  is  asymptotically  attracted
to  a  bounded  set.  This  is  ensured  by  the  careful  selection  of
the parameters  and .  The choice of  is  then to
guarantee  that  the -level  logarithmic  quantizer  will  no
longer  be  saturated  when  the  scaled  state  gets  near  this
bounded set. The next step is to show that the subsequent scal-
ing  gain  will  keep  increasing,  i.e.,  as .  There-
fore, the state  as . ■

1.2± j0.5

Empirical findings indicate that the number of quantization
bits  per  time  sample  required  for  most  practical  control  sys-
tems is relatively moderate [20]. To illustrate this observation,
we examine the system (1) below with two unstable open-loop
poles at :
 

A =


2.7 −2.41 0.507
1 0 0
0 1 0

 , B =


1
0
0


C = [1 −0.5 0.04].

Fig. 3 shows  the  state  response  of  the  closed-loop  system
with only a 4-bit logarithmic quantizer.  

V.  Quantized State Estimation

A dual and equally important quantized feedback problem is
quantized state estimation, where the state estimation needs to
be made using quantized information due to digital  transmis-
sions.

Consider the following linear system:
  x(k+1) = Ax(k)+Bw(k), x(0) = x0

y(k) =Cx(k)+ ν(k)
(19)

w(k) ∈ Rm ν(k) ∈ R
x0 ∈ Rn

x̄0 Σ0

Σw Σν

where  is the process noise,  is the measure-
ment  noise.  It  is  assumed  that  is  a  random  variable
with mean  and covariance , and w and ν are uncorrelated
zero-mean  white  noises  with  covariances  and ,  respec-

x0tively, and they are uncorrelated with .
The quantized estimator is shown in Fig. 4. Instead of quan-

tizing the measured signal directly, we choose to quantize the
prediction error  of  the estimator.  The estimator takes the fol-
lowing form [28]:
 {

x̂(k+1) = Ax̂(k)+LQ(y(k)− ŷ(k))

ŷ(k) = Cx̂(k)
(20)

x̂(0) = x̄0 x̂(k) ∈Rn x(k) ŷ(k) ∈ R
y(k) x̂(k) Q(·)

with , where  is the estimate of , 
is the estimate of  based on ,  is the quantizer, and
L is the estimator gain.
 

w(k)
ν(k)

y(k)
System +

Quantizer Channel Estimator
x̂(k)

 
Fig. 4.     Quantized state estimation.
 

x̂(k)

Considering  the  dynamic  nature  of  the  estimator,  it  is  evi-
dent  that  the  quantized  state  estimator  falls  into  the  category
of  a  dynamic  quantizer.  It  is  important  to  note  that  the  state
estimation  is  solely  constructed  using  the  quantized  predic-
tion  error  in  the  given  context.  Consequently,  under  the
assumption  of  an  ideal  channel,  both  the  transmitter  and
receiver  sides  can  generate  an  identical  estimate  by  utilizing
the  quantized  prediction  error.  Specifically,  the  construction
of  on the transmission side does not necessitate the trans-
mission of the estimated state from the receiver side.

Defining the prediction error
 

ε(k) = y(k)− ŷ(k) (21)
Q(·)we  consider  a  static  logarithmic  quantizer  in  (10)  for

quantizing the prediction error. Defining the estimation error
 

e(k) = x(k)− x̂(k)
the state estimation error dynamics is given by
 {

e(k+1) = Ae(k)+Bw(k)−LQ(ε(k))

ε(k) = Ce(k)+ ν(k).
(22)

Denoting the state estimation error covariance by
 

E(k) = E{e(k)e′(k)}

E = limk→∞ E(k)

the quantized state estimation problem is to choose the quanti-
zation  density ρ and  the  filter  gain L such  that  the  trace  of

 is minimized.
Following our earlier  analysis  of  the logarithmic quantizer,

it is clear that
 

Q(ε)−ε = ∆(ε)ε
|∆(ε)| ≤ δwith .  Using  the  above,  we  can  define  an  auxiliary

uncertain system
 

z(k+1) = Az(k)+Bw(k)−L(Cz(k)+ ν(k))

+L∆k(Cz(k)+ ν(k)), |∆k | ≤ δ. (23)
∆k ∆(εk)

|∆k | ≤ δ
The key difference between the term  and  is that the

former  is  arbitrary  subject  to ,  whereas  the  latter  is
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Fig. 3.     Closed-loop response with a 4-bit quantizer.
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specifically generated by the quantizer. The main result on the
quantized state estimator (20) is given below [28].

E(k)

ρinf

Theorem 4: The estimation error dynamics (22) is quadrati-
cally  stable  if  and  only  if  the  auxiliary  dynamics  (23)  is
quadratically stable. Moreover, if the auxiliary system (12) is
quadratically  stable,  then  the  covariance  matrix  is
bounded  and  asymptotically  invariant.  Finally,  the  minimum
quantization density  for  the estimation error  dynamics to
be quadratically stable is given by
 

ρinf =
1−δsup

1+δsup

with
 

δsup =
1

minL ∥C(zI−A+LC)−1L∥∞
.

E(k)

Proof: The  equivalence  between  the  quadratic  stability  of
(22) and that of (23) can be established similarly to Part 2 of
Theorem  2.  The  boundedness  and  asymptotic  invariance  of

 follow  from  the  quadratic  stability  of  (23).  The  mini-
mum quantization density  result  is  the  dual  version of  Part  3
of Theorem 2. The details can be found in [28]. ■

To demonstrate quantized state estimation, we consider the
system model (19) [28] with
 

A =



2.4744 −2.811 1.7038 −.5444 .0723

1 0 0 0 0

0 1 0 0 0

0 01 0 0

0 0 0 1 0


B′ = [1 0 0 0 0]

C = [0.245 0.236 0.384 0.146 0.035]. (24)
Σw = 1 Σν = 1/16 δ ∈ 0, 0.3] and . For each , we compare two

estimator gains L,  one taken as the Kalman gain designed by
ignoring the quantization error and one being the robust  gain
computed  by  treating  the  quantization  error  as  a  multiplica-
tive noise.

(E)

(E)

In Fig. 5, the simulated values of Tr  are presented. Two
key  observations  can  be  made:  1)  As  the  quantization
becomes  coarser  (smaller ρ or  larger δ),  the  estimation  error
increases. 2) The robust gain demonstrates notably better per-
formance  compared  to  the  Kalman  gain,  particularly  in  sce-
narios where the quantization becomes coarse (also shown in
the figure are the estimates of Tr  which can be ignored for
this paper).

µ0

4 ∼ 5

Nb

When  using  a  finite-level  quantizer,  truncation  introduces
additional  estimation error.  In  this  scenario,  the parameter 
of  the  quantizer  also  requires  careful  design,  in  addition  to ρ
[28]. For this example, with approximately  bits of quan-
tization, the quantized estimator exhibits only a slightly larger
estimation error variance compared to the case without quanti-
zation. Fig. 6 illustrates  the  relationship  between  the  estima-
tion error and the number of quantization bits .  

VI.  Quantized LQG ControL

Having  addressed  the  quantized  estimation  problem,  our
focus now shifts to the quantized LQG control problem, which

extends from the conventional LQG problem. Here, the feed-
back  channel  is  a  digital  link  with  a  predetermined  fixed  bit
rate  and  the  feedback  signal  must  undergo  quantization,  as
depicted in Fig. 7 [26].

 
Plant

DEC ENCChannel

w(k), ν(k)

u(k)

x(k)

y(k)

a(k)

 
Fig. 7.     Quantized LQG control system.
 

The system we consider is given by
 {

x(k+1) = Ax(k)+Bu(k)+w(k)

y(k) = Cx(k)+ ν(k)
(25)

x(k) ∈ Rn u(k) ∈ Rm

y(k) ∈ Rp w(k) ∈ Rn ν(k) ∈ Rp

Wk > 0 Vk > 0

where  is  the  state,  is  the  control  input,
 is  the measured output,  and  are

independent  Gaussian  random  distributions  with  zero  mean
and covariances  and ,  respectively,  and the ini-
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Fig. 5.     State estimation error vs. sector bound size.
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Fig. 6.     State estimation error vs. number of quantization bits.
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x(0)
Σ0

tial state  is also assumed to be an independent zero-mean
Gaussian distribution with covariance .

ytThe encoder (ENC) is a dynamic quantizer of , i.e.,
 

a(k) = αk(ỹ(k)|ã(k−1)) (26)
αk(·) A

2R ỹ(k) = {y(i)}ki=0

where  takes values in a finite alphabet set  with size of
, and the notation  is as before. Similarly, the

decoder  (DEC)  is  a  dynamic  controller  operating  on  the
received quantized information
 

u(k) = βk(a(k)|ã(k−1)). (27)
The following linear quadratic cost is to be treated:

 

J = E
x(T )′QT x(T )+

T−1∑
k=0

x(k)′Qk x(k)+u(k)′S ku(k)

 (28)

E[·] Qk = Q′k ≥ 0 S k = S ′k > 0where  is the expectation,  and  for
all k.

The problem of quantized LQG control is  to jointly design
the  quantizer  (encoder)  and  controller  (decoder)  to  minimize
the cost J, under the R bit rate constraint.

u(k)
uo(k)

E[(u(k)−uo(k))′Ωk(u(k)−uo(k))] Ωk

The investigation of the quantized LQG problem dates back
to  the  1960s,  driven  by  the  demand  for  digital  control.  Over
the  years,  numerous  efforts  have  been  made  to  extend  the
well-established separation principle of the conventional LQG
problem [1]−[5], [12], [24], [25]. In 1967, Larson [4] initially
proposed that the separation principle could be generalized to
quantized  LQG  control,  but  subsequent  research  proved  this
claim to be incorrect. Fischer [5] revisited the quantized LQG
control  problem in 1982 and introduced time-varying quanti-
zation.  He  asserted  that  the  separation  of  control,  estimation,
and quantization was achievable. Specifically, Fischer claimed
that  the  optimal  control  could  be  expressed  as  a  quan-
tized version of the optimal control  for the conventional
LQG  control  problem  (without  quantization).  This  quantized
control  was  obtained  by  minimizing  a  weighted  quantization
distortion ,  with  being  a
weighting  matrix  dependent  on  the  cost  function.  However,
this assertion was also again false.  Subsequent attempts were
made under various restrictive assumptions [12], [24], [25].

The recent research in [26] gives a clear picture of the quan-
tized  LQG control  problem.  It  turns  out  that  a  weak  form of
separation  principle  holds  which  allows  the  separate  designs
of state estimation, state feedback and quantization. However,
under  the  conventional  LQG problem,  the  quantization  crite-
rion depends on the control cost function, and optimal quanti-
zation can not be done by separately minimizing the quantiza-
tion errors at  different time instants.  That is,  future evolution
of the system dynamics must be taken into account in design-
ing the optimal quantizer. The weak separation principle given
below is due to [5].

Theorem  5: Consider  the  quantized  LQG  control  problem
for the system (25) with the cost function (28) and R-bit fixed-
rate quantization. Let
 

uo(k) = Kk x̂(k) (29)

x̂(k)
x(k) Kk

be the optimal control for the conventional LQG control prob-
lem (i.e., without quantization), where  is the optimal state
estimate of  (i.e., the Kalman estimate) and  is the opti-

mal state feedback gain matrix given by
 Kk = −(S k +B′Pk+1B)−1B′Pk+1A

Pk = Qk +A′Pk+1A−K′k(S k +B′Pk+1B)Kk
(30)

k = T −1,T −2, . . . ,0 PT = QT
u(k)

{α(k)}T−1
k=0

with  and .  Then,  optimal  quan-
tized  LQG  control  is  achieved  by  choosing  the  encoder
(sequence)  to  minimize  the  following  distortion
function:
 

D =
T−1∑
k=0

E[(uo(k)−u(k))′Ωt(uo(k)−u(k))] (31)

Ωk = S k +B′Pk+1Bwhere .  The  corresponding  minimum  cost
function is given by
 

min J = JLQG+min D (32)
JLQGwhere  is  the  minimum  cost  of  the  conventional  LQG

problem.

uo(k)
α0,α1, . . . ,αT−1

Remark  3: Despite  the  successful  separation  of  control
design,  state  estimation  and  quantization,  Fischer  [66]  incor-
rectly concluded that each  can be separately quantized. It
turns  out  that  the  encoder  sequence  needs  to
be  jointly  designed  to  minimize  the  distortion  function D in
(31),  resulting  in  the  lack  of  a  full  separation  principle.  An
example showing this lack of separation can be found in [26].

The weak separation principle above implies that the quan-
tized  LQG  problem  is  essentially  transformed  into  a quan-
tized  state  estimation problem.  In  this  problem,  the  system’s
output  signal  must  undergo  quantization  using  a  fixed-rate
quantizer,  and  the  quantized  information  is  then  utilized  to
construct an estimate of a linear function of the system’s state,
which  in  our  case  corresponds  to  the  desired  control  signal.
The goal is to minimize a specified distortion function (31).

k < T −1 u(k)

x̂(k′) k < k′ ≤ T −1

min D

The fundamental difficulty caused by the lack of full separa-
tion principle is that this quantized state estimation problem of
minimizing D in  (31)  cannot  be  solved  causally.  That  is,  at
each time instant , the optimal quantized control 
can  not  be  solved  without  knowing  what  the  future  unquan-
tized  state  estimates  are  for .  Due  to  this
difficulty,  we  can  only  design  quantizers  to  approximate

.  That  is,  the  true  optimal  quantized  LQG  control  can
not be achieved in practice.

{uo(k)}T−1
k=0

uo(k)

However, it is worth noting that this quantized state estima-
tion problem can be seen as a generalized vector quantization
[61]  where  the  whole  sequence  of  needs  to  be
jointly quantized.  In  [27],  it  is  demonstrated  that,  when  high
resolution quantization is assumed (i.e., a large R), and a mild
rank  condition  is  met,  optimal  quantization  can  be  achieved
using  a  memoryless  quantizer.  In  this  context,  memoryless
quantizers process each input sample  independently.

The aforementioned result, combined with the weak separa-
tion principle mentioned earlier, establishes that a full separa-
tion principle holds for quantized LQG control under the con-
ditions of high resolution quantization and the mild rank con-
dition.  

VII.  Quantized Average Consensus

Distributed  consensus  represents  a  major  research  focus  in
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networked  systems  with  wide-ranging  applications  encom-
passing  statistical  learning,  sensor  networks,  distributed  opti-
mization, and computer science [62], [63]. This topic has gar-
nered  significant  attention  in  various  domains,  including  dis-
tributed estimation, control of multi-agent systems, and more.
For example, [64] introduced a distributed algorithm for esti-
mating  the  relative  inter-agent  states  in  multi-agent  systems,
while [65] devised a distributed procedure for achieving con-
sensus  in  the  frequency  domain.  Moreover,  distributed  con-
sensus  plays  a  crucial  role  in  broader  applications,  including
distributed sensing and fusion [66], as well as distributed opti-
mization  [67].  A  fast  convergent  algorithm  for  average  con-
sensus is provided in [68].

G =
{V,E,A}

V E
A = [ai j] G ai j = a ji

ai j > 0 (i, j) ∈ E ai j = 0
x(0) = col{x1(0), x2(0), . . . , xn(0)}

The basic average consensus problem is a distributed prob-
lem  which  can  be  easily  formulated  as  follows.  Let 

 be a given connected, undirected graph of n nodes,
where  is  the  set  of  nodes,  is  the  set  of  edges,  and

 is  the adjacency matrix of .  In particular, 
with  if , or  otherwise. Given the initial
values  of the nodes, design a
distributed iterative algorithm such that every node can even-
tually work out the average value of all the nodes. More pre-
cisely,  average consensus is  to be achieved using the follow-
ing distributed control policy:
 

xi(k+1) = xi(k)+hui(k) (33)
xi(k)

ui(k)
Ni =

{ j ∈ V : (i, j) ∈ E}
xi(k)→ x̄(0) k→∞ x̄(0) = (1/n)

∑n
i=1 xi(0)

where  is the state of the i-th node at the k-th iteration, h
is  the  step  size,  and  the  control  depends  only  on  the
information  passed  from  node i’s  neighboring  set 

.  The  goal  is  to  design  the  control  policy
such that  as , where 
is the average initial value.

The  standard  (and  most  popular)  average  consensus  algo-
rithm adopts the following policy [63], [62]:
 

ui(k) =
∑
j∈Ni

ai j(xi(k−1)− x j(k−1)), i ∈ V. (34)

xi(k) x̄(0)
λ2(L)

L G
L =D−A D = diag(deg1, . . . ,

degn) degi =
∑n

j=1 ai j

It is well known [62], [63] that this algorithm guarantees the
asymptotic convergence of  to . The convergence rate
is  determined  by  the  second  eigenvalue  of  the  Lapla-
cian  matrix  (known  as  the  algebraic  connectivity  of ),
which  is  defined  to  be ,  where 

 with .
A  serious  drawback  of  the  algorithm  above  (and  many

improved  algorithms  in  the  literature)  is  that  the  information
exchange  between  nodes  must  be  precise.  When  the
exchanged information is quantized, a naive application of the
standard average consensus algorithm above will cause biases
in  the  consensus  outcomes,  or  the  steady-state  results  may
even be oscillatory.  This is  because of  the fundamental  diffi-
culty that the quantization errors introduced by the neighbour-
ing  nodes  are  not  identical  and  thus  can  not  be  cancelled.
Therefore, the quantization process must be taken into account
in the design of the consensus algorithm so that the impact of
information  loss  caused  by  the  quantizers  can  be  adequately
mitigated or even eliminated. Many attempts have been made
in the literature to accomplish this goal; see [34] for a survey
of relevant literature.

In  the  sequel,  we  introduce  a  quantized  average  consensus
algorithm in [34] which deploys a finite-level dynamic quan-
tizer for encoding the state of each node. The surprising result
of  [34]  is  that asymptotic  average  consensus  can  be
achieved with any number of quantization bits, even a sin-
gle bit of quantization. The encoder of the j-th node is given
by
 

ξ j(0) = 0

ξ j(k) = g(k−1)∆ j(k)+ ξ j(k−1)

∆ j(k) = Q
(

1
g(k−1)

(x j(k)− ξ j(k−1)
) (35)

ξ j(k) ∆ j(k)

g(k) > 0
Q(·) 2K +1

where  is the internal state of the encoder for node j, 
is the output of the encoder to be sent to all  the neighbors of
node j,  is  a  (common) dynamic scaling parameter  to
be  designed,  and  is  a  finite-level  quantizer  (with 
levels) given by
 

Q(y) =



0, −1
2
< y <

1
2

i,
2i−1

2
≤ y <

2i+1
2
, i = 1,2, . . . ,K −1

K, y ≥ 2K −1
2

−Q(−y), y ≤ −1
2
.

(36)
∆i(k) = 0

log2(2K)

The quantizer is implemented such that when , the
i-th  node  does  not  send  any  information.  Thus,  the  above
quantizer  takes  up  bits.  In  particular,  the  quantizer
below:
 

Q(y) =



0, −1
2
< y <

1
2

1, y ≥ 1
2

−1, y ≤ −1
2

(37)

is a one-bit quantizer.
( j, i) ∈ E

∆i(k)
x j(k)

For  each  communication  channel ,  the i-th  node
receives  and then uses the following decoder to estimate

:
 {x̂ ji(0) = 0

x̂ ji(k) = g(t−1)∆ j(k)+ x̂ ji(t−1).
(38)

The distributed control policy takes the form
 

ui(k) =
∑
j∈Ni

ai j(x̂ ji(k)− ξi(k)), i ∈ V. (39)

We have the following result for the above distributed quan-
tized average consensus control [34].

G maxi |xi(0)| ≤Cx
Cx > 0 K ≥ 1 h ∈ (0,2/λN(L))

Theorem  6: Suppose  is  connected,  for
some constant  and . We can take 
and
 

ρh = max
2≤i≤N

|1−hλi(λL)| < 1

λi(L) Lwhere  is  the i-th  eigenvalue  of  in  ascending  order.
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γ ∈ (ρh,1)Choose any  and design the dynamic scaling param-
eter
 

g(k) = g0γ
k (40)

g0with a sufficiently large  (see [34] for details). Then,
 

lim
k→∞

xi(k) = x̄(0), ∀i ∈ V (41)

|xi(k)− x̄(0)| ≤
γkC,∀i ∈ V, C > 0
and the convergence rate is bounded by γ,  i.e., 

 for some constant .

ξ j(k)
Q(·)

Q(·) ξ j(k) = x j(k)

1/2
g(k) γ ∈ (0, 1)

ξ j(k)→ x j(k)
h,ρh,γ g0

Proof: We first focus on the encoder side (for each node j)
and explain how the internal state  in (35) evolves. If the
quantizer  would not introduce any quantization error (i.e.,

 is  an  identity  map),  we  would  see  that  by
substituting  the  third  line  into  the  second  line  of  (35).  But
quantization  error  is  always  present.  When  the  input  to  the
quantizer is bounded by K in magnitude, we see from (36) that
the quantization error is bounded by . Due to the choice of

 in (40) and , we see from the second line of (35)
that  the  effect  of  the  quantization error  will  diminish  asymp-
totically  and  we  will  have  asymptotically.  The
careful choice of  and the large initial  in the theorem
is to keep the input to the quantizer bounded by K in magni-
tude; see [34] for detailed analysis.

i ∈ N j
x ji(k) ξ j(k)

ui(k)

For  the  decoder  side  (for  every  node ),  it  is  easy  to
check from (38) that  simply duplicates . Thus, con-
trol  signal  in  (39)  asymptotically  converges  to  that  in
(34) to achieve average consensus asymptotically. ■

λN(L)

Remark  4: We assert  that  the  quantized  average  consensus
algorithm  above  is scalable to  large  networks  because  the
dynamic  quantizer  (35)  at  each  node  operates  only  on  local
information  and  the  distributed  control  policy  (38)  and  (39)
uses only neighborhood’s information. The only difference for
a large network is that more iterations are typically required to
achieve  the  same  level  of  convergence  accuracy  due  to  the
fact  that  tends  to  increase  as  the  network  size N
increases, but this is expected and natural.  

VIII.  Quantized Regulation of Periodic Signals

All of the quantized feedback control problems discussed in
the  preceding  sections  share  a  common  characteristic:  the
quantizer  is  designed  to  facilitate  efficient  communication
across  a  digital  connection.  In  this  section,  we  delve  into  a
very  different  quantized  feedback  control  scenario.  Here,
quantization  is  an  intrinsic  component  of  the  measurement
system (i.e., it is an internal device not to be altered), and the
objective  of  control  design  is  centered  around  reducing  or
eliminating the influence of quantization errors.

An  illustration  of  this  type  of  quantized  feedback  system
can  be  seen  in  a  scanning  apparatus  driven  by  an  electric
motor equipped with an optical encoder for position measure-
ment.  The  encoder  employs  light  and  sensors  to  convert
mechanical  movement  into  a  digital  signal,  utilizing  a  pat-
terned  disk  to  interrupt  the  light  beam,  resulting  in  varying
light  intensity.  This  intensity  variation  is  subsequently  trans-
lated into a quantized motor position.

The  specific  control  task  we  consider  here  is  to  make  a
given  system  with  quantized  measurements  to  track  a  speci-
fied  periodic  signal  [36].  The  feedback  loop  is  depicted  in

G(z) u(k)
y(k) q(·)

q(y(k))

q(·)

δ > 0

Fig. 8. In this setting, the given system is a linear discrete-time
model  with  transfer  function ,  the  control  is  to  be
designed, its output  is measured via a quantizer , i.e.,
only the quantized signal  is available for feedback. To
differentiate  this  type  of  (given)  quantizer  from  the  previous
type (to be designed), we use the symbol  here. The quan-
tizer  is  assumed to  be a  uniform one with  quantization inter-
val :
 

q(y) = jδ, for ( j−0.5)δ ≤ y < ( j+0.5)δ (42)
for all integers j.

r(k)The given reference  is a periodic signal modeled using
a finite-term Fourier series
 

r(k) = δ0a0+

m∑
i=1

ai cos(ωik+ θi) (43)

m ≥ 1 ai > 0
ωi θi

δ0 = 0

where  is the number of sinusoidal terms,  are the
magnitudes,  are the angular frequencies, and  are the ini-
tial phases. The term  or 1 to allow r with or without a
constant term or not.

A  mild  technical  assumption  is  imposed  on  the  reference
signal and quantizer.

ωi
ai θi

q(r)

Assumption  1: The  values  of m and  all  are  known.  The
quantization interval δ is such that parameters  and  in the
reference r in (43) are uniquely identified from the quantized
signal .

2m 2m+1Since r contains only  or  parameters, the assump-
tion above should hold easily for a relatively small δ.

q(y)
y(k)→ r(k) k→∞

The quantized feedback control problem here is to design a
feedback control law u,  as a function of  and r,  such that
the output  as , if possible.

C(z)

This  seems an impossible  mission,  given that  only  a  quan-
tized version of y is measurable. However, in the work of [36],
it is shown that if the  is appropriately designed, the mis-
sion  can  indeed  be  achieved.  The  result  uses  the  concept  of
discrete-time positive realness as defined below:

F(z)
F(z)

|z| > 1 F(z)+FT (z⋆) ≥ 0 |z| > 1

Definition 1: A real  rational matrix function  is  said to
be  discrete-time  positive-real  (DTPR)  if  is  analytic  in

 and  for all .

C(z)
H(z) =C(z)G(z)

Theorem 7 [36]: Suppose Assumption 1 holds and the con-
troller  is designed such that the open-loop transfer func-
tion  satisfies the following conditions:

H(z)1)  is DTPR.
δ0 = 1 H(z) z = 12) If , then  contains a simple pole at .

i = 1, . . . ,m H(z)
z = e± jωi

3)  For ,  contains  a  simple  pole  pair  at
.

H(z) |z| < 14) All other poles of  are in .

e(k) = r(k)− y(k)→ 0 k→∞
Then, the closed-loop system is stable and the tracking error

 as .

 

r q(·)

q(·)q(y)

q(r)
C(z) G(z)u y

+
Artificial

Intrinsic

−
e~

 
Fig. 8.     Quantized feedback control for tracking of periodic signals.
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H(z)
ẽ [ẽ(z)y(z)] ≥ 0

q(y)
y(k)q(y(k)) ≥ 0

Proof: The basic idea is to exploit the in-phase property of
both  and the quantizer. That is, the forward-path signals
 and y are  in-phase  (i.e.,  Re )  due  to  the  DTPR

assumption, and the feedback-path signals y and  are also
in-phase ( ) due to (42). The proof involves two
steps.

H(z)
(A,B,C,D) H(z) x(k)

The  first  step  exploits  the  in-phase  property  of .  Take
 to be a minimal realization of  and take  to

be  its  state  at  time k.  Then,  use  the  well-known positive-real
lemma [69] to obtain a positive-real  matrix P and real  matri-
ces L and W such that
 

P−A′PA = L′L
C′−A′PB = L′W
D′+D−B′PB =W′W.

V(x) = x′Px
k ≥ 0

Then, use the Lyapunov function  to show that
the following decaying property holds for all :
 

V(k+1)−V(k) ≤ −e(k)ẽ(k).

e(k)ẽ(k) ≥ 0
ẽ(k)→ 0

e(k)→ 0

The second step exploits the in-phase property of the quan-
tizer to show that . Together with the decay prop-
erty above, this leads to  asymptotically. Finally, use
Assumption 1 to show that the above leads to  asymp-
totically. ■

H(z)To  make  the  controller  design  practical,  the  class  of 
which  satisfies  the  conditions  1)−4)  in  Theorem  7  has  been
worked out in [36] to take the following form:
 

H(z) = k0δ0
z

z−1
+

m∑
i=1

ki
z(z− cosωi)

z2−2zcosωi+1

+

m+v∑
i=m+1

ki
z

z− pi
+

m+v+w∑
i=m+v+1

ki
z(z−gi)

(z− pi1)(z− pi2)
(44)

where
ki > 0 i = 0,1, . . . ,m+ v+w●  for all .
pi ≥ 0; |pi| < 1 i = m+1, . . . ,m+ v●  for all .

i = m+ v+1, . . . ,m+
v+w

●  Either  i)  or  ii)  below  holds  for  all 
:

i) pi1, pi2 = ρie± jϕi 0 < ρi < 1,gi = ρi cosϕi  with ;
ii) −1 ≤ pi2 ≤ pi1 < 1 pi1 ≥ 0 pi2 ≤ gi ≤ 1  with  and .

Ni(z)/Di(z), i = 0,1, . . . ,m+
v+w i = 0,1, . . . ,m

i = m+
1, . . . ,m+ v+w

ki

Denoting  each  term  above  as 
,  we  note  that  the  terms  corresponding  to 

are  necessary  for  the  asymptotic  tracking  of  the  individual
terms  in r,  whereas  the  extra  terms  corresponding  to 

 are used for loop shaping to enhance the tran-
sient  tracking response.  The gains  are  also  used to  tune to
transient response.

To  illustrate  the  practicality  of  this  quantized  feedback
design, we consider the control of a linear motor as described
in [36]. The transfer function from u (in volts) to y (in μm) is
given by
 

G(z) =
b(z+1)

(z−1)(z− e−aT )
(45)

T = 1 a = 9.4 b = 1.7×107with  ms,  and . The reference signal
to be tracked is
 

r(k) = a0+a1 cos(ω1k) (46)

a0 = 0 31 μ
a1 = 7.5 μ ω1 = 2π

δ = 10 μ

with  for the first 20 s and then switched to m after-
wards, m and  rad/s.  The quantization level

m is used, which is very large compared to the refer-
ence signal.

Following the design in Theorem 7, the forward-path trans-
fer function is taken to be:
 

H(z) =C(z)G(z)

=
k0z
z−1

+
k1z(z− cosω1)

z2−2zcosω1+1
+

k2z
z− e−aT .

k0 = k1 = k2 = 10−3The parameters are set to .
C(z) H(z)The controller  obtained from  above turns out to be

non-causal. To get around this difficulty, an approximate ver-
sion is used by removing a zero at the origin
 

C̃(z) = 10−4 3.55z3−10.61z2+10.59z−3.52
(z2−2zcosω1+1)(z+1)

.

This  approximation  has  very  marginal  effect  on  the  fre-
quency response of the system.

t = kT

δ = 10 μm

Fig. 9 shows  the  system  response  (where ).  We  see
that despite the quantized sensor,  the output converges to the
desired reference after only a few cycles of transient response.
The steady state tracking error is almost eligible compared to
the quantization level of .
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Fig. 9.     Example of periodic signal tracking control.
 

The study above is for discrete-time systems. Similar quan-
tized feedback control results for continuous-time systems can
be found in [37], [38].  

IX.  Conclusion

While quantization is extensively studied in signal process-
ing  and  digital  communications,  we  emphasize  the  caution
needed when directly applying techniques from these domains
to  control  issues.  This  caution  arises  due  to  the  fundamental
presence of feedback in control systems, which yields two sig-
nificant implications: the re-entry of quantized signals into the
system through feedback, and the lack of a priori knowledge
regarding the boundedness of the input signal to the quantizer.
Both of these implications significantly enhance the complex-
ity of quantizer analysis and design.

These distinctive characteristics of quantization within feed-
back control systems necessitate specialized technical tools. In
this  tutorial  paper,  we  have  introduced  such  tools  to  address
various quantized feedback control  challenges,  encompassing
topics such as minimal feedback information for stabilization,
feedback control design employing static and dynamic quanti-
zation,  quantized  state  estimation,  quantized  LQG  control,
quantized  average  consensus,  and  quantized  regulation  of
periodic  signals.  Our  focus  in  this  paper  has  been  purely  on

FU: A TUTORIAL ON QUANTIZED FEEDBACK CONTROL 15 



discrete-time systems, with the reason that quanitzed informa-
tion  is  typically  transmitted  in  discrete  time.  For  continuous-
time systems, sampled-data models can be created, which con-
vert  the  system into  discrete-time,  before  applying  quantized
feedback control/estimation methods.

Future  research  endeavors  in  this  field  should  undertake
interdisciplinary  approaches  by  amalgamating  insights  from
control  theory,  information  theory,  communication  networks,
sensor networks, and quantization theory. This would not only
address  quantization  problems  but  also  extend  to  resolving
other  challenges  induced  by  network-based  control  and  esti-
mation  issues.  Several  critical  aspects  need to  be  considered.
First,  there  is  a  need  for  the  development  of  more  advanced
quantization schemes that minimize the information loss dur-
ing  the  quantization  process,  allowing  for  more  efficient  and
accurate control and estimation. This involves exploring novel
techniques  in  quantization,  including  adaptive  quantization
and  distributed  quantization,  to  adapt  to  changing  system
dynamics  and  enable  distributed  control  in  large-scale  sys-
tems.  Second,  focus  should  be  made  on  the  integration  of
machine  learning  and  artificial  intelligence  techniques  to
enhance  the  performance  of  quantized  feedback  control  sys-
tems. These approaches can help in learning optimal quantiza-
tion  parameters  and decision thresholds,  leading to  improved
control  in  complex  and  dynamic  environments.  Finally,
research efforts can also delve into the development of practi-
cal  implementation  strategies  and  hardware  solutions  for
quantized  feedback  control  in  real-world  applications,  ensur-
ing that these theoretical advancements translate into tangible
benefits across various industries.

It  is  important  to  acknowledge  that  this  tutorial  paper
presents the viewpoints of the author exclusively and may not
cover all available results. Quantized feedback control consti-
tutes  a  relatively  recent  research  domain,  rife  with  open  and
formidable inquiries.
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