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ABSTRACT

Bioluminescence imaging (BLI) and bioluminescence tomog-

raphy (BLT) make it possible to elucidate cellular signatures

to better understand the effects of human disease in small

animal in vivo. However, to the best of our knowledge, the

existing gradient-type reconstruction methods in BLT are not

very efficient, and often require a relatively small volume of

interest (VOI) for feasible results. In this paper, a fast graph

cuts based reconstruction method for BLT is presented, which

is to localize the bioluminescent source in heterogeneous

mouse atlas via max-flow/min-cut algorithm. Since the orig-

inal graph cuts theory can only handle graph-representable

problem, the quadratic pseudo-boolean optimization is in-

corporated to make the graph tractable. The internal light

source can be reconstructed from the whole domain, so a
priori knowledge of VOI can be avoided in this method.

In the experiments, the proposed method is validated in a

heterogeneous mouse atlas, and the source can be localized

reliably and efficiently by graph cuts; and compared with a

gradient-type method, graph cuts is about 25-50 times faster.

Index Terms— Bioluminescence tomography (BLT), in-

verse problem, light propagation in tissues, diffusion equation

1. INTRODUCTION

Bioluminescence imaging (BLI) has become an promising

modality in cancer research, cell trafficking and drug devel-

opment [1, 2]. There is no inherent tissue autofluorescence

generated by external excitation light, making it extremely

sensitive. Furthermore, bioluminescence tomography (BLT)

can make use of the information obtained from BLI data mea-

sured on the surface of a small animal in reference to a cor-

responding micro-CT volume of the same small animal, and

localize the bioluminescent source deep in tissue.

Over the past few years, many reconstruction methods for

BLT have been developed. To the best of our knowledge,
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they are mainly gradient-type methods [3, 4]. Since it has to

execute many steps of iteration and calculate the gradient in

every iteration until reliable results are obtained, the time cost

during the reconstruction is relatively expensive [4]. Parallel

computation is one way to improve the reconstruction effi-

ciency, but it needs expensive and complex hardware to sup-

port the corresponding algorithm [5]. Furthermore, many of

the existing methods are apt to adopt relatively small volume

of interest (VOI), which is known prior to the BLT recon-

struction. Nevertheless, it is not always reliable or feasible

to define such a region effectively. Especially, for the cases

on a large VOI or even on the whole region, the results may

be trapped in local extremum and be very far from the opti-

mal solutions. Here, a gradient-free reconstruction method is

presented, which is called graph cuts. It is emerging as an

increasingly useful method for energy minimization in com-

puter vision including segmentation, image restoration and

stereo [6, 7]. With respect to this BLT problem, firstly, a di-

rected graph with nonnegative edge weights is constructed.

And then, a max-flow/min-cut approach is applied to local-

ize the bioluminescent source. Because the max-flow/min-

cut is not dependent on gradient any more, it can perform

efficiently. Moreover, by restricting graph representable, we

can often find global optimal solutions in polynomial time

[6]. Therefore, for the BLT problem, graph cuts method can

provide both fast and exact solutions.

The outline of the paper is as follows. In the nest section,

we present the reconstruction methodology for BLT. The for-

ward diffusion equation is briefly introduced. And then, the

graph cuts based reconstruction method is elaborately formu-

lated. In Section 3, the numerical experiments are demon-

strated to verify the proposed method. Reconstruction com-

parisons between graph cuts and a gradient-type method indi-

cate the efficiency and reliability of the proposed method in a

heterogeneous mouse atlas. Finally, we conclude the paper in

the last section.

2. METHODOLOGY

In the steady-state domain, the forward problem of light prop-

agation for BLT can be modeled as a diffusion equation in
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steady state [3], which is given by

−∇ ·
(
D(r)∇(Φ(r)

)
+ μa(r)Φ(r) = X (r) (r ∈ Ω) (1)

with a Robin-type boundary condition:

Φ(r) + 2κ(r)D(r)
(

v(r) · ∇Φ(r)
)

= 0 (r ∈ ∂Ω) (2)

Here Φ is the photon density, X is an isotropic source term; κ
is a boundary term that incorporates the refractive index mis-

match at the tissue-air boundary; v is the unit outward normal

on ∂Ω; D and μa are the optical diffusion and absorption co-

efficients, respectively.

Due to the highly ill-posed nature, BLT is an extremely in-

tractable inverse problem. The common approach is to use the

output-least-squares formulation incorporated with a regular-

ization term. The solution can be determined by minimizing

the energy function:

E(X ) = ‖MX − b‖2 + λ‖X‖2 (3)

where b denotes the measured photon density on the bound-

ary, M the system matrix in finite element formulation of (1)

and (2), and λ the regularization parameter. As said above,

the existing reconstruction methods are mainly gradient-type

in BLT. Since the calculation of gradient operation is needed

in each iteration, the time cost during the reconstruction is

relatively expansive. When it executes on a large VOI or even

on the whole region, the variables may be trapped in local

extremum and the results may be very far from the global op-

timum. In this paper, a gradient-free reconstruction method-

graph cuts is reported, which can provide both a fast and an

exact solution [6]. First of all, a directed graph G = (V,A)
is needed to be created, where set V denotes nodes in the

finite-element grid of VOI, and set A represents edges (Fig.

1(a)). Then, energy function (3) is reformulated into the graph

framework as follows:

E(X ) = ‖MX − b‖2 + λ‖X‖2

= θconst +
∑
i∈V

θi(xi) +
∑

(i,j)∈A
θij(xi, xj) (4)

where

M =
[
m1, m2, . . . , mN

]
(5)

and

θconst = bT b (6)

θi(xi) = (mT
i mi + λ)x2

i − 2(bT mi)xi (7)

θij(xi, xj) = 2(mT
i mj)xixj (8)

Here, X = {xi}, N denotes the number of nodes, θconst is

the constant term of the energy, θi(·) are the unary terms, and

θij(·, ·) are the pairwise terms.

Unfortunately, graph cuts can only be used for minimizing

submodular energy functions, i.e. functions whose pairwise

terms satisfy [7]

θij(0, 0) + θij(1, 1) ≤ θij(0, 1) + θij(1, 0) (9)

In order to minimize energy functions with both sub-
modular and supermodular terms (θij(1, 1) + θij(0, 0) >
θij(0, 1) + θij(1, 0)) via graph theory, the quadratic pseudo-

boolean optimization is employed [7]. It has four useful

properties: a) Persistency which implies that the energy never

goes up. b) Partial optimality which guarantees there exists

global minimum X ∗ of energy (4) such that xi = x∗
i for all

labeled nodes i. c) This algorithm is invariant with respect

to “flipping” a subset of nodes U ⊂ V , which means that

flipping transforms supermodular terms between U and V\U
into submodular. d) If all terms of the energy are submodular,

then the algorithm will label all nodes.

(a) (b)

Figure 1: An irregular directed graph. A similar graph-cut

construction was used in computer vision [6], except that the

graph used here is irregular. (a)A graph G. (b)A cut on G.

Motivated by the properties aforementioned, the original

graph can be revised as follows. For each node i ∈ V there

will be two nodes i and ī. Node ī can be associated with vari-

able xī. In addition, there are two special nodes, source s
and sink t, which are called the terminals. Therefore, V =
{i, ī|i ∈ V}⋃{s, t}. Moreover, for every non-zero term of

θij(·, ·), two edges are added to the set A [7]. Then the gener-

alized graph represents energy E
′

expressed as a function of

old variables X and new variables X̄ = {xī} [7]:

E
′
(X , X̄ ) = θconst +

1
2

∑
i∈V

[
θi(xi) + θi(1 − xī)

]

+
∑

(i,j)∈Sub

1
2
[
θij(xi, xj) + θij(1 − xī, 1 − xj̄)

]

+
∑

(i,j)∈Super

1
2
[
θij(xi, 1 − xj̄) + θij(1 − xī, xj)

]
(10)

Now, a new directed graph Gq = (V, A) has been cre-

ated and the size of the graph is doubled. Here, Sub and

Super denote the sets in which the terms are submodular
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and supermodular, respectively. According to the properties

above, a global minimum of the energy would be obtained via

graph cuts. In addition, since the new energy E
′

of variables

{xi, xī} is enforced to be submodular, it can be minimized in

polynomial time [6].

According to the theorem of Ford and Fulkerson [8], the

computation of the min-cut is equivalent to computing the

max-flow from the source to the sink. Several algorithms can

compute this flow [9, 6]. One of the powerful graph cuts is

Boykov-Kolmogorov’s algorithm, which belongs to augment-

ing path-based type. Normally, it starts a new search for s → t
paths as soon as all paths of a given length are exhausted [6].

It is noted that, for certain optimization problems like BLT,

max-flow/min-cut algorithms provide both a fast and an exact

solution.

The algorithm presented here involves three parts: graph

construction, min-cut/max-flow, and postprocessing, as shown

in Fig. 2. Firstly, graph should be constructed by setting

unary and pairwise terms, and setting up the neighborhood

system. It needs to be emphasized that unlike the graphs

used in the context of computer vision and image segmen-

tation, etc. [6, 7], the graphs in optics are usually irregular

in three dimension (Fig. 1(a)), so adjacent connections of

the nodes via edges should be built up and more memory is

needed. Secondly, min-cut/max-flow is executed by literately

repeating three stages: growth stage, augmentation stage, and

adoption stage. The details could be found in [6]. After the

adoption stage is completed, it returns to the growth stage.

The algorithm terminates when the search trees on the graph

cannot grow and the graph is separated by saturated edges.

This implies that a maximum flow is achieved, and the corre-

sponding min-cut is generated, as shown in Fig. 1(b). Finally,

the results are analyzed and output.

Figure 2: The graph cuts algorithmic structure used for BLT

reconstruction.

3. RESULTS

Before reconstructions, an atlas of the BALB/c mouse was

developed using our micro-CT system and cone-beam recon-

struction algorithm (Fig. 3(a))[10]. By using image process-

Table 1: Optical coefficients for each organ in the mouse atlas.

The units are mm−1.

H Lg Lv M B S

μa 0.022 0.071 0.128 0.032 0.0024 0.075

μ′
s 1.129 2.305 0.646 0.586 0.935 2.178

ing and interactive segmentation methods, some primary or-

gans were delineated, and the optical coefficients for each

organ are listed in Table 1. And then, the mouse atlas was

discreted into volumetric mesh. This discreted mesh con-

tains 4614 nodes and 25783 tetrahedral elements. The ac-

tual source is located in liver, with the center at (21.45, 33.65,

14.52), the diameter of 1.48mm, and the depth of about 7mm
from mouse surface.

(a) (b)

Figure 3: The tomography results based on graph cuts on the

whole region (4614 nodes). (a) The mouse atlas used for re-

construction. The arrow points to the reconstructed source in

liver. (b) The results in cross-sections. The red and green

boundaries are the center position of actual and reconstructed

sources respectively.
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Figure 4: Time cost comparisons between graph cuts and a

gradient-type method for BLT reconstructions. The execution

time of the proposed method grows much more slowly with

the number of nodes than that of the latter.

In the numerical reconstructions, three cases with dif-

ferent size of VOI were considered (Table 2), and a a con-

strained Newton-type optimization method was selected as

the gradient-based method to compare with graph cuts [11].

In all cases of graph cuts, the location error from the real

source is within 0.5mm, and the diameter of the recovered

also fairly matches with that of real one. Even on the whole
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Table 2: Comparisons of reconstruction results between graph cuts and a gradient-type method.

Nodes Edges Recons. Loc. Center (mm) Loc. Error (mm) Dimension (mm) Recons. Time (s)

Graph Cuts
536 1183

(21.53, 33.56, 14.97) 0.47 1.26 1.55

Grad.-type (23.34, 34.98, 14.30) 2.44 2.36 46.35

Graph Cuts
1097 3989

(21.53, 33.56, 14.97) 0.47 1.29 7.24

Grad.-type (23.34, 34.98, 14.23) 2.33 2.46 264.42

Graph Cuts
3453 21372

(21.53, 33.56, 14.97) 0.47 1.29 80.35

Grad.-type (27.03, 33.31, 14.07) 5.61 4.18 2087.32

Graph Cuts
4614 30880

(21.33, 33.54, 14.88) 0.39 1.22 148.78

Grad.-type (27.56, 33.66, 15.47) 6.74 3.88 5639.25

atlas, which means none a priori knowledge about source dis-

tribution is incorporated (Fig. 3), the position and diameter

of the source can still be accurately recovered by graph cuts.

In contrast, the reconstructed locations using gradient-type

method deviate more from the real one, and when the VOI

enlarges, the deviation becomes greater, or even the recovered

position is too far away to be acceptable.

Moreover, compared with gradient-type, graph cuts is

about 25-50 times faster, and according to the reconstruction

time (the total time for the three parts in Fig. 2) in Table 2,

the efficiency of graph cuts becomes increasingly remarkable

as more and more nodes and edges appear. It is significative

that the reconstruction time is comparable to that for data

acquisition even on whole region. All reconstructions were

performed on a desktop computer with Intel Core 2 Duo

1.86GHz CPU and 3GB RAM.

4. CONCLUSION

We have presented a novel graph cuts approach for localizing

the bioluminescent source in heterogeneous mouse atlas. We

stress that this technique performs well based on irregular grid

in complex geometry.

In the experiments, reconstruction comparisons between

graph cuts and the gradient-type method demonstrate accu-

racy and efficiency of the proposed method. Based on graph

cuts, even no a priori knowledge about source distribution

is used, the results can still be desirably reconstructed. Be-

cause of its fine performance, the method has the potential

for practical mouse study in BLT and other optical imaging

modalities.
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