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   Abstract—Reinforcement  learning  (RL)  has  roots  in  dynamic
programming and it is called adaptive/approximate dynamic pro-
gramming  (ADP)  within  the  control  community.  This  paper
reviews recent developments in ADP along with RL and its appli-
cations to various advanced control  fields.  First,  the background
of the development of ADP is described, emphasizing the signifi-
cance  of  regulation  and  tracking  control  problems.  Some  effec-
tive offline and online algorithms for ADP/adaptive critic control
are  displayed,  where  the  main  results  towards  discrete-time  sys-
tems  and  continuous-time  systems  are  surveyed,  respectively.
Then,  the  research  progress  on  adaptive  critic  control  based  on
the event-triggered framework and under uncertain environment
is discussed, respectively, where event-based design, robust stabi-
lization, and game design are reviewed. Moreover, the extensions
of ADP for addressing control problems under complex environ-
ment attract  enormous attention.  The ADP architecture is  revis-
ited  under  the  perspective  of  data-driven  and  RL  frameworks,
showing  how  they  promote  ADP  formulation  significantly.
Finally,  several  typical  control  applications  with  respect  to  RL
and ADP are  summarized,  particularly  in  the  fields  of  wastewa-
ter  treatment  processes  and  power  systems,  followed  by  some
general prospects for future research. Overall, the comprehensive
survey  on  ADP  and  RL  for  advanced  control  applications  has
demonstrated its remarkable potential within the artificial intelli-

gence era. In addition, it also plays a vital role in promoting envi-
ronmental protection and industrial intelligence.
    Index Terms—Adaptive  dynamic  programming  (ADP),  advanced
control,  complex  environment,  data-driven  control,  event-triggered
design,  intelligent  control,  neural  networks,  nonlinear  systems,  opti-
mal control, reinforcement learning (RL).
  

I.  Introduction

A RTIFICIAL intelligence (AI) generally refers to the intel-
ligence  exhibited  through  machines  that  humans  make.

The definition of AI is very broad, starting from the legends of
robots  and  androids  in  Greek  mythology  to  the  well-known
Turing  Test,  and  now  to  the  development  of  various  intelli-
gent algorithms in the framework of machine learning [1]–[4].
The AI technology is gradually changing our lives, from com-
puter vision, big data processing, intelligent automation, smart
factories, etc., to other aspects.

As the hottest technology in the 21st century, AI cannot be
developed without machine learning. Machine learning, as the
core  of  AI,  is  the  foundation  of  computer  intelligence.  Rein-
forcement  learning  (RL)  [5]–[7]  is  one  of  the  top  three
approaches of machine learning, along with supervised learn-
ing and unsupervised learning. RL emphasizes the interaction
between  the  environment  and  the  agent,  with  a  focus  on  the
long-term interaction to change its policies. Through its inter-
actions  with  the  environment,  the  agent  can  modify  future
actions or control policies based on the response to its stimu-
lating actions.

It  should  be  emphasized  that  RL  does  not  necessarily
require  a  perfect  environment  model  or  huge  computing
resources. RL is inseparable from dynamic programming [8],
[9].  Traditional  dynamic  programming  has  been  investigated
considerably in theory, which can provide the key foundation
of RL. However, this technique requires the assumption of an
exact system model, which is extravagant for large-scale com-
plex  nonlinear  systems.  Besides,  such  methods  are  severely
limited  in  solving  Hamilton-Jacobi-Bellman  (HJB)  equations
of nonlinear systems as the dimensionality of states and con-
trols  increase  [8].  Therefore,  adaptive/approximate  dynamic
programming  (ADP)  [10]–[13],  a  method  combining  RL,
dynamic  programming,  and  neural  networks,  was  skillfully
proposed.

ADP has been widely used to solve a range of optimal con-
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trol  problems  for  complex  nonlinear  systems  in  unknown
environments.  As  main  algorithmic  frameworks,  value  itera-
tion (VI)  and policy iteration (PI)  have been intensively  pro-
moted.  The  initialization  requirements  for  VI  and  PI  are  dif-
ferent.  Unlike  PI,  which  must  start  with  an  initial  admissible
control law, the initial control law of VI has no strict require-
ments. But from the iterative control point of view, PI presents
a  more  stable  mechanism.  Both  of  these  two  algorithms  are
attracting  more  and  more  attention  from the  control  commu-
nity  [14],  [15].  Due  to  their  respective  properties,  VI  has
received more attention in the discrete-time domain, while PI
is more commonly applied to the continuous-time domain.

There  have  been  many  classical  reviews  and  monographs
[13],  [16]–[19]  that  summarize  and  discuss  ADP/RL.  They
have  brought  in  the  profound  influence  and  inspiration  on
their  successors.  However,  it  is  rare to find a paper that  inte-
grates the regulator problem, the tracking control problem, the
multi-agent problem, the robustness of uncertain systems, and
the event-triggered mechanism, especially with discussions on
both  discrete-time  and  continuous-time  cases.  In  this  paper,
we aim to discuss recent research progress on these problems,
primarily  focusing  on  discrete-time  systems  while  supple-
menting  some  excellent  work  on  continuous-time  systems.
Fig. 1 illustrates  some  of  the  key  technologies  in  the  ADP
field  involved  in  this  paper.  In  order  to  promote  the  further
development  of  ADP,  this  paper  provides  a  comprehensive
overview  of  theoretical  research,  algorithm  implementation,
and related applications. It covers the latest research advances
and also analyzes and predicts the future trends of ADP. This
paper  consists  of  the  following  parts:  1)  basic  background,
2)  recent  progress  of  ADP  in  the  field  of  optimal  control,
3)  development  of  ADP  in  the  event-triggered  framework,
4)  development  of  ADP  in  complex  environments  and  the
combination  of  ADP  with  other  advanced  control  methods,
5) the impact of the data-driven method and RL on ADP tech-
nology, 6) typical control applications of ADP and RL, and 7)
discussion of the possible future directions for ADP.
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Fig. 1.     Taxonomy diagram of related methods in this survey.
   

II.  Optimal Regulation and Tracking With ADP

Generally  speaking,  ADP-based  algorithms  can  be  per-
formed offline or online. In this section, we focus on the prob-
lem of optimal regulation and optimal tracking control, with a
detailed overview.  

A.  Offline Optimal Regulation With ADP
1)  Discrete-Time  Systems: Consider  the  following  affine

discrete-time nonlinear systems:
 

x(k+1) = f
(
x(k)
)
+g
(
x(k)
)
u(k), k ∈ N (1)

x(k) ∈ Rn u(k) ∈ Rm

N = {0,1,2, . . . } R
f (·) ∈ Rn g(·) ∈ Rn×m

f (0) = 0
Ω ⊂ Rn

where  is  the  state  vector,  is  the  control
vector, ,  and  is the set of real numbers. The
system  functions  and  are  differentiable
with respect to their arguments and . Assume that sys-
tem (1) is stable on a compact set .

u∗
(
x(k)
)

V0(x(k)
)
= 0

The  exact  optimal  feedback  control  law  is  almost
impossible to obtain by solving the HJB equation. For (1), Al-
Tamimi et al.  [20] proposed a VI scheme for optimal control
problem.  By  setting ,  the  iterative  control  policy
and  the  iterative  cost  function  can  be  solved  by  policy
improvement
 

ui(x(k)
)
= arg min

u(x(k))

{
U
(
x(k),u

(
x(k)
))
+V i(x(k+1)

)}
(2)

and value function update
 

V i+1(x(k)
)
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u(x(k))

{
U
(
x(k),u

(
x(k)
))
+V i(x(k+1)

)}
= U

(
x(k),ui(x(k)

))
+V i(x(k+1)

)
(3)

i ∈ N U
(
x(k),ui(x(k)

))
=

xT (k)Qx(k)+uiT (x(k)
)
Rui(x(k)

)
Q ∈ Rn×n R ∈ Rm×m

limi→∞V i(x(k)
)
= V∗
(
x(k)
)

limi→∞ ui(x(k)
)
= u∗
(
x(k)
)

where  is  the  iteration  index, 
,  and  and 

are  both  positive  definite  matrices.  According  to  the  mathe-
matical  induction,  the  iterative  cost  function  sequence  is
proven to be monotonically nondecreasing by constructing an
auxiliary  function.  Then,  the  convergence  and  optimality  of
VI  can  be  proved,  i.e.,  and

.  It  is  noted  that  in  offline  algo-
rithms,  the  approximations  to  the  cost  function  and  control
policy  are  mainly  achieved  by  neural  networks  or  polynomi-
als.

Ĉi
out
(
x(k+1)

)
Ĉi+1

out
(
x(k)
)

Udiff
(
x(k),

u(k)
)

As  we  know,  heuristic  dynamic  programming  (HDP)  and
dual  heuristic  programming  (DHP)  are  often  used  to  imple-
ment VI. The different terms of the two structures are shown
in Table I.  In Fig. 2,  general  ADP  structures  are  displayed,
where  and  are  outputs  of  the  critic
network  with  different  iteration  mechanisms,  and 

 is the utility function of different forms.

 
TABLE I 

Basic Terms of the General ADP Structure

Terms Udiff
(
x(k),u(k)

)
Ĉi

out
(
x(k+1)

)
Ĉi+1

out
(
x(k)
)

HDP U
(
x(k),u(k)

)
V̂ i(x(k+1)

)
V̂ i+1(x(k)

)
DHP

∂U
(
x(k),u(k)

)
∂x(k)

∂V̂ i(x(k+1)
)

∂x(k+1)
∂V̂ i+1(x(k)

)
∂x(k)

 
 

Besides,  the  action-dependent  and  goal-representation  ver-
sions  are  also  used  sometimes  for  these  structures.  Taking
HDP  as  an  example,  the  action-dependent  HDP  (ADHDP)
[21]  consists  of  three  parts:  the  controlled  object,  the  critic
network,  and  the  action  network.  It  is  capable  of  achieving
optimal  control  without  using system information.  Compared
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with  ADHDP,  a  network  was  added  to  goal-representation
HDP  (GrHDP)  [22],  which  can  be  associated  with  the  critic
network and the action network. The goal network can gener-
ate, control, calculate, and plan more accurate system signals.
It  also improves the learning ability of the control system. In
Table II,  we show the  comparison of  the  input  and output  of
ADHDP with GrHDP, where
 

S (k) = U
(
x(k),ui(x(k)

))
+ ıU
(
x(k+1),ui(x(k+1)

))
+ ı2U

(
x(k+2),ui(x(k+2)

))
+ · · · (4)

0 < ı < 1is  the  internal  reinforcement  signal  and  is  the  dis-
count  factor.  On  the  basis  of  [20],  the  optimal  control  prob-
lem was solved for nonlinear systems with control constraints
by DHP [23], [24]. To overcome symmetric input constraints,
Wang et  al. [23]  introduced the DHP framework involving a
new nonquadratic performance index and used the data-based
methods to derive efficient system models. Then, for a class of
nonlinear  systems  with  asymmetric  constraints,  Wang et  al.
[24]  defined  an  innovative  nonquadratic  function  and
expanded  the  application  scope  of  the  DHP  framework.
Besides,  Xu et  al. [25]  introduced  a  control  barrier  function
into  the  utility  function.  Unlike  [23],  [24],  HDP was  used  to
solve state-constrained optimal control problems in [25].
 

TABLE II 

Comparison of the Inputs and the Outputs Between
ADHDP and GrHDP

Terms Udiff
(
x(k),u(k)

)
Ĉi

in
(
x(k)
)

Ĉi
out
(
x(k)
)

ADHDP U
(
x(k),u(k)

)
x(k),u(k) V i(x(k)

)
,V i(x(k+1)

)
GrHDP S (k) x(k),u(k),S (k) V i(x(k)

)
 
 

V0(x) = xTΦx
Φ

Compared  to  VI  [20],  monotonicity  is  various  for  iterative
cost function sequence with the more general initial condition
in  general  VI  (GVI)  [26].  The  GVI  algorithm  can  be  initial-
ized by a positive semi-definite function , where

 is a positive semi-definite matrix. Furthermore, the iterative
cost function was proved to satisfy the inequality
 [

1+
α−1

(1+ θ−1)i

]
V∗
(
x(k)
) ≤ V i(x(k)

)
≤
[
1+

β−1
(1+ θ−1)i

]
V∗
(
x(k)
)

(5)

0 ≤ α ≤ 1 1 ≤ β <∞ 1 ≤ θ <∞where , , and .
Then, by using a novel convergence analysis, Wei et al. [27]

proved the convergence and optimality of GVI. In addition, it
was  shown  that  the  termination  criterion  in  [20]  could  not
guarantee admissibility of the near-optimal control policy. The
admissibility termination criterion was proposed as
 

V i+1(x(k)
)−V i(x(k)

)
< U
(
x(k),ui(x(k)

))
. (6)

Following [27], Ha et al. [28] presented a new admissibility
condition of GVI described by
 

V i+1(x(k)
)−V i(x(k)

)
< ϵU

(
x(k),ui(x(k)

))
(7)

0 < ϵ < 1
ui(x(k)) V0(x(k)

) ≥ V1(x(k)
)

ξiγ = 1−Q(x(k))/V i(x(k)) < γ < 1
U(x(k),ui(x(k)

)
) < V i(x(k)

)
γ > ξiγ ui+b

b ∈ R

where .  Besides,  considering  the  discounted  GVI,
 was stable if  and the discount fac-

tor γ satisfied .  It  was  also
proven that if  and ,  was
stable, .  Wang et  al.  [29]  used  GVI  to  address  the  dis-
counted optimal regulation problem for discrete-time systems
with  control  constraints.  Kamanchi et  al.  [30]  constructed  a
Bellman equation to apply the Newton-Raphson method to the
successive  relaxation  VI  scheme,  which  expanded  traditional
VI  to  the  second-order  iteration  process.  They  also  provided
the proof of global convergence and some convincing experi-
ments.

u0(x(k)
)

V i(x(k)
)

ui+1(x(k)
)

Despite plenty of research on VI, PI has great advantages in
terms of stability guarantee of the iterative control law. There-
fore, Liu and Wei [31] proposed a PI-based algorithm, where

 was required to be admissible.  and 
can be obtained by policy evaluation
 

V i(x(k)
)
= U
(
x(k),ui(x(k)

))
+V i(x(k+1)

)
(8)

and policy improvement
 

ui+1(x(k)
)
= argmin

u(x)

{
U
(
x(k),u

(
x(k)
))
+V i(x(k+1)

)}
. (9)

In  [31],  the  convergence  and  stability  of  PI  were  analyzed
for the first time, where the initial admissible control law was
obtained  by  trial-and-error.  The  iteration  process  can  ensure
that all iterative control laws were stable. Compared with [31],
the admissible control law can be obtained more conveniently
in  [27]  and [28].  Based on [31],  Liu et  al.  [15]  proposed the
generalized PI (GPI) for optimal control of system (1), where
the convergence and optimality properties were guaranteed. In
essence,  VI [20] and PI [31] were both special  cases of  GPI.
Since many systems could only be locally stabilized, in order
to solve the regionality existing in discrete-time optimal con-
trol, an invariant PI method was proposed by Zhu et al.  [32],
where the suitable region for the new policy was updated.

u0

In addition, there are some works on the combination of VI
and  PI.  In  [33],  Luo et  al.  introduced  an  adaptive  method  to
solve  the  Bellman  equation,  which  balanced  VI  and  PI  by
adding a balance factor.  It  is  noted that  the algorithm in [33]
can accelerate the iterative process and do not need the initial
admissible  control  law.  To  obtain  the  stable  iterative  control
policy, Heydari [34] proposed stabilizing VI, where the initial
admissible  was  evaluated  to  implement  the  VI.  Based  on
[34], Ha et al. [28] developed an integrated VI method based
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Fig. 2.     The general structure of ADP.
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(V0 ≤ V1) (V0 ≥ V1)

(V0 ≤ V1) (V0 ≤ V1)

on  GVI,  which  was  used  to  generate  the  admissible  control
law.  In Table III,  we  summarize  the  initial  conditions  and
monotonicity  of  GVI ,  GVI ,  Stabilizing
VI,  and  Integrated  VI.  Integrated  VI  consists  of  GVI

 and  Stabilizing  VI,  where  GVI  provides
the initial admissible control policy for Stabilizing VI. There-
fore,  in the following table,  integrated VI only represents the
monotonicity of its core component.
 

TABLE III 

Classification of VI Algorithms

Method Initial condition Monotonicity

(V0 ≤ V1)GVI V0(x) = xTΦx Monotonically nondecreasing

(V0 ≥ V1)GVI V0(x) = xTΦx Monotonically nonincreasing

Stabilizing VI u0(x)An admissible Monotonically nonincreasing

Integrated VI V0(x) = 0 Monotonically nonincreasing
 
 

2)  Continuous-Time  Systems: Compared  with  discrete-time
systems, most literature focuses on the PI method for continu-
ous-time systems even though the VI strategy still can be used
as in [35]. We consider the continuous-time systems
 

ẋ(t) = f
(
x(t)
)
+g
(
x(t)
)
u(t) (10)

x(t) ∈ Rn u(t) ∈ Rm f (·) ∈ Rn g(·) ∈ Rn×m

f (0) = 0

V(·) u(·)

where , , ,  and  repre-
sent  the  state  vector,  the  control  vector,  the  drift  dynamics,
and  the  input  dynamics,  respectively.  Assume  that 
and the system is stabilized on the operation region. For sys-
tems  in  the  strict  feedback  form  with  uncertain  dynamics,
Zargarzadeh et  al.  [36]  utilized  neural  networks  to  estimate
the cost function by using state measurement. In [37], a data-
based  continuous-time  PI  algorithm  was  proposed,  where  a
critic-identifier  was  introduced  to  estimate  the  cost  function
and  the  Hamiltonian  of  the  admissible  policy.  Differently
from [38],  the algorithm in [37] was used in continuous-time
systems  and  did  not  require  samples  of  the  input  and  output
trajectories  of  the  system.  Compared  with  [36],  the  method
proposed in [37] could be extended to multicontroller systems.
In addition,  to release the computational burden, a novel dis-
tributed  PI  algorithm  was  established  in  [39].  The  iterative
control policy could be updated one by one. The above works
[35]–[39]  all  focused  on  time-invariant  nonlinear  systems.
Moreover,  and  both  relied  on  the  system  state.  In
[40],  for  time-varying  nonlinear  systems,  Wei et  al.  devel-
oped a novel PI algorithm, where the optimality and stability
were  discussed.  It  is  worth  noting  that  a  mass  of  literatures
concentrate  on the  progress  of  VI  algorithms and their  struc-
tures  are  similar  to  those  of  discrete-time  systems.  Bian  and
Jiang [41] extended VI to continuous-time nonlinear systems.  

B.  Online Optimal Regulation With ADP
1)  Discrete-Time  Systems: As  mentioned  in  [34],  differ-

ently from offline ADP, online ADP needs to be implemented
through  selecting  the  initial  control  policy,  and  improving  it
according  to  some  criteria  until  it  converges  to  the  optimal
value.  Note that  the key difference between offline ADP and
online  ADP  is  that  the  control  policy  generated  by  offline
ADP keeps unchanged during the controlled stage of systems,
whereas the control policy will be updated in online ADP.

First,  consider  online  ADP  for  the  discrete-time  systems.
Usually, the optimal cost function and the optimal control pol-
icy are approximated by neural networks as
 

V∗
(
x(k)
)
= ϕT

c σ
(
x(k)
)
+εc (11)

and
 

u∗
(
x(k)
)
= θTa δ

(
x(k)
)
+εa (12)

ϕc θa
εc εa σ(·) δ(·)

respectively, where  and  are the weight vectors of target
neural networks,  and  are the bias terms,  and  are
the  activation  function  vectors.  The  optimal  cost  function  is
estimated by the critic network
 

V̂
(
x(k)
)
= ϕ̂T

c σ
(
x(k)
)

(13)
and the optimal control policy is estimated by the action net-
work
 

û
(
x(k)
)
= θ̂Ta δ

(
x(k)
)

(14)
ϕ̂c θ̂a ϕc θa

V∗
(
x(k)
)

u∗
(
x(k)
)where  and  are the estimated values of  and , respec-

tively.  Since  and  satisfy  the  HJB  equation,
we get
 

H
(
x(k),u∗(x(k)),V∗

(
x(k)
))

= V∗
(
x(k+1)

)
+U
(
x(k),u∗

(
x(k)
))−V∗

(
x(k)
)
= 0. (15)

Substituting (13) and (14) to the HJB equation, we obtain
 

H
(
x(k), û(x(k)), V̂

(
x(k)
))

= V̂
(
x(k+1)

)
+U
(
x(k), û

(
x(k)
))− V̂

(
x(k)
)
= ec. (16)

ũ
(
x(k)
)
= û
(
x(k)
)
+ 1

2 R−1gT (x(k)
) ∂V̂(x(k+1))
∂x(k+1)

ec ũ
(
x(k)
)Define .  We  need

to ensure that  and  both converge to zero. In order to
achieve  the  goal,  we  choose  suitable  weights  to  update  the
control law. To relax the requirement of activation functions,
Moghadam et  al.  [42]  proposed  an  online  optimal  adaptive
control algorithm with multi-layer neural networks, where the
vanishing gradient problem was overcome. This algorithm can
be  extended  to  neural  networks  with  an  arbitrary  number  of
hidden layers,  and the weight update laws in the action-critic
network  can  be  defined  as  a  function  of  temporal-difference
(TD) errors without previous information of the system state.

In the above research on online ADP, the approximate opti-
mal control policy was updated by tuning the weights of neu-
ral  networks.  Besides,  the  improved  control  law  can  be
acquired  by  PI  or  VI.  Since  the  iterative  control  policy
obtained  by  PI  is  stable,  PI  is  widely  used  in  online  control.
However,  there  are  also  some works  on  updating  the  control
policy  by  VI.  For  example,  in  [34],  Heydari  proposed  an
online  algorithm  based  on  stabilizing  VI,  where  the  system
was controlled under different iterative policies. In [14], com-
bining the stability condition of GVI and the concept of attrac-
tion domain, the novel online algorithm was introduced by Ha
et  al.,  where the current  control  law was chosen by the loca-
tion of the current state.

2) Continuous-Time Systems: For continuous-time systems,
the principle of online ADP is similar to that of discrete-time
systems.  Here,  we  display  some  main  progress  on  online
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methods with PI. For the weakly coupled nonlinear systems, a
data-based  online  learning  algorithm  was  established  by  Li
et al.  [43],  where the original optimal control  problem of the
weakly coupled systems was transformed into  three  reduced-
order optimal control problems. In [38], He et al. introduced a
novel  online  PI  method,  where  the  technique  of  neural-net-
work-based  online  linear  differential  inclusion  was  used  for
the first time. In addition, to solve optimal synchronization of
multi-agent  systems,  an  off-policy  RL  algorithm  was  pre-
sented in [44], where dynamic models of the agents were not
required.  

C.  Optimal Tracking Design With ADP
1)  Discrete-Time  Systems: With  the  development  of  avia-

tion, navigation, and other fields in recent years, the research
interest  in  optimal  tracking  design  has  gradually  increased
within  the  control  community.  Here,  we  need  to  concentrate
on  the  optimal  tracking  control  problem.  Define  the  desired
tracking trajectory as
 

r(k+1) = F
(
r(k)
)
, k ∈ N. (17)

e(k)Considering  original  system  (1),  the  tracking  error  is
described as
 

e(k) = x(k)− r(k), k ∈ N. (18)
ud(k)Assume  that  there  exists  the  steady  control  to  make

the following equation hold:
 

r(k+1) = f
(
r(k)
)
+g
(
r(k)
)
ud(k), k ∈ N. (19)

u
(
x(k)
)The objective of the optimal tracking control problem is to

find the optimal control law , which can force the sys-
tem  output  to  track  the  reference  trajectory.  This  can  be
obtained  by  minimizing  the  performance  index  or  the  cost
function.  Hence,  the  choice  of  the  cost  function  is  of  impor-
tance  without  doubt.  Generally,  we  choose  the  form  of  the
cost  function  according  to  the  control  objective.  Wang et  al.
[23]  applied  DHP  to  implement  the  tracking  control  design
towards  nonaffine  discrete-time  systems,  where  the  discount
factor was considered. After that, actuator saturation was also
considered in [24]. It is noted that the form of the utility func-
tion in [45]–[47] is given by
 

U1
(
e(k),ue(k)

)
= eT (k)Qe(k)+uT

e (k)Rue(k) (20)
ue(k) = u

(
x(k)
)−ud(k)

ud(k)
where . Since it is not convenient to cal-
culate  the  reference  control  policy ,  some  scholars
choose other forms of utility function. For example, Kiumarsi
and  Lewis  [48]  introduced  a  partially  model-free  ADP
method. In this work, an optimal tracking control of nonlinear
systems  with  input  constraints  is  achieved  by  using  a  dis-
counted  performance  function  based  on  the  augmented  sys-
tem.  In  [49],  Lin et  al.  proposed  a  policy  gradient  algorithm
and used experience replay for optimal tracking design. They
used the Lyapunov’s direct method to prove the uniform ulti-
mate boundedness (UUB) of the closed-loop system. The util-
ity function in [48] and [49] is described as
 

U2
(
e(k),u

(
x(k)
))
= eT (k)Qe(k)+uT (x(k)

)
Ru
(
x(k)
)
. (21)

Even though the steady control is avoided in (21), it can not
eventually eliminate the tracking error. To deal with this prob-

lem, Li et al. [50] developed a novel utility function given by
 

U3
(
e(k),r(k),u

(
x(k)
))
= eT (k+1)Qe(k+1). (22)

The optimality  of  VI and PI  was analyzed.  In  addition,  Ha
et  al.  [51]  also  analyzed  the  system  stability  of  the  VI  algo-
rithm for the novel utility function with a discount factor.

2) Continuous-Time Systems: There are also a few works on
the  continuous-time  systems.  In  [52],  Gao  and  Jiang  solved
the optimal output regulation problem by ADP and RL, where
ADP was for  the first  time combined with the output  regula-
tion problem for adaptive optimal tracking control with distur-
bance  attenuation.  However,  this  approach  requires  partial
knowledge  of  the  system  dynamics.  To  overcome  this  diffi-
culty,  in  [53],  the  integral  RL  algorithm  was  introduced  to
achieve  optimal  online  control,  where  the  off-policy  integral
RL was employed to obtain the optimal control feedback gain
for the first  time. In addition, differently from [52],  the algo-
rithm in [53] relieved the computational burden. Then, in [54],
Fu et  al.  proposed  a  robust  approximate  optimal  tracking
method.  In  order  to  relax  the  assumption  that  the  reference
signal must be continuous in continuous-time systems, a new
Lyapunov function was proposed without knowing the deriva-
tive information of the tracking error.

In  particular,  ADP  also  plays  a  pivotal  role  in  the  optimal
control of linear systems, such as the linear quadratic regula-
tion  (LQR)  problem  and  tracking  problem  [55]–[60].  Gener-
ally  speaking,  considering  optimal  control  for  nonlinear  sys-
tems,  the  HJB equation is  usually  solved to  acquire  the  opti-
mal  control  policy.  However,  the  linear  system  is  a  special
case,  which  has  good  properties.  The  solution  of  the  HJB
equation can be transformed into the solution of the algebraic
Riccati  equations,  so  as  to  obtain  the  exact  optimal  control
law.  In  [56],  Rizvi  and  Lin  proposed  an  online  Q-learning
method based on output feedback to tackle the LQR problem.
Wang et al. [57] developed an optimal LQR based on the dis-
counted VI algorithm and provided a series of criteria to judge
the  stability  of  the  systems.  In  [58],  the  LQR  problem  was
solved for the continuous-time systems with unknown system
dynamics and without an initial  stabilizing strategy. The pro-
posed  controller  was  updated  continuously  by  utilizing  the
measurable input-output data to avoid instability. For the same
uncertain  systems,  Rizvi  and Lin [59]  proposed a  model-free
static output feedback controller based on RL, which avoided
the  influence  of  the  exploration  bias  problem.  In  addition,
researchers  also  pay  much  attention  to  the  optimal  tracking
design for linear systems. For networked control systems with
uncertain  dynamics,  Jiang et  al. [60]  developed  a  Q-learning
algorithm to obtain the online optimal control policy based on
measurable data with network-induced dropouts.  

III.  Event-Triggered Control With ADP

In  this  section,  we  mainly  introduce  the  application  of
event-triggered  technology  under  the  ADP  framework.  It  is
discussed  for  discrete-time  systems  and  continuous-time  sys-
tems, respectively.

As  an  advanced  aperiodic  control  method,  event-triggered
control plays a vital role in decreasing the computational bur-
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den,  and enhancing the resource utilization rate.  In  short,  the
purpose  of  introducing  the  event-triggered  mechanism  is  to
reduce the updating times of  the controller  by decreasing the
sampling times of the system state.  Unlike the time-triggered
control method, event-triggered control is  designed with trig-
gering  conditions  that  are  required  to  satisfy  the  stability  of
the controlled system. The control input is updated only when
this triggering condition is violated. Conversely, if the trigger-
ing  condition  is  not  violated,  the  zero-order  hold  is  able  to
keep the control  input  unchanged until  the next  event  is  trig-
gered.  

A.  Event-Triggered Control for Discrete-Time Systems
For  discrete-time  systems,  the  event-triggered  technology

has been widely used in the adaptive critic framework. In [61],
Dong et al. used the event-triggered method to solve the opti-
mal  control  problem  under  the  HDP  framework,  and  proved
that  the  controlled  system  was  asymptotically  stable.  An
event-triggered  near-optimal  control  algorithm  was  proposed
for  the  affine  nonlinear  dynamics  with  constrained  inputs  in
[62].  In  addition,  a  special  cost  function  was  introduced  and
the  system  stability  was  analyzed.  In  [63],  a  novel  adaptive
control  approach with  disturbance rejection was designed for
linear  discrete-time  systems.  In  [64],  Zhao et  al.  proposed  a
new event-driven method via  direct  HDP.  Then,  the  UUB of
the  system  states  and  the  weights  in  the  control  policy  net-
works  was  proven.  In  [65]  and  [66],  a  novel  event-triggered
optimal  tracking  method  was  developed  to  control  the  affine
system. It is worth noting that the triggering condition in these
two works only acts on the time step and the updating stage of
weights  is  not  involved  in  the  iterative  process.  For  systems
whose  models  are  known,  by  using  the  event-triggered  con-
trol approach, not only the reference trajectory can be tracked,
but also the computational burden can effectively be reduced.
In  [67],  Wang et  al.  proposed  an  event-based  DHP  method,
where  three  kinds  of  neural  networks  were  used  to  identify
nonlinear  systems,  estimate  the  gradient  of  the  cost  function,
and approximate the tracking control law. In addition, the sta-
bility of the event-based controlled system was proved by the
theorem of input-to-state stability and the control scheme was
applied to wastewater treatment simulation platform.

{k j}∞j=0 k j

j ∈ N
k0,k1,k2, . . .
k j k j+1

u
(
x(k)
)

u
(
x(k)
)
= u
(
x(k j)
)

x(k j)
k j k j ≤ k <

k j+1

k ∈ [k j,k j+1)

For  (1),  considering  the  role  of  the  event-triggered  mecha-
nism, we define a monotonically increasing sequence consist-
ing of  different  sampling states  as ,  where  is  the jth
sampling moment, . The event-based system state signal
is  only  updated  at  sampling  instants: .  In  other
words, for the sampled signals between  and , the feed-
back  control  law  remains  unchanged.  Then,  the  con-
trol law can be expressed by , where  is
the  system  state  vector  at  the  sampling  instant , 

. In addition, we apply the zero-order-hold to maintain the
unchanged input of the event-based controller within the range

.
Then, the event-triggered error vector is defined as

 

ϑ(k) = x(k j)− x(k) (23)
k j ≤ k < k j+1 ϑ(k) = 0 k = k jwhere .  Obviously,  we  have  at .

Then, the closed-loop form of system (1) becomes

 

x(k+1) = f
(
x(k)
)
+g
(
x(k)
)
u
(
x(k)+ϑ(k)

)
. (24)

V∗
(
x(k)
)

u
(
x(k j)
)

V∗
(
x(k)
)

According  to  Bellman’s  optimality  principle,  the  optimal
cost  function  can  be  obtained  by  designing  a  sequ-
ence  of  the  event-based  control  law .  Therefore,

 can be expressed by
 

V∗
(
x(k)
)
=min

u(·)

∞∑
p=k

U
(
x(p),u

(
x(k j)
))
. (25)

u∗
(
x(k j)
)

The corresponding optimal control  can be obtained
by
 

u∗
(
x(k j)
)
= −1

2
R−1
(
∂x(k+1)
∂u
(
x(k j)
) )T ∂V∗(x(k+1)

)
∂x(k+1)

. (26)

Next, we introduce several triggering conditions commonly
used in combination with adaptive critic methods.

I1) Suppose there exists a positive number  satisfying
 

∥x(k+1)∥ ≤ I∥ϑ(k)∥+I∥x(k)∥. (27)
∥ϑ(k+1)∥ ≤ ∥x(k+1)∥In  addition,  the  inequality  holds.  By

referring  to  [61],  [62],  [67],  a  triggering  condition  was
designed as
 

∥ϑ(k)∥ ≤ ϑT =
1− (2I)k−k j

1−2I I∥x(k j)∥, I , 0.5. (28)

I
We can obtain different levels of triggering effect by appro-

priately adjusting the parameter .

σa

2) According to the updating method of neural networks in
[64],  we assume that  the  activation  function  in  the  action
network satisfies
 

∥σa(x1)−σa(x2)∥ ≤ P∥x1− x2∥ (29)
x1, x2 ∈ X P Xfor all , where  is a positive constant and  is the

domain of system dynamics.
Lemma 1  [64]: Let  (29)  hold  for  the  nonlinear  system (1).

Assume the triggering condition is defined as follows:
 

∥ϑ(k)∥2 ≤ λmin(Q)β
2λmax(R)∥ŵa∥2P2 ∥x(k)∥2 (30)

0 ≤ β < 1 ŵa
λmin(·) λmax(·)
where  and  is  the  weight  of  the  action  network.

 and  represent the minimal and maximal eigen-
values  of  a  matrix,  respectively.  In  addition,  we  make  the
action network learning rate satisfy
 

la <
1

∥σa(k)∥2
(31)

and the critic network learning rate satisfy
 

lc <
1

∥σc(k)∥2
. (32)

Then, we can declare that the event-based control input can
guarantee the UUB of the controlled system.

3)  The  triggering  condition  described  below  can  only  be
applied  to  the  time-based  case.  For  the  iterative  process,  the
traditional  time-triggered  method  is  adopted.  In  [65],  [66],  a
triggering condition was defined as follows:
 

Tγ
(
x(k+1), x(k), x(k j)

) ≤ 0 (33)
where 
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Tγ
(
x(k+1), x(k), x(k j)

)
= γ
(
∆V∗
(
x(k)
))
+ xT (k)Qx(k)

+uT (x(k j)
)
Ru
(
x(k j)
)

(34)
γ > 1 ∆V∗

(
x(k)
)
= V∗
(
x(k+1)

)−V∗
(
x(k)
)

k j+1

with .  In  addition, 
represents  the  first-order  difference  of  the  optimal  cost  func-
tion  under  the  time-triggered  mechanism.  According  to  the
updating rule of the event-triggered mechanism, the next sam-
pling time  is expressed as
 

k j+1 = inf
{
k|Tγ
(
x(k+1), x(k), x(k j)

)
> 0,k > k j

}
. (35)

According to the results  in [65],  the adjustable parameter γ
plays  an essential  role  in  the  event-triggered optimal  control.
If  the  main  emphasis  is  on  optimizing  the  cost  function, γ
should be chosen as small as possible. On the contrary, when
considering resource utilization, γ should be chosen as large as
possible.  Therefore,  the  selection  of γ should  be  determined
according to the actual need.  

B.  Event-Triggered Control for Continuous-Time Systems
There are extensive studies of event-triggered control meth-

ods  within  the  framework  of  ADP  for  continuous-time  sys-
tems.  In  [68],  Luo et  al.  designed an  event-triggered  optimal
control  method  directly  based  on  the  solution  of  the  HJB
equation. In addition, the stability of the system and the lower
bound  on  the  interexecution  times  were  proved  theoretically.
In  [69],  for  a  class  of  nonlinear  multi-agent  systems,  novel
event-triggered and asynchronous edge-event triggered mech-
anisms  were  designed  for  the  leader  and  all  edges,  respec-
tively. In [70], Huo et al. developed a decentralized event-trig-
gered  control  method  to  aperiodically  update  each  auxiliary
subsystem. In [71], a different event-based decentralized con-
trol  scheme  was  proposed.  They  used  codesign  strategies  to
trade-off control policies and triggering thresholds to simulta-
neously  achieve  optimization  of  subsystem  performance  and
reduction of computational burden.

f +gu

u
(
x(t)
)

Considering the continuous-time nonlinear system (10),  we
assume  to  be  Lipschitz  continuous  on  Ω that  contains
the origin.  We assume that  there exists  an admissible control

 and the cost function is defined as
 

Vu
(
x(t)
)
= 2

w ∞
t

(
Q
(
x(t)
)
+ ∥u(x(t)

)∥2R)dt (36)

x(t) = x ∈Ω Q
(
x(t)
)
= xT (t)Qx(t) Vu

(
x(t)
) ≥ 0

Vu(0) = 0
for  all ,  where , 
and . The corresponding Hamiltonian is expressed as
 

H
(
x,u(x),∇Vu(x)

)
= [∇Vu(x)]T ( f (x)+g(x)u(x)

)
+Q(x)+ ∥u(x)∥2R (37)

∇Vu(x) = ∂Vu(x)
∂xwhere . By using (37), differentiating (36) with

respect to t yields
 

H
(
x,u(x),∇Vu(x)

)
= 0. (38)

V∗(x) = Vu∗ (x)Let . The optimal cost function can be expre-
ssed as
 

V∗(x) =min
u

V(x0,u). (39)

Next,  the  optimal  control  law  under  the  time-triggered
mechanism is defined as 

u∗(x) = −1
2

R−1gT (x)∇V∗(x). (40)

The event-triggered mechanism is similar to that of discrete-
time systems. Therefore, we define the state as
 

x̆(t) =
{

x(t), t = t j

x(t j), t ∈ (t j, t j+1)
(41)

j ∈ Nfor  all .  The  optimal  control  law  under  the  event-trig-
gered mechanism can be expressed as
 

u∗
(
x̆(t)
)
= −1

2
R−1gT (x̆(t))∇V∗(x̆(t)). (42)

For conventional event-triggered control, the design of trig-
gering  conditions  is  inevitable.  Next,  we  introduce  two  trig-
gering conditions under continuous-time environments.

1)  This  triggering  condition  is  established  based  on  a  rea-
sonable Lipschitz condition.

u∗
(
x(t)
)

Ku∗ > 0

Assumption  1  [72]: Assume  that  has  the  Lipschitz
property  on  Ω.  In  addition,  there  exists  a  Lipschitz  constant

 such that
 

∥u∗(x(t)
)−u∗

(
x̆(t)
)∥ ≤ Ku∗∥ϑ j(t)∥ (43)

x(t), x̆(t) ∈Ω ϑ j(t) = x̆(t)− x(t)for  all ,  where  is  the  sampling
error.

Lemma  2  [72]: Suppose  that  Assumption  1  holds.  If  the
triggering condition is defined as
 

∥ϑ j(t)∥2 ≤
(1−2θt)λmin(Q)

2K2
u∗

∥x(t)∥2 = ∥ϑT (t)∥2 (44)

0 < θt < 1/2 ϑT (t)
u∗
(
x̆(t)
)where  and  is  the  triggering  threshold,
 can  force  system  (10)  to  be  stable  in  the  sense  of

UUB.

t j

2) There is another triggering condition which is similar to
the  third  one  described  in  the  discrete-time  case.  In  [68],  in
order to determine the release time instant , an event-trigger-
ing condition is given as follows:
 

Cα
(
x(t), x̆(t)

)
< 0 (45)

where
 

Cα
(
x(t), x̆(t)

)
= Q(x(t))+ ∥u(x(t))∥2R

+ (1+α)
(
∇V∗
(
x(t)
))T (

f
(
x(t)
)
+g
(
x(t)
)
u
(
x̆(t)
))

(46)

α > 0with  being  a  constant.  Then,  it  is  proved  that  the  con-
trolled system was asymptotically stable by using this trigger-
ing condition.

The  main  purpose  of  the  event-triggered  technology  is  to
reduce  the  waste  of  communication  resources  and  improve
computational  efficiency.  In  recent  years,  networked  control
systems  have  attracted  extensive  attention.  There  is  also  an
increasing amount of work aimed at reducing the energy con-
sumption  of  network  interfaces  and  ensuring  the  sustainabil-
ity of networked control systems. Some related studies can be
found in [73], [74].  

IV.  Robust Control and Game Design With ADP

In  modern  engineering  systems,  the  real  control  plants  are
always  affected  by  changes  derived  from  the  system  model,
external  environment,  and  other  factors.  Hence,  it  is  of  great
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importance  to  attain  the  robust  control  strategy  to  avoid  the
influence of  uncertainties.  The problem of robust  control  can
be turned into a problem of optimal control, which is a useful
method for attaining the robust controller. However, for com-
plex nonlinear systems, it is difficult to solve the optimal con-
trol  problem.  To deal  with  this  dilemma,  the  ADP method is
utilized.  In  this  section,  recent  research  progress  of  ADP  is
described,  such as using ADP to solve the problem of robust
control,  control,  and  multi-player  game  design.  In  addi-
tion, some other advanced control methods with ADP are sup-
plemented at the end of this section.  

A.  Robust Control Design With ADP
By utilizing ADP, robust controllers can be designed based

on  the  obtained  optimal  control  strategy.  Compared  to  tradi-
tional methods, controllers guided by ADP can not only stabi-
lize the system, but also optimize the performance of systems.
The recent work on robust control is analyzed from both dis-
crete-time and continuous-time aspects in this section.

1) Discrete-Time Systems: We consider  a  class  of  discrete-
time nonlinear systems with uncertain terms as
 

x(k+1) = f
(
x(k)
)
+g
(
x(k)
)
u(k)+∆ f

(
x(k)
)

(47)
k ∈ N x(k) ∈ Rn

u(k) ∈ Rm f (·) g(·)
f (0) = 0 ∆ f

(
x(k)
)
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(
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)
= g
(
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)
d
(
x(k)
)

d
(
x(k)
) ∈ Rm d

(
x(k)
) ∥d(x(k)
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dM
(
x(k)
)

dM(0) = 0

u
(
x(k)
)

d
(
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)

u
(
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where ,  the  state ,  and  the  control  input
.  and  are  differentiable  with  respect  to  its

arguments  and .  is  the  unknown  dynamics
function.  Considering  the  matched  uncertainty  of  system
dynamics,  we  can  define .  In  addi-
tion,  and  is upper bounded by 

 with .  For  the  uncertain  system  with  the
matched uncertainty, in order to attain robust stabilization, we
need  to  find  a  state  feedback  control  law ,  which  can
make  the  closed-loop  system  asymptotically  stable  for  all
uncertainties .  A suitable  cost  function is  designed for
the corresponding nominal system. In this way, the problem of
robust control can be transformed into the problem of optimal
control. For the transformed optimal control problem, our goal
is to acquire the feedback control law  to minimize the
cost function
 

V
(
x(k)
)
=

∞∑
k=0

{
ρd2

M
(
x(k)
)
+U
(
x(k),u

(
x(k)
))}

(48)

ρ > 0 U
(
x(k), u(x(k))

)
= xT Qx+

uT Ru ≥ 0 U(0,0) = 0

V
(
x(k)
)

where ,  the  utility  function 
 with ,  and Q and R are  positive  definite

matrices. Note that the cost function (48) is different from the
common  form  in  the  optimal  control  problem.  According  to
Bellman’s optimality principle, the cost function  satis-
fies the discrete-time HJB equation and can be expressed as
 

V∗
(
x(k)
)
= min

u(x)

{
ρd2

M
(
x(k)
)
+U
(
x(k),u

(
x(k)
))

+V∗(x(k+1))
}
. (49)

u∗(x)Hence, the optimal control law  can be obtained as fol-
lows:
 

u∗
(
x(k)
)
= −1

2
R−1gT (x(k)

)∇V∗
(
x(k+1)

)
. (50)

u∗
(
x(k)
)

Then,  by  using  the  optimal  control  law ,  the  dis-

crete-time HJB equation (49) becomes
 

V∗
(
x(k)
)
= ρd2

M
(
x(k)
)
+U
(
x(k),u∗

(
x(k)
))

+V∗
(
x(k+1)

)
. (51)

By choosing an appropriate utility function, robust stabiliza-
tion  was  transformed  into  an  optimal  control  problem  for
nominal  systems  [75]–[77].  In  [76],  the  idea  of  solving  the
generalized  HJB  equation  was  employed  to  derive  a  robust
control  policy  for  discrete-time  nonlinear  systems  subject  to
matched uncertainties. A neural network was used as the func-
tion  approximator.  In  addition,  Li et  al.  [77]  proposed  an
adaptive  interleaved  RL  algorithm  to  find  the  robust  con-
troller  of  discrete-time  nonlinear  systems  subject  to  matched
or  mismatched  uncertainties.  An  action-critic  structure  was
given to skillfully handle experiments. The convergence of the
proposed algorithm and the UUB of the system were proved.
An appropriate utility function was chosen as
 

U
(
x(k),u

(
x(k)
))
= xT (k)Qx(k)

+uT (x(k)
)
u
(
x(k)
)
+βx(k). (52)

βx(k)
xT (k)Qx(k)+

uT (x(k)
)
Ru
(
x(k)
)Note  that  there  is  a  new  term  in  the  utility  function

compared  to  the  traditional  expression  of 
.  Tripathy et  al.  [78]  introduced  a  virtual

input to compensate the effect of uncertainties. By defining a
sufficient condition, the stable control law of the mismatched
system  was  derived.  At  the  same  time,  the  stability  of  the
uncertain system was proved. The uncertainty can be decom-
posed in matched and mismatched components as
 

d
(
x(k)
)
= g
(
x(k)
)
g
(
x(k)
)+
Sϕ
(
x(k)
)

+
(
Im−g

(
x(k)
)
g
(
x(k)
)+)
Sϕ
(
x(k)
)

(53)

Im
g
(
x(k)
)+
= (gT (x(k))g(x(k)))−1gT (x(k))

g(x(k)) S

where  denotes the identity matrix with approximate dimen-
sions.  denotes  the  left
pseudo inverse of the matrix , and  is a design matrix.

2)  Continuous-Time  Systems: For  continuous-time  nonlin-
ear systems, the principle of robust control with ADP is simi-
lar to that of discrete-time systems. Considering uncertainties,
the continuous-time nonlinear system is defined as
 

ẋ(t) = f
(
x(t)
)
+g
(
x(t)
)
u(t)+∆ f

(
x(t)
)

(54)

u
(
x(t)
)and the corresponding nominal system is defined as in (10). In

order  to  obtain  the  optimal  feedback  control  law ,  we
need to minimize the cost function
 

V (x0) =
w ∞

0

{
ρd2

M
(
x(τ)
)
+uT (x(τ)

)
Ru
(
x(τ)
)}

dτ

=
w ∞

0
r
(
x
(
τ
)
,u
(
x(τ)
))

dτ (55)

ρ > 0 r(x,u) ≥ 0

u ∈ Ψ(Ω) Ψ(Ω)

where ,  and  the  utility  function .  Compared
with the normal form, it is worth noting that the cost function
(55) is  modified to reflect  matched uncertainties.  We assume
the control input ,  where  is  the set  of admissi-
ble  control  laws  on  Ω.  Then,  the  nonlinear  Lyapunov  equa-
tion can be expressed as
 

r(x,u(x))+
(∇V(x)

)T ( f (x)+g(x)u(x)
)
= 0 (56)
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∇V(x) = ∂V(x)
∂xwhere .  We  define  the  optimal  cost  function  of

the system (10) as follows:
 

V∗(x0) =min
u

w ∞
0

r
(
x(τ),u

(
x(τ)
))

dτ. (57)

According to (56), we define the Hamiltonian as
 

H
(
x,u,∇V(x)

)
= ρd2

M(x)+uT (x)Ru(x)

+
(∇V(x)

)T ( f (x)+g(x)u(x)
)
. (58)

Considering  (56)–(58),  the  optimal  cost  function  satisfies
the HJB equation
 

min
u

H
(
x,u,∇V∗(x)

)
= 0. (59)

u∗(x) =
argmin

u
H(x,u,∇V∗(x))

Hence,  we  can  obtain  the  optimal  control  law 
. That is

 

u∗(x) = −1
2

R−1gT (x)∇V∗(x). (60)

ADP-based robust  control  schemes can be  divided into  the
following categories: least-squares-based transformation meth-
ods  [79],  adaptive-critic-based  transformation  methods  [80],
data-based transformation methods [81], robust ADP methods
[82],  [83],  and  so  on.  In  [84],  Wang  proposed  an  adaptive
method  based  on  the  recurrent  neural  network  to  solve  the
robust  control  problem.  A  cost  function  with  the  additional
utility function was defined to counteract the effect of pertur-
bations on the system and the stability of the relevant nominal
system was proved. The application scope of the ADP method
was  further  expanded.  In  [85],  the  robust  control  was  trans-
formed into an optimal tracking control problem by introduc-
ing  an  auxiliary  system  including  a  steady-state  part  and  a
transient  part,  and  the  stability  of  the  transient  tracking  error
was analyzed. Pang et al. [86] studied the robustness of PI for
addressing the continuous-time infinite-horizon LQR problem.  

H∞B.   Control Design With ADP
H∞

H∞

H∞

In  control  design,  a  control  law  is  constructed  for
dynamical  systems  containing  external  disturbances  and
uncertainties. According to the principle of minimax optimal-
ity, the  control problem is usually described as two-player
zero-sum differential  games.  In  order  to  obtain  the  controller
that minimizes the cost function in the worst case, we need to
find  the  Nash  equilibrium  solution  corresponding  to  the
Hamilton-Jacobi-Isaacs  (HJI)  equation.  However,  for  general
nonlinear  systems,  it  is  hard  to  obtain  the  analytical  solution
of the HJI equation, which is similar to the difficulty encoun-
tered  in  solving  the  nonlinear  optimal  control  problem.  In
recent years, ADP has been widely used for solving  con-
trol problems.

1) Discrete-Time Systems: Consider the following discrete-
time nonlinear system with external disturbances:
 

x(k+1) = f
(
x(k)
)
+g
(
x(k)
)
u(k)+h

(
x(k)
)
υ(k) (61)

x(k) ∈ Rn u(k) ∈ Rm

υ(k) ∈ Rq

f +gu+hυ

where  is  the  state  vector,  is  the  control
input,  and  is  the  disturbance  input.  We  assume

 is Lipschitz continuous on Ω containing the origin.
We define the cost function as follows: 

V
(
x(k),u(k),υ(k)

)
=

∞∑
k=0

U
(
x(k),u(k),υ(k)

)
(62)

U(x(k),u(k),υ(k))= xT (k)Qx(k)+uT (k)Ru(k)− ℓ2υT (k)×
Pυ(k)

ℓ

where 
 is the utility function. Q, R,  and P are positive definite

matrices.  is a positive parameter.(
u∗(k),υ∗(k)

)The  design  objective  is  to  find  the  saddle  point  solution
, such that the following Nash condition holds:

 

V∗
(
x(k)
)
=min

u
max
υ

{
V
(
x(k),u(k),υ(k)

)}
=max

υ
min

u

{
V
(
x(k),u(k),υ(k)

)}
. (63)

V∗
(
x(k)
)Based  on  Bellman’s  optimality  principle,  the  optimal  cost

function  satisfies  the  following  discrete-time  HJI
equation:
 

V∗
(
x(k)
)
= min

u
max
υ

{
U
(
x(k),u(k),υ(k)

)
+V∗
(
x(k+1)

)}
. (64)(

u∗(k),υ∗(k)
)

Then, the saddle point solution  is
 

u∗(k) = −1
2

R−1gT (x(k)
)∇V∗

(
x(k)
)

υ∗(k) =
1

2ℓ2
P−1hT (x(k)

)∇V∗
(
x(k)
)
.

(65)

H∞

H∞

In [87],  [88],  the  tracking control  problem was studied
by using the data-based ADP algorithm.  Hou et  al.  [87]  pro-
posed an action-disturbance-critic  structure  to  ensure  that  the
minimum  cost  function  and  the  optimal  control  policy  were
obtained.  Liu et  al.  [88]  transformed  the  time-delay  optimal
tracking  control  problem  with  disturbances  into  a  zero-sum
game  problem.  An  ADP-based  tracking  control  method
was  proposed.  A  dual  event-triggered  constrained  control
scheme  based  on  DHP  [89]  was  used  to  solve  the  zero-sum
game problem and was eventually applied to the F-16 aircraft
system. A disturbance-based neural network was added to the
action-critic  structure  by  Zhong et  al.  [90].  They  relaxed  the
requirement for system information by defining a new type of
the performance index. This approach extended the applicabil-
ity of the ADP algorithm and was the first implementation of
model-free globalized dual heuristic programming (GDHP).

2)  Continuous-Time  Systems: Consider  a  class  of  continu-
ous-time nonlinear systems with external disturbances
 ẋ(t) = f

(
x(t)
)
+g
(
x(t)
)
u(t)+h

(
x(t)
)
υ(t)

y(t) = Z
(
x(t)
) (66)

υ(t) ∈ Rq y(t) ∈ Rp

h(·)
where  is the disturbance input,  is the objec-
tive output,  and  is  differentiable  with respect  to  its  argu-
ments.

u(x)

L2-gain ℓ

In the design process of the nonlinear disturbance rejection,
we  should  find  a  feedback  control  law  such  that  the
closed-loop  system  is  asymptotically  stable  and  has  an

 no larger than . That is
 w ∞

0

[∥∥∥Z(x(τ)
)∥∥∥2+uT Ru

]
dτ ≤ ℓ2

w ∞
0
υT Pυdτ (67)

∥Z(x(τ)
)∥2 = xT (τ)Qx(τ)

H∞
where .  Note  that  the  solution  of  the

 control problem is the saddle point of zero-sum game the-
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(u∗,υ∗) u∗ υ∗ory and is denoted as a pair of laws ,  where  and 
are the optimal control and the worst-case disturbance, respec-
tively.

We define the infinite horizon cost function as follows:
 

V(x,u,υ) =
w ∞

t
U
(
x(τ),u(τ),υ(τ)

)
dτ (68)

U(x,u,υ) = xT Qx+uT Ru− ℓ2υT Pυ

(u∗,υ∗)

where . As for the continu-
ous-time  case,  the  objective  is  to  find  the  feedback  saddle
point solution , such that the Nash condition
 

V∗(x0) =min
u

max
υ

V(x0,u,υ)

=max
υ

min
u

V(x0,u,υ) (69)

V∗(x0)holds, where  is the optimal cost. If the cost function is
continuously  differentiable,  its  infinitesimal  version  is  the
nonlinear Lyapunov equation
 

0 = U(x,u,υ)+
(∇V(x)

)T ( f +gu+hυ) (70)
V(0) = 0with . The Hamiltonian is defined as

 

H
(
x,u,υ,∇V(x)

)
= U
(
x,u,υ

)
+
(∇V(x)

)T ( f +gu+hυ) . (71)
According  to  Bellman’s  optimality  principle,  the  optimal

cost function should satisfy the HJI equation
 

min
u

max
υ

H
(
x,u,υ,∇V∗(x)

)
= 0. (72)

Then, we obtain the optimal control law and the worst-case
disturbance law as
 

u∗(x) = −1
2

R−1gT (x)∇V∗(x)

υ∗(x) =
1

2ℓ2
P−1hT (x)∇V∗(x).

(73)

H∞

In  practical  applications,  the  exact  system  dynamics  are
often  difficult  to  obtain.  The  identification  method  can  also
produce  unpredictable  errors.  For  continuous-time  unknown
nonlinear  zero-sum game problems,  Zhu et  al.  [91]  proposed
an  iterative  ADP  method  by  efficiently  using  online  data  to
train the neural network. In [92], a novel distributed  opti-
mal tracking control scheme was designed for a class of physi-
cally interconnected large-scale nonlinear systems in the pres-
ence of the strict-feedback form, the external disturbance, and
saturating actuators.  

C.  Game Design With ADP
Modern control systems are becoming more and more com-

plex with many decision makers, who compete and cooperate
with  each  other.  As  an  essential  theory  for  multiple  partici-
pants  to  find  optimal  solutions,  game  theory  is  also  increas-
ingly  studied  in  the  field  of  control.  In  accordance  with  the
cooperation pattern among the players,  it  can be divided into
zero-sum  and  nonzero-sum  games,  or  non-cooperative  and
cooperative  games.  In  the  zero-sum game,  the  players  of  the
game are not  cooperative.  However,  in a  nonzero-sum game,
there is a possibility of cooperation among the players so that
each of them gets very high performance. Similarly, game the-
ory  can  be  combined  with  ADP  techniques  to  solve  optimal

control  problems.  With  the  rapid  development  of  iterative
ADP,  a  lot  of  new methods  have  been  emerged  to  deal  with
games for N players [21], [93]–[99].

1) Discrete-Time Systems: Consider a class of discrete-time
systems with N players
 

x(k+1) = f
(
x(k)
)
+

N∑
j=1

g j
(
x(k)
)
u j(k) (74)

x ∈ Rn u j ∈ Rm j j = 1,2, . . . ,
N f (·) ∈ Rn×n g j(·) ∈ Rn×m j

N+ = {1,2, . . .}
u−i = {u j, j ∈ N, j , i}

where  is the state vector and  with 
 is  the  control  input.  and  are

unknown  system  matrices.  Since  there  are N players,  they
influence  each other  through the  system state.  We define  the
set  and the complementary set of the player i is

.
The cost function is defined as

 

Vi
(
x(k)
)
=

∞∑
k

Ui
(
x(k),ui(k),u−i(k)

)
(75)

Ui
(
x(k),ui(k),u−i(k)

)
= xT (k)×

Qix(k)+
∑N

j=1 uT
j (k)Ri ju j(k) Qi Ri j

where  the  utility  function  is 
.  and  are  symmetric  matri-

ces with appropriate dimensions.
The optimal cost functions are given as

 

V∗i
(
x(k)
)
=min

ui

∞∑
k

Ui
(
x(k),ui(k),u−i(k)

)
(76)

which is  known as the discrete-time HJB equation.  Then, we
can obtain the optimal control law
 

u∗i (k) = −1
2

R−1
ii gT

i (x(k))∇V∗i
(
x(k+1)

)
. (77)

Zhang et  al.  [21]  combined  game  theory  and  the  PI  algo-
rithm to solve the multiplayer zero-sum game problem based
on  ADHDP.  This  method  not  only  ensured  the  system  to
achieve  stability  but  also  minimized  the  performance  index
function for each player. Song et al. [93] divided the off-pol-
icy N-coupled  Hamilton-Jacobi  (HJ)  equations  into  an
unknown parameter  part  and a system operating data part.  In
this  way,  the  HJ  equation  can  be  solved  without  the  system
dynamics.  Therefore,  this  approach  was  very  effective  for
solving  multiplayer  non-zero-sum  game  problems  with
unknown  system  dynamics.  For  the  domain  shift  problem,
Raghavan et al. [94] compensated for the optimal desired shift
by constructing a zero-sum game and proposed a direct error-
driven learning scheme.

2)  Continuous-Time  Systems: Consider  the  following  con-
tinuous-time systems with N players:
 

ẋ(t) = f
(
x(t)
)
+

N∑
j=1

g j
(
x(t)
)
u j(t) (78)

u j j = 0,1, . . . ,Nwhere  with  represents  the  control  input.
Then, we define the cost function as
 

Vk(x,u1, . . . ,uN) =
w ∞

0

Qk(x)+
N∑

j=1

uT
j Rk ju j

dτ (79)

Qk(x) Rk jwhere  is a positive definite function and  represents

WANG et al.: RECENT PROGRESS IN RL AND ADP FOR ADVANCED CONTROL APPLICATIONS 27 



a positive definite matrix with appropriate dimensions.
Assuming  that  the  cost  function  is  continuously  differen-

tiable,  the  Hamiltonian  associated  with  the kth  player  is
defined as
 

Hk(x,Vk,u1, . . . ,uN) = Qk(x)+
N∑

j=1

uT
j Rk ju j

+ (∇Vk)T

 f (x)+
n∑

j=1

g j(x)u j

 . (80)

V∗kThe optimal cost function  satisfies
 

0 =min
uk

Hk(x,V∗k ,u1, . . . ,uN) (81)

and the optimal control law can be obtained by
 

u∗k = −
1
2

R−1
kk gT

k (x)∇V∗k . (82)

Inspired by zero-sum and nonzero-sum game theory, Lv and
Ren [98] proposed a solution for the multiplayer mixed-zero-
sum nonlinear games. They defined two value functions con-
taining  performance  indicators  for  zero-sum  games  and
nonzero-sum  games,  respectively.  The  optimal  strategy  of
each  player  was  obtained  without  using  the  action  network
and the stability of the system was proved. In addition, Zhang
et al. [99] developed a novel near-optimal control scheme for
unknown  nonlinear  nonzero-sum  differential  games  via  the
event-based ADP algorithm.  

D.  Other Advanced Control Methods With ADP
With the development  of  ADP technology,  more and more

advanced  control  methods  have  been  improved.  This  section
shows  the  application  of  ADP  techniques  in  decentralized,
distributed, and multi-agent systems. Meanwhile, the research
progress  related  to  the  ADP/RL  technique  in  the  field  of
model predictive control (MPC) is displayed.

Modern  control  systems  usually  consist  of  several  subsys-
tems with  essential  interconnections.  It  is  difficult  to  analyze
large-scale systems by using classical centralized control tech-
niques.  Therefore,  using  decentralized  or  distributed  control
strategies  is  usually  preferred  to  solve  optimal  control  prob-
lems for several subsystems. Yang et al. [100], [101] not only
studied  the  decentralized  stability  problem  subject  to  asym-
metric constraints, but also transformed the decentralized con-
trol  problem into  a  set  of  optimal  control  problems  by  intro-
ducing discounted cost functions in the auxiliary subsystems.
Tong et  al.  [102]  developed  an  adaptive  fuzzy  decentralized
control  method  for  optimal  control  problems  of  large-scale
nonlinear  systems  with  strict-feedback  form.  They  proposed
two controllers,  i.e.,  a  feedforward  controller  and  a  feedback
controller, to ensure that the tracking error of the closed-loop
system converges to a small range. Without using the dynamic
matrix of all subsystems, Song et al. [103] developed a novel
parallel  PI  algorithm  to  implement  the  decentralized  sliding
mode control scheme.

In  [104],  taking  the  unknown discrete-time system dynam-
ics  into  account,  a  local  Q-function-based  ADP  method  was
introduced to address the optimal consensus control problem.

Besides,  a  distributed  PI  technique  was  developed  by  the
defined local Q function, which was proved to converge to the
solutions of the coupled HJB equations. Fu et al. [105] devel-
oped a distributed optimal observer for the discrete-time non-
linear active leader with unknown dynamics. It is worth men-
tioning  that  the  design  of  the  distributed  optimal  observer
based on ADP was developed via the action-critic framework.
For the continuous-time distributed system, due to the limited
transmission  rate  of  communication  channels  and  the  limited
bandwidth  in  some  shared  communication  networks,  time
delay is  an inescapable factor  when dealing with the consen-
sus  problem.  Therefore,  in  [106],  for  high-order  integrator
systems  with  matched  external  disturbances,  the  fixed-time
leader-follower  consensus  problem  was  coped  with  by  con-
structing the distributed observer.

Jiang et al. [107] estimated the leader’s state and dynamics
through  an  adaptive  distributed  observer,  and  used  a  model-
state-input structure to solve the regulation equations of each
follower. In addition, the stability of the system was analyzed
independently.  In  [108],  Sargolzaei et  al.  introduced  a  Lya-
punov-based  method,  which  reduced  false-data-injection
attacks in  real  time for  a  centralized multi-agent  system with
additive disturbances and input delays. Besides, the condition
of  the  persistence  of  excitation  was  hard  to  verify.  Huang
et  al.  [109]  redesigned  the  updating  laws  of  the  action  and
critic  components  to  ensure  the  stability  of  the  system  by
introducing  the  persistence  of  excitation  and  additional  con-
straints.  In  addition,  the  study  of  tracking  control  of  multi-
agent  systems  has  attracted  significant  attention  due  to  its
broad  background  of  applications.  For  example,  Gao et  al.
[110] first integrated ADP with the internal model principle to
investigate the problem of cooperative adaptive optimal track-
ing  control.  A  distributed  control  policy  based  on  the  data-
driven  technique  was  put  forward  for  the  leader  model  with
external disturbances. Furthermore, the stability of its closed-
loop system was also demonstrated.

MPC methods  mainly  solve  optimal  control  problems with
constraints  [111]–[118].  There  is  a  very  similar  theoretical
scheme between ADP and MPC. The core of the two methods
is  to  solve  the  optimal  control  problem and obtain  the  corre-
sponding  control  policy.  Furthermore,  the  control  policy
should be able to ensure stability. Therefore, the combination
of  MPC and ADP is  a  promising  and  important  direction.  In
[112],  Bertsekas  pointed  out  the  relationship  between  MPC
and  ADP.  The  core  idea  and  mathematical  essence  of  them
were  proposed based on PI.  Dual-mode MPC has  been com-
bined  with  the  action-critic  structure  to  improve  the  perfor-
mance and guarantee stability [113]. Based on these, Hu et al.
[114]  introduced  a  model  predictive  ADP  method  for  path
planning  of  unmanned  ground  vehicles  at  the  road  intersec-
tion.  RL has  been  widely  used  in  feedback  control  problems
[115]. In general, the closed-loop stability with MPC is guar-
anteed and various MPC strategies have been proposed. How-
ever,  the  performance  of  MPC and its  stability  guarantee  are
limited by an accurate model of the system. Accurate system
models  are  difficult  to  obtain  in  real  control  systems.  Gener-
ally, states and actions are continuous and it is almost impos-
sible to represent them accurately. Therefore, function approx-
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imation  tools  must  be  used  [116].  Several  studies  combined
the advantages of RL with MPC to solve optimal control prob-
lems and generated a new field [117].  Zanon and Gros [118]
proposed  the  combination  of  RL and  MPC to  exploit  advan-
tages of both methods and then obtained an optimal and safe
controller.  Meanwhile,  it  ensured  the  robustness  of  MPC
based  on  RL.  Subsequently,  the  data-driven  MPC  using  RL
has become an effective approach [119].  

V.  Boosting ADP via Data Utilization and RL

The concept of RL appeared earlier than ADP. The work of
psychologist  Skinner  and  his  followers  studied  how  animals
learn  to  change  their  behaviors  according  to  the  result  of
reward and punishment. The latest work in the field of RL still
uses  the  traditional  reward “r” instead  of  the  utility  function
“U”. RL emphasizes immediate reward over the known utility
function. Although the focus of ADP is different from RL and
the work is relatively independent, the ideas of many methods
show  that  they  have  common  roots.  Werbos  first  combined
RL with DP to build a framework that approximates the Bell-
man  equation  and  proposed  HDP  in  the  1970s.  The  original
proposition  of  this  approach  was  essentially  the  same  as  the
formulation of TD in RL [6]. Similarly, ADHDP and Q-learn-
ing  both  employed  the  state-action  function  to  evaluate  the
current policy [10]. Overall, ADP/RL is a class of algorithms
obtained  from  solving  optimal  control  problems  by  approxi-
mation methods.

Markov  decision  process  (MDP)  is  a  mathematical  frame-
work for obtaining the optimal decision in stochastic dynamic
systems. As a key theory of RL, almost all  RL problems can
be  modeled  as  MDPs.  In  this  paper,  MDP is  denoted  as  fol-
lows:
 

M = ⟨S,A,P,R,γ⟩ (83)
S A

P R
γ ∈ (0,1]

τ = {s0,a0,r0, s1,a1,r1, . . .}

where  is  the  state  set  of  the  environment,  is  the  action
set,  is  the  state  transition  probability,  is  the  reward  set,
and  is  the  discount  factor.  The  agent  (often  called
controller in control theory) chooses actions to generate a tra-
jectory sequence . In RL, the goal is
to  find  the  optimal  policy  that  maximizes  rewards  or  mini-
mizes penalties for the agent to interact with the environment.

In the early stages of ADP/RL, the theoretical and algorith-
mic  progress  was  slow  due  to  the  limitations  of  hardware
facilities and system information. The development of system
identification techniques has made it  available to model non-
linear systems using data-driven methods, thereby opening up
a new era of research [6], [120]–[128]. In [6], Lewis and Liu
illustrated the contribution of stochastic encoder-decoder pre-
dictor and principal component analysis in modeling the world
through  a  brain-like  approach,  as  well  as  emphasized  the
importance  of  neural  networks.  Some  model-based  approa-
ches have shown promising results. Lee and Lee [122] defined
this  type  of  methods  as  J-learning  (based  on  the  value  func-
tion). The Bellman optimality equation can be expressed as
 

V∗(st) =min
at

{
r(st,at)+γV∗(st+1)

}
. (84)

Pang and Jiang [123] used the model-based method to dis-

cuss the robustness of PI for the LQR problem, and proposed
an  off-policy  optimistic  least-squares  PI  algorithm.  They
exploited  the  dynamical  information  of  the  system  in  the
derivation  process  and  incorporated  the  stochastic  perturba-
tions. Lu et al. [124] demonstrated the stability of closed-loop
systems  using  optimal  parallel  controllers  with  augmented
performance  index  functions  for  tracking  control.  They
extended  the  practical  problems  to  the  virtual  space  through
parallel  system theory,  and used methods such as  neural  net-
works to model systems and achieve optimal control.

However,  this  model-based  learning  approach  can  only  be
effective  in  the  state  space  based  on  empirical  information.
The  calculated  control  actions  and  performance  predictions
are constrained by the amount of information. Different from
the  model-based  learning  method,  Q-learning  proposed  by
Warkins and Dayan [125] used the Q function to represent the
value of  the  action in  the  current  state.  This  type of  function
already contains  information  about  the  system and the  utility
function. Compared with J-learning, it is easier to obtain con-
trol policies by using Q-learning, especially for unknown non-
linear  systems.  The  Bellman  optimality  equation  can  be
expressed as
 

Q∗(st,at) = r(st,at, st+1)+γmin
at+1

Q∗(st+1,at+1). (85)

Note  that  the  above  formula  is  described  for  deterministic
systems. Li et al. [126] solved the optimal switching problem
of  autonomous  subsystems  and  analyzed  the  boundedness  of
the  approximation  error  in  the  iterative  process.  Jiang et  al.
[127]  used  Q-learning  to  improve  the  convergence  speed  of
optimal  policies  for  path  planning  and  obstacle  avoidance
problems. In [95], a new off-policy model-free approach was
used  to  study  the  networked  multi-player  game.  At  the  same
time, they achieved optimal control in systems with network-
induced delays and demonstrated the convergence of the algo-
rithm. In addition, Peng et al.  [96] proposed an internal rein-
force  Q-learning  scheme,  and  analyzed  the  convergence  and
system  stability  related  to  the  iterative  algorithm.  Based  on
local  information  from  neighbors,  they  designed  a  special
internal reward signal to enhance the agent’s ability to receive
long-term  information.  The  model-free  idea  applied  in  the
field of control is only the tip of the iceberg.

TD is an RL algorithm that can learn directly from the envi-
ronment  without  requiring  the  complete  trajectory  sequence.
Sarsa  and  Q-learning  are  two  classic  TD  algorithms.  The
Sarsa improves and evaluates the same algorithm (on-policy).
However, Q-learning uses data sampled from other policies to
improve the target policy (off-policy). Next, we introduce two
accelerated methods that can be applied to TD algorithms.

The first method is experience replay which is mainly used
to overcome the problems of correlated data and non-station-
ary  distribution.  It  can  improve  data  utilization  efficiency
[129],  [130].  Pieters  and  Wiering  [131]  proposed  an  algo-
rithm combining experience replay with Q-learning. The sim-
ulation  results  showed  that  the  performance  of  the  algorithm
was  significantly  improved  over  the  traditional  Q-learning
algorithm. Experience replay technique is not only used in Q-
learning  but  also  can  be  combined  with  other  deep  RL algo-
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rithms,  which have achieved good performance in improving
convergence speed and data utilization efficiency [132]. Many
scholars  in  the  field  of  control  are  inspired  to  combine  ADP
algorithm with experience replay to improve the performance
of  the  algorithm.  For  discrete-time  nonlinear  systems,  Luo
et al.  [133] designed a model-free optimal tracking controller
by using policy gradient ADP designs with experience replay.
It was realized based on the action-critic structure, which was
applied to approximate the iterative Q function and the itera-
tive  control  policy.  The  convergence  of  the  iterative  algo-
rithm was established through theoretical analysis.

(λ)

(λ)

The  second  method  is  called  eligibility  traces.  The  tradi-
tional  Q-learning  is  the  case  with  only  one-step  estimate.  If
more information on traces is considered, updating the policy
will  be  more  efficacious  [134].  The  eligibility  traces  method
can  combine  multi-step  information  to  update  unknown
parameters. Eligibility traces were first introduced into the TD
learning process to form an efficient learning algorithm named
TD  in  [135].  Considering  the  direction  of  the  trace,  there
are forward view and backward view, respectively.  Although
the expressions of two algorithms are different, their intrinsic
essences are the same. In engineering, backward view is gen-
erally adopted for the convenience of calculation. Inspired by
the  field  of  RL,  many  scholars  combine  ADP with  both  for-
ward view and backward view of eligibility traces. Compared
with the traditional ADP algorithms, the performance of these
algorithms has been significantly improved [136]. Al-Dabooni
and Wunsch [137] proposed a forward view ADHDP  algo-
rithm  by  combining  ADHDP  with  the  eligibility  traces  and
proved the UUB under certain conditions. Ye et al. [138] pro-
posed  a  more  accurate  and  faster  algorithm  by  introducing
backward  view eligibility  traces  into  GDHP.  Meanwhile,  the
superiority  of  computational  efficiency  was  verified  by  the
simulation analysis.

In addition, inverse RL [139], [140] has received extensive
attention  in  academia  in  recent  years.  This  theory  is  able  to
solve inverse  problems in  control  systems,  machine learning,
and  optimization.  Unlike  methods  that  directly  map  from
states  to  control  inputs  or  use  system  identification  to  learn
control policies,  inverse RL methods attempt to reconstruct a
more adaptive reward function. This reward function prevents
small  changes  in  the  environment  from  making  the  policy
unusable.  Lian et  al.  [141]  used  the  inverse  RL  method  to
solve  the  two-person  zero-sum  game  problem,  and  estab-
lished two algorithms according to whether the model is used
or not. Overall, RL has achieved remarkable success for some
complex problems [2]. RL has also attracted a lot of attention
from  a  control  point  of  view  due  to  the  model-free  property
and  interaction  with  real-world  scenarios.  With  the  applica-
tion of RL algorithms in the control  field,  advanced methods
based on learning and environmental  interaction will  demon-
strate more powerful capabilities in future works.  

VI.  Typical Applications of ADP and RL

Compared  with  other  optimal  control  methods,  ADP  has
significant advantages in dealing with complex nonlinear sys-
tems.  Due to the strong ability,  ADP is  widely used in many
fields such as wastewater treatment, smart power grid, intelli-

gent transportation, aerospace, aircraft, robotics, and logistics.  

A.  Wastewater Treatment Applications
The control of the wastewater treatment process is a typical

complex  nonlinear  control  problem,  and  it  is  also  one  of  the
difficulties in the field of process control.  Accompanied by a
large  number  of  interferences,  biochemical  reaction  mecha-
nisms  are  very  complex.  There  are  many  factors  that  can
influence the  effect  of  wastewater  treatment,  such as  the  dis-
solved oxygen concentration  and the  nitrate  concentration.  A
large  part  of  research  is  based  on  the  Benchmark  Simulation
Model  No.1  (BSM1)  platform  for  verification.  The  goal  of
designing the controller is to reduce energy consumption and
cost  as  much as  possible  to  ensure  the  effluent  quality  meets
the national discharge standard and the stable operation of the
device. The design framework for control of wastewater treat-
ment plants is shown in Fig. 3.
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Fig. 3.     The design framework for control of wastewater treatment plants.
 

Control of a single variable has been considered. For exam-
ple,  the  online  ADP scheme was  proposed  in  [142]  by  using
the echo state network as the function approximation tool. The
high-performance control of dissolved oxygen variable in the
wastewater treatment plant was realized.

To  improve  the  efficiency  of  wastewater  treatment,  many
scholars consider both the dissolved oxygen and nitrogen con-
centration. For example, Wang et al. [67] combined the DHP
algorithm  and  the  event-triggered  mechanism  to  improve
resource  utilization  and  applied  it  to  multi-variable  tracking
control  of  wastewater  treatment.  By using  PI  and the  experi-
ence replay mechanism, Yang et al. [129] proposed a dynamic
priority  policy  gradient  ADP  method  and  applied  it  to  solve
multi-variable  control  of  wastewater  treatment  without  the
system model.

In the process of wastewater treatment, the setpoint of oper-
ating variables is generally set by manual experience. Consid-
ering the uncertain environment and disturbance factors, man-
ual experience is often difficult to adapt to different industrial
conditions,  and  it  is  difficult  to  balance  energy  consumption
and water quality during operation. Many scholars have stud-
ied the optimization of the wastewater treatment process. Qiao
et al. [143] developed an online optimization control method,
which not only met the requirements of effluent water quality,
but also reduced the operating cost of the system. For the set-
point  of  dissolved  oxygen,  a  model-free  RL  algorithm  [144]
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was  proposed  that  could  learn  autonomously  and  actively
adjust the setpoint of dissolved oxygen.  

B.  Power System Applications
Power  system  is  a  kind  of  complex  nonlinear  plants  with

multiple  variables.  The  emergence  of  smart  grid  has  opened
up  a  new direction  of  power  systems.  The  smart  grid  design
includes  renewable  energy  generation,  transmission,  storage,
distribution, and optimization of household appliances, and so
on.

Recently,  the  ADP/RL  algorithm  has  been  widely  used  in
the field of the smart grid due to its advantages. An ADHDP
method was applied to solve the residential energy scheduling
problem  [145],  which  effectively  improves  the  power  con-
sumption efficiency. For multi-battery energy storage systems
with  time-varying  characteristics,  a  new  ADP-based  algo-
rithm was proposed in [146]. The robust stabilization of mis-
matched nonlinear systems was achieved by combining auxil-
iary  systems and policy  learning techniques  under  the  condi-
tion  of  dynamic  uncertainties  [83].  Experimental  verification
was carried out on a power system. An adaptive optimal data-
driven  control  method  was  presented  based  on  ADP/RL  for
three-phase  grid-connected  inverter  of  the  virtual  syn-
chronous  generator  [147].  To  ensure  the  stable  operation  of
smart grids with load variations and multiple renewable gener-
ations, a robust intelligent algorithm was proposed in [148]. It
utilized a neural identifier to reconstruct the unknown dynami-
cal  system  and  derived  approximate  optimal  control  and
worst-case  disturbance  laws.  Wang et  al.  [22]  proposed  an
ADP  method  with  augmented  terms  based  on  the  GrHDP
framework.  They  constructed  new  weight  updating  rules  by
adding adjustable parameters and successfully applied them to
a large power system.  

C.  Other Applications
The ADP method has also been applied to other fields such

as  intelligent  transportation  [149],  [150],  robotics  [7],  [51],
[127],  [151],  aerospace  [152],  [153],  smart  homes  [154],
[155],  and  cyber  security  [156]–[160],  among  others.  Liu
et  al.  [149]  proposed  a  distributed  computing  method  to
implement switch-based ADP and verified the effectiveness of
the  method  by  using  two cases  of  urban  traffic  and  architec-
ture. The method divided the system into multiple agents. To
avoid  switching  policy  conflicts,  a  heuristic  algorithm  was
proposed based on consensus dynamics and Nash equilibrium.
Wen et al.  [151] combined ADP with RL to propose a direct
online  HDP  approach  for  knee  robot  control  and  clinical
application in human subjects.  For the optimal attitude-track-
ing problem of hypersonic vehicles, Han et al. [152] and Zhao
et  al.  [153]  developed  a  novel  PI  algorithm  and  an  observa-
tion-based  RL  framework,  respectively,  which  ensured  the
system stability  in  the  presence of  random disturbances.  Wei
et al. [154] proposed a deep RL method to control the air con-
ditioning system by recognizing facial expression information
to  improve  the  work  efficiency  of  employees.  Hosseinloo
et  al.  [155]  established  an  event-based  microclimate  control
algorithm to achieve an optimal balance between energy con-
sumption and occupant comfort. With the widespread applica-

tion  of  cyber-physical  systems,  their  security  issues  have
received  wide  attention.  Nguyen and  Reddi  [156]  provided  a
very comprehensive survey of RL technology routes for cyber
security  and discussed future  research directions.  For  nonlin-
ear  discrete-time  systems  with  event-triggered  [157]  and
stochastic  communication  protocols  [158],  Wang et  al.  con-
structed  different  action-critic  frameworks  and  discussed  the
boundedness of the error and the stability of the system based
on Lyapunov theory, respectively. More and more ADP-based
methods  [159],  [160]  are  focusing  on  improving  cyber  secu-
rity. With the rapid development of ADP/RL, its applications
will be more extensive.  

VII.  Summary and Prospect

ADP and  RL have  made  significant  progress  in  theoretical
research and practical applications, showing great potential in
future  tasks.  This  paper  explores  the  theoretical  work  and
application scenarios by analyzing discrete-time and continu-
ous-time  systems,  focusing  on  developing  advanced  intelli-
gent  learning  and  control.  With  the  current  complex  system
environment  and  tasks,  there  are  still  many  theoretical  and
algorithmic problems that have not yet been solved. Through
the  present  analysis  of  ADP,  this  paper  concludes  several
essential directions.

1) Most of the current ADP schemes assume that the func-
tion  approximation  process  is  exact.  However,  with  the
increase  of  the  number  of  network  layers  and  iterations,  the
approximation error caused by the function approximator can
not be ignored. In the actual iterative process, each step of the
function  approximator  results  in  an  approximation  error  that
propagates to the next iteration. In other words, these approxi-
mation  errors  may  change  in  future  iterations,  leading  to  the
emergence  of  a “resonance” type  phenomenon,  and affecting
the  reliability  of  the  solution.  Therefore,  both  theoretical  and
practical  applications  of  ADP  need  to  consider  the  conver-
gence  of  ADP  algorithms  in  the  presence  of  approximation
errors in policy evaluation and policy improvement.

2)  The  ADP  approach  currently  addresses  mostly  systems
with  low-dimensional  states  and  controls.  There  is  no  effec-
tive  solution  for  high-dimensional,  continuous  state  and  con-
trol spaces in real complex systems. With the development of
RL  and  even  deep  RL,  the  optimal  regulation  and  trajectory
tracking  for  high-dimensional  systems  are  possible  using  big
data technology. It is important to propose ADP methods with
fast convergence and low computational complexity by intro-
ducing different forms of relaxation factors.

3) It is of great importance to utilize advanced network tech-
nologies  to  decrease  communication  traffic  and  prolong
device  lifespan.  The  round-robin  protocol,  the  try-once-dis-
card protocol, the stochastic communication protocol, and the
event-triggered  protocol  are  essential  in  improving  perfor-
mance  and  saving  resources.  Based  on  these  protocols,  the
combination  of  the  ADP  technology  with  decentralized  con-
trol,  robust  control,  and  MPC is  crucial  in  achieving  optimal
control while minimizing resource consumption.

4) In recent years, the study of brain science and brain-like
intelligence has attracted significant  interest  from researchers
worldwide.  The  optimality  theory  is  closely  related  to  the
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study  of  understanding  brain  intelligence.  Most  organisms  in
nature  want  to  conserve  limited  resources  and  achieve  their
goals  in  parallel  optimally.  It  is  important  to  consider  brain-
like  intelligence  to  extend  ADP  and  attain  optimal  decision
and  intelligent  control  of  complex  systems  in  an  online
method. To ensure the stability,  convergence, optimality, and
robustness of the brain-like intelligence algorithms for ADP, it
still requires efforts of a large number of scholars.

5)  The field  of  ADP has  a  wealth  of  results  that  can guide
many systems in a theoretical sense to achieve optimal objec-
tives.  In  practice,  however,  for  a  large  number  of  nonlinear
systems, abrupt changes in control inputs and the construction
of dynamical systems are extremely challenging. Parallel con-
trol can be seen as a virtual reality interactive control method.
It  reconstructs  the  actual  system  based  on  the  real  input  and
output data. By combining ADP with parallel control, the con-
trol  strategy  will  be  greatly  improved  for  real  physical  sys-
tems in the future.
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