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   Abstract—Traditional  expert-designed  branching  rules  in
branch-and-bound  (B&B)  are  static,  often  failing  to  adapt  to
diverse  and  evolving  problem  instances.  Crafting  these  rules  is
labor-intensive,  and  may  not  scale  well  with  complex  problems.
Given the  frequent  need  to  solve  varied  combinatorial  optimiza-
tion  problems,  leveraging  statistical  learning  to  auto-tune  B&B
algorithms  for  specific  problem  classes  becomes  attractive.  This
paper  proposes  a  graph  pointer  network  model  to  learn  the
branch  rules.  Graph  features,  global  features  and  historical  fea-
tures are designated to represent the solver state. The graph neu-
ral  network  processes  graph  features,  while  the  pointer  mecha-
nism assimilates the global and historical features to finally deter-
mine  the  variable  on  which  to  branch.  The  model  is  trained  to
imitate the expert strong branching rule by a tailored top-k Kull-
back-Leibler divergence loss function. Experiments on a series of
benchmark  problems  demonstrate  that  the  proposed  approach
significantly  outperforms  the  widely  used  expert-designed  bran-
ching  rules.  It  also  outperforms  state-of-the-art  machine-lear-
ning-based branch-and-bound methods in terms of solving speed
and  search  tree  size  on  all  the  test  instances.  In  addition,  the
model  can  generalize  to  unseen  instances  and  scale  to  larger
instances.
    Index Terms—Branch-and-bound  (B&B),  combinatorial  optimiza-

tion, deep learning, graph neural network, imitation learning.
  

I.  Introduction

COMBINATORIAL  optimization  seeks  to  explore  dis-
crete decision spaces, and to find the optimal solution in

an  acceptable  execution  time.  Combinatorial  optimization
problems  arise  in  diverse  real-world  domains  such  as  manu-
facturing,  telecommunications,  transportation  and  various
types  of  planning  problem  [1],  [2].  These  kinds  of  problems
can  be  immensely  difficult  to  solve,  since  it  is  computation-
ally impractical  to find the best  combination of discrete vari-
ables  through  exhaustive  enumeration.  In  fact,  most  of  the
NP-hard  problems  in  mathematical  and  operational  research
fields  are  typical  examples  of  combinatorial  optimization,
such  as  the  traveling  salesman  problem  (TSP),  maximum
independent set  [3],  graph coloring [4],  Boolean satisfiability
[4], etc.

A large number of approaches have been proposed to tackle
combinatorial  optimization  challenges  these  years  [5].  Exact
algorithms can always find the optimal solution to a combina-
torial  optimization problem [6].  A naive way is  searching all
possible  solutions  through  enumeration,  which  results  in  an
intractable solving time. Some advanced techniques have been
proposed,  such  as  branch-and-bound  [7],  to  efficiently  prune
the searching space. Approximation algorithms are used when
the optimal  solution cannot  be found in  polynomial  time [8].
They guarantee a solution within a certain ratio of the optimal
one.  Examples  include  algorithms  for  problems  like  vertex-
cover  or  set-cover.  However,  such  algorithms  may  not  exist
for  all  real-world  combinatorial  optimization  problems.
Heuristic  algorithms are designed to find a good (if  not  opti-
mal) solution quickly, and are useful when the problem is too
large or complex for exact methods. Greedy algorithms, local
search,  and  hill  climbing  are  examples  of  heuristic  methods
[9].  Metaheuristic  algorithms  provide  a  higher-level,  general
strategy that can be applied to many different types of combi-
natorial  optimization  problems.  These  are  often  inspired  by
natural  processes  and  include  genetic  algorithms,  simulated
annealing,  ant  colony  optimization,  particle  swarm optimiza-
tion,  and  more.  Metaheuristic  algorithms  cannot  guarantee
finding the optimal solution, however, require less computing
time than exact algorithms [10].

B&B

As  exact  algorithms  can  always  solve  an  problem  to  opti-
mality,  modern  optimization  solvers  generally  employ  exact
algorithms  to  solve  combinatorial  optimization  problems,
which  can  be  formulated  as  mixed-integer  linear  programs
(MILPs).  The  branch-and-bound  ( )  method  is  a  typical
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B&B
exact method that solves MILPs in a divide-and-conquer man-
ner.  [7]  recursively  splits  the  search space  of  the  prob-
lem into smaller  regions in  a  tree  structure,  where each node
represents  the  subproblem  that  searches  subsets  of  the  solu-
tion set.  Subtrees can be pruned once it  provably cannot pro-
duce better solutions than the current best solution; otherwise,
the  subtree  is  further  partitioned  into  subproblems  until  an
integral  solution  is  found  or  the  subproblem  is  infeasible.  In
this  solving  process,  there  are  several  decision-making  prob-
lems that should be considered to improve performance: node
selection  problem,  i.e.,  which  node/subproblem  should  be
selected to process next given a set of leaf nodes in the search
tree? Variable selection problem (a.k.a. branching), i.e., which
variable  should  branch  on  to  partition  the  current  node/sub-
problem?

Historically, decisions related to MILP instances have relied
on meticulously crafted heuristics. The creation of these hard-
coded  expert  heuristics  often  requires  considerable  design
efforts  and  extensive  trial-and-error.  However,  the  advent  of
artificial  intelligence  has  sparked  increased  interest  in  using
machine learning models to learn these heuristics, rather than
relying  on  expert  design.  This  shift  is  logical,  as  heuristics
often  consist  of  a  series  of  rules,  which  could  feasibly  be
parameterized by models such as deep neural networks.

Recent  investigations  have  indeed  begun  to  explore  these
learning-based  approaches  [11]−[14].  Yet,  these  pioneering
efforts  still  pose  significant  challenges:  identifying  effective
features to represent  the current  state  of  the B&B process on
which the branching decision is based; and developing effec-
tive models that can map the B&B state to the branching deci-
sion.  These  challenges  underline  the  need  for  continued
research and development in this promising area.

This  paper  presents  an  innovative  approach  to  addressing
the branching problem in B&B using a graph pointer network
model,  trained  to  imitate  the  effective  yet  computationally
intensive “expert” strong branch heuristic. We aim to produce
strategies  that  result  in  a  small  number  of  search  nodes,
approaching  the  performance  of  the  strong  branch  heuristic,
while maintaining a low computation cost. Though this idea is
not new [13]−[15], we improve the performance of the learn-
ing model in a novel way. The contributions of this work are
summarized as follows:

1)  Traditional  B&B  methods,  which  depend  on  manually-
designed  branching  heuristics,  often  struggle  with  adaptabil-
ity  and  efficiency  across  diverse  problem  scenarios.  In  con-
trast, we propose using neural networks to automatically learn
these branching heuristics.

2) In addition the typical graph features that are commonly
explored,  global  and  historical  features  are  designed  in  this
work, providing a more comprehensive and richer representa-
tion of the problem state.

3)  We  introduce  an  innovative  model  that  combines  the
graph  neural  network  with  a  pointer  mechanism.  The  graph
neural network processes the graph features, while the pointer
mechanism  assimilates  the  global  and  historical  features  to
finally determine the variable on which to branch.

4)  Our  research  presents  a  top-k  Kullback-Leibler  diver-

gence loss function, specifically designed to train the model to
imitate the strong branch heuristic effectively.

5)  Notably,  our  proposed  method  consistently  surpasses
both expert-crafted branching rules and contemporary machi-
ne  learning  techniques  across  all  tested  problems.  Once
trained,  our  model  demonstrates  remarkable  generalization
abilities, effortlessly adapting to even unseen, larger instances.

The remainder of the paper is organized as follows. Section II
reviews the recent advances of applying artificial intelligence
methods  for  combinatorial  optimization.  Section  III  intro-
duces  the  preliminaries  of  the  work.  The  proposed  graph
pointer  network model  is  described in  Section  IV.  Section  V
outlines  the  imitation  learning  method  for  optimizing  the
model parameters. The experiment setup and numerical results
are presented in Section VI-A. The last section gives the con-
cluding remarks and future perspectives.  

II.  Related Work

Recent days have seen a surge of applying artificial intelli-
gence methods for combinatorial optimization.

Vinyals et  al. [16]  developed  a  pointer  network  model  for
solving  small  scale  combinatorial  optimization  problems  like
the traveling salesman problems (TSPs). It borrowed the idea
of  the  widely  used  sequence-to-sequence  model  in  the
machine translation field, and used the attention mechanism to
map  the  input  sequence  to  the  output  sequence.  This  work
inspired a number of subsequent research that involved using
machine/deep  learning  methods  for  combinatorial  optimiza-
tion.

Most  the  current  works  focus  on solving the  combinatorial
optimization  problems  in  an  end-to-end  manner.  Bello et  al.
[17]  first  proposed  the  use  of  a  deep  reinforcement  learning
(DRL) method to optimize the pointer network model, which
can  output  the  solution  sequence  directly.  Nazari et  al. [18]
investigated the vehicle routing problem (VRP) by modifying
the  pointer  network  and  the  attention  mechanism.  Dai et  al.
[19]  developed  a  structure2vec  graph  neural  network  (GNN)
model  for  combinatorial  optimization.  The  GNN  model  can
encode the graph feature of the problem and aid the decisions.
Other  works  [20]−[23]  explored  advanced  GNN  models  like
the  graph  convolution  networks  (GCNs)  and  diverse  training
methods  to  solve  the  combinatorial  optimization  problems
more  effectively.  Moreover,  authors  in  [24],  [25]  improved
the attention mechanism of the pointer network by leveraging
the recent advances of the famous Transformer model [26] in
the field of seqence-to-seqence learning. The attention model
developed by Kool et al. [25] achieved state-of-the-art perfor-
mance  among the  above approaches.  This  model  can  solve  a
number  of  combinatorial  optimization  problems,  such  as  the
TSP, VRP, the orienteering problem, etc. In addition, Li et al.
[27] extended this line of work to a multiobjective version.

B&B

B&B

The  initial  efforts  in  using  statistical  learning  for  devising
branching  rules  in  were  spearheaded  by  Khalil et  al.
[12]. They devised a branching rule tailored for an individual
instance  during  the  procedure.  This  approach  was  also
explored  by  Alvarez et  al. [28]  and  Hansknecht et  al. [29],
where they focused on learning a branching rule offline from a
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set  of  related  instances.  In  all  these  studies,  the  aim  was  to
learn a branching strategy by emulating the expertise of strong
branching.  Specifically,  both  Khalil et  al. [12]  and  Han-
sknecht et al. [29] approached it as a ranking challenge, aimed
at learning a hierarchical order of the candidates by the expert.
On  the  other  hand,  Alvarez et  al. [28]  approached  this  as  a
regression  task,  intending  to  directly  ascertain  the  strong
branching  scores  for  each  candidate.  Gasse et  al. [13]  pio-
neered the application of GNN for branching policies in MIPs.
Their  approach  leveraged  the  inherent  variable-constraint
bipartite  graph  representation,  utilizing  imitation  learning  to
swiftly  approximate  strong  branching.  Extending  upon  this
foundation, Gupta et al. [14] introduced a hybrid framework.
In  their  system,  the  GNN  model  operates  at  the  root  node,
while  a  computationally  efficient  (albeit  weaker)  model  gov-
erns  the  subsequent  nodes.  Moreover,  Nair et  al. [30]  pre-
sented  two  innovative  models:  neural  diving  and  neural
branching,  to  augment  the  capabilities  of  traditional  MIP
solvers. The neural diving model is adept at predicting partial
assignments for integer variables, facilitating the generation of
more  compact  MIPs.  Conversely,  neural  branching harnesses
a GNN model to approximate optimal branching policies.

In a broader context, numerous researchers have developed
machine  learning  techniques  to  refine  exact  optimization
methods, even outside the scope of general MILPs. A compre-
hensive review on this topic was recently presented by Blum
and Roli [10].  

III.  Preliminaries
  

A.  Problem Definition
1)  Mixed  Integer  Linear  Program: A  combinatorial  opti-

mization problem can be always modeled as a MILP, having
the form
 

min cT x
s.t. Ax ≤ b

l ≤ x ≤ u
xi ∈ Z, i ∈ I
c ∈ Rn, A ∈ Rm×n, b ∈ Rm, l,u ∈ Rn. (1)

I ⊆ {1, . . . ,n}
Z A,b

l,u

The aim is to find an optimal set of x to minimize the objec-
tive function with c as the objective coefficient vector. There
are m constraints  and n decision  variables.  A  subset  of  the
decision variables are integers.  is their index set,
and  is  their  decision  space.  are  the  coefficient  matrix
and the right-hand-side vector of the constraints.  bound the
decision variables.

2) LP Relaxation of a MILP: Given the complexity of MILP
problems, where some variables are required to be integer val-
ues, they can be quite challenging and computationally expen-
sive to solve exactly. LP relaxation simplifies these problems
by ignoring the integer constraints and treating all variables as
continuous.  This  results  in  a  standard  linear  programming
problem, which is significantly easier and faster to solve using
well-established algorithms such as the Simplex method. This
LP relaxation serves as a lower bound (in minimization prob-

lems) for the original MILP problem. This is because relaxing
the integer constraints allows for a broader feasible region and
hence, potentially, a smaller minimum value.

x∗

3)  Branch-and-Bound: Branch-and-bound  begins  by  solv-
ing the LP relaxation of the original MILP. The obtained solu-
tion  provides  the  lower  bound  to  the  problem.  If  the
obtained solution respects all the MILP integrality constraints,
it is the optimal solution to (1), and the algorithm terminates.
If  not,  the  LP  relaxation  is  further  partitioned  into  two  sub-
problems  by  branching  on  an  integer  variable  that  does  not
respect  integrality  of  the  MILP.  This  is  done  by  adding  the
following two constraints into the LP relaxation, respectively
[13]:
 

xi ≤
⌊
x⋆i

⌋
, xi ≥

⌈
x⋆i

⌉
, ∃i ∈ I | x⋆i < Z (2)

⌊x⋆i ⌋
x⋆i ⌈x⋆i ⌉
x⋆i

where  refers to the maximum integer value that is smaller
than ,  and  is  the minimum integer value that  is  larger
than . Here,  i is called the branching variable.

x̂

x̂

By  branching  on i,  two  new  LPs  are  constructed,  which
refer  to  the  leaf  nodes/subproblems  of  the  search  tree.  The
next step is to pick one leaf node, and repeat the above steps.
Once a feasible solution  is found, that is, all the MILP inte-
grality constraints are satisfied, there is an upper bound to the
problem.  If  a  solution  is  found  with  a  lower  objective  value
than ,  the  upper  bound  is  updated.  On  the  other  hand,  if  a
solution is  found with worse objective value than the current
upper  bound,  this  subproblem  is  pruned  and  no  longer
branched.  The subproblem is  also fathomed if  the  solution is
an  integer  or  the  LP  is  infeasible.  The  above  procedures  are
repeated  until  no  subproblems  remains.  The  incumbent  solu-
tion with the best bound is returned [13].  

B.  Branching Strategies

C = {i | x⋆i < Z, i ∈ I}
C

B&B

In the branching variable selection decision process, an inte-
ger  variable i is  selected  among  the  candidate  variables

 that do not satisfy the integer constraint.
Existing  methods  usually  score  each  candidate  variable  in 
according  to  some  handcrafted  heuristics,  and  the  variable
with  the  largest  score  is  selected  for  branching.  The  most
commonly  used  scoring  criterion  is  the  change  of  the  lower
bound of the sub-problem after the variable is branched [31].
Based on this criterion, a series of branch rules are designed to
improve the efficiency of .

B&B

x∗ z∗

N−i N+i
z∗−i

z∗+i N−i N+i z∗−i z∗+i

Strong branching (SB) is an effective yet expensive scoring
heuristic.  Empirically,  it  has  been  found  that  it  consistently
produces  the  smallest  search  tree  compared  to  other
heuristics [12]. The SB rule explicitly measures the upper and
lower bounds changes of the sub-problem, so as to select the
best branching variable, which is computed as follows. For the
LP  sub-problem corresponding  to  the  current  node N,  its  LP
solution is ,  and its  corresponding objective value is .  By
branching on variable i, two LP sub-problems  and  are
obtained,  and  the  corresponding  objective  values  are  and

. If  and  have no feasible solutions, then  and 
are  set  to  very  large  values.  Therefore,  the  change  of  the
objective  function  value  after  branching  on  variable i is
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∆−i = z∗−i − z∗ ∆+i = z∗+i − z∗ and .  The SB score is  calculated as
[12]
 

S Bi = score
(
max

{
∆−i , ϵ

}
,max

{
∆+i , ϵ

})
(3)

score (a,b) = a×b

C

B&B

where the product  function is  usually considered as  the scor-
ing function,  that  is, . ϵ is  a  small  constant.
The SB rule computes the SB scores for all the candidate vari-
ables in the candidate set ,  and selects the decision variable
with the largest SB score to branch on. Each branching deci-
sion  requires  long  computational  time  since  computing  each
SB score requires solving two LP sub-problems. In this case,
the SB-based  algorithm usually suffers heavy computa-
tional  burden  although SB can  greatly  reduce  the  search  tree
size.

Ψ−j Ψ+j PBi

In  view  of  the  heavy  computational  burden  of  the  SB
method, calculating the pseudocost instead of the SB score is
another  commonly  used  method  in  the  current  optimization
solver.  Pseudocost  branching  (PB)  estimates  the  score  of  a
variable according to its  historical  scores during the previous
search  process.  Instead  of  solving  the  two  sub-problems  by
branching on i, the upwards (downwards) score of variable i is
the  average  value  of  the  objective  value  changes  when
upwards (downwards) branching on variable i in the previous
branching  process.  This  can  greatly  shorten  the  calculation
time.  Denote  the  upwards  and  downwards  average  scores  of
variable i as  and , where its pseudocost score  is cal-
culated as [12]
 

PBi = score
((

x∗i −
⌊
x∗i

⌋)
Ψ−i ,

(⌈
x∗i

⌉
− x∗i

)
Ψ+i

)
(4)

x∗i −⌊x∗i ⌋ x∗i −
⌈
x∗i

⌉
and where  and  represent the decimal part of
the variable value. The PB method can effectively reduce the
computing  time  of  each  branching  decision.  However,  the
search  tree  is  much  larger  than  that  obtained  by  SB,  since
there  is  no  sufficient  historical  data  in  the  early  stage  of  the
search  to  estimate  the  variable  score,  which  results  in  incor-
rect  branching decisions.  In view of the pros and cons of SB
and  PB,  the  reliability  branching  (RB)  method  applies  SB at
the  beginning  of  the  search  until  enough  historical  data  is
accumulated, and then applies PB in the subsequent process.

It  can  be  seen  that  there  is  a  contradiction  between  the
branching  performance  and  the  time  cost  by  making  each
branching decision.  This work aims to leverage the power of
neural networks to emulate the SB rule, striving for compara-
ble performance but with significantly reduced computational
expenditure.  

IV.  Model

A graph pointer network (GPN) model is proposed to simu-
late the SB strategy previously mentioned. This model’s input
is the current state of the solver, while the output corresponds
to  the  decision  on  variable  selection.  First,  the  B&B  proce-
dure is structured as a Markov decision process. At each stage,
the model interprets the current state and selects an appropri-
ate  variable,  causing  a  corresponding  change  in  the  solver’s
state. Then, the state of the solver is defined to encompass the
graph  structure  feature,  global  feature,  and  historical  feature.
Finally, a graph pointer neural network model is developed in

accordance  with  the  state  definition,  enabling  the  perception
of  the  solver’s  current  state  and  facilitating  the  execution  of
branching decisions.  

A.  Markov Decision Process Modeling
B&B can be modeled as a Markov decision process [13], as

shown in Fig. 1.
 

x1 = 1.3, x2 = 4.6, x3 = 2, ... x1 = 1.3, x2 = 4.6, x3 = 2, ...

??

Candidates = {x2, x3, x7}

Candidates = {x1, x5, x8}

x4 ≥ 3

x1 ≤ 1
x1 ≤ 1

x1 ≥ 2x1 ≥ 2

x4 ≤ 3
x4 ≤ 3

x7 ≤ 4 x7 ≥ 4

??

Action = x7

st st+1

State 
transition

 
Fig. 1.     Markov decision process of the branch-and-bound.
 

st

st
at = i C = {i | x⋆i < Z, i ∈ I}

π(at |st)

At each decision step t,  the current state of the solver is ,
which represents the state of the current search tree. Based on
the  current  state  of  the  solver ,  the  agent  selects  a  variable

 from the candidate set  according to
the strategy .

st+1
π(at+1 |st+1)

The solver solves the two LP sub-problems after branching
on variable i.  Subsequently,  the solver updates the upper and
lower bounds, prunes the search tree, and selects the next leaf
node to branch. At this time, the solver has been converted to
a  new state .  Then,  the  solver  applies  the  branch  strategy

 again  to  make  the  branching  decision.  This  pro-
cess is looped until all the leaf nodes are explored.

s0
B&B

The  initial  state  of  the  Markov  decision  process  corre-
sponds to the root node of the  search tree. And the final
state is the end of the optimization process, i.e., all leaf nodes
cannot be branched further. Denote the branching policy as π,
where the Markov decision process can be modeled as [13]
 

pπ(s0, . . . ,sT ) = p(s0)
T−1∏
t=0

∑
a∈C(st)

π(a |st)p(st+1 |st,a). (5)

st

st
at

B&B

B&B

In this paper, we learn the branching policy π to imitate the
SB rule, which is realized through the following steps: 1) De-
fine the problem state . At each step of the branch decision,
the branch decision needs to be made according to the current
problem state. However, there is no standardized definition of
the solver state. It is necessary to extract effective features to
better represent the solver state, so as to make better decisions
accordingly.  2)  Parameterize  the  branch  policy π via  a  novel
model. The model should be able to map the problem state 
to the branching action  correctly. The models, such as neu-
ral  networks,  random  forests  and  support  vector  machines,
need to be designed according to the characteristics  of .
3) Optimize the parameters of the model by an effective train-
ing algorithm.  The model π can be  learned through a  variety
of  machine  learning  methods  to  minimize  the  size  of  the
search tree or reduce the total run-time of the  algorithm.

B&BThe proposed deep learning-based  method consists of
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the above three parts introduced as follows.  

B.  State Definition
st B&B

st

st = (V,C,E,G,H)

First,  the  state  of  at  the  decision-making  step t is
defined in this section. In addition to the graph features intro-
duced  in  [13],  the  global  features  and  historical  features  are
designed,  which  can  provide  a  more  thorough  representation
of the solver state. Therefore,  is composed of variable fea-
tures,  constraint  features,  edge  features,  global  features,  and
historical features, namely .

(V,C,E)

x1, x2, . . . , xn

(i, j) ∈ E

The graph features  of the problem is defined by the
bipartite graph of the current solver state, as shown in Fig. 2.
The bipartite  graph is  composed of m constraints  and n vari-
ables. Variables  are on the left side of the graph.
The right-hand side (constant) term of the constraint is on the
right side of the graph. The edge  of the graph is the
connection of the variable i and the constraint j,  i.e.,  whether
the constraint j includes the variable i. The weight of the edge
is the coefficient of the variable i in constraint j.
 

 
Fig. 2.     Graph structure of the MILP state.
 

According to the bipartite graph structure, the solver state is
comprised  of  variable  features,  constraint  features,  edge  fea-
tures, global features, and historical features.

n×d

1)  Variable  features  represent  the  attributes  of  candidate
variables at branching step t, including the variable type, vari-
able coefficient, current value of the variable, whether the cur-
rent value of the variable is on the boundary, the decimal part
of  the  solution  value  of  the  variable,  etc.  There  are n candi-
date variables in total,  and the feature dimension is d.  There-
fore,  the  variable  feature  dimension  is .  The  detailed
introduction of the variable features is listed Table I.

m× c

2) Constraint features represent the attributes of the LP con-
straint at branching step t,  such as the right value of the con-
straint, whether the left value of the constraint exactly reaches
the  boundary,  the  similarity  of  the  constraint  coefficient  and
the target coefficient, etc. The current LP problem has a total
of m constraints,  and  the  feature  dimension  is c.  Thus,  the
dimension  of  the  constraint  feature  is ,  and  the  descrip-
tion of the constraint features can be found in Table II. Refer
to  [13]  for  a  detailed  description  of  variable  and  constraint

features.

m×n
3)  The  edge  feature  is  the  coefficient  of  each  variable  in

each constraint.  Therefore,  there are  edges in total,  and
the  feature  dimension  is  1.  The  coefficient  value  is  0  if  the
constraint does not contain a certain variable.

B&B

4) Global feature G represents the global state of the solver,
such  as  the  current  optimality  gap  of  the  problem,  the  gap
between  the  objective  value  of  the  current  node  and  the
upper/lower  bounds,  the  depth  of  the  current  search  tree,  the
depth  of  the  current  node,  etc.  We  design  and  extract  the
global  features using the API interface of  PySCIPOpt,  which
is an open source  solver. The detailed global features are
listed in Table III.

G mainly includes two parts: a) Global features of the whole
MILP, including the gap between the upper and lower bounds
of  the  current  stage  of  MILP,  the  number  of  feasible
solutions/infeasible  solutions,  etc.;  b)  Global  features  of  the
current LP sub-problem node, including the depth of the cur-
rent  node,  the  LP  objective  value  information  of  the  current
node, etc.

The  depth  of  the  current  node  and  the  gap  between  the
upper  and  lower  bounds  can  be  directly  obtained  by  calling
the  PySCIPOpt  interface.  The  number  of  feasible/infeasible
solutions is computed by the proportion of leaf nodes that pro-
duce feasible/infeasible solutions:

 

TABLE I 

Variable Features

Feature Numeric type

Variable type, 0: 0-1 binary; 1: Integer; and 2: Continuous 　Categorical

Normalized variable coefficient in the objective function 　Real

If the variable owns a upper/lower bound 　Binary

If the current solution value of the variable is its upper/lower
bound

　Binary

Fractional part of the variable’s current solution value 　Real

0: The variable is at its lower bound; 1: Variable’s value lies
between the upper and lower bounds (basic); 2: The vari-
able is at its upper bound; 3: Rare case

　Categorical

Reduced cost, the variable’s solution value can become pos-
itive if we reduce the objective coefficient of the variable by
this value

　Real

Number of LP iterations since the last time the variable was
basic

　Integer

Solution value of the variable at current node 　Real

The variable’s value of the best primal solution 　Real

Average value of the variable in all the feasible solutions
found so far

　Real
 

 

TABLE II 

Constraint Features

Feature Numeric type

Similarity between the left-hand-side coefficients of the
constraint and the objective coefficients

　Real

Normalized right-hand-side (constant)  value of  the con-
straint

　Real

Number of iterations since the last time the constraint was
active

　Integer

Dual variable’s value of the constraint 　Real

If the constraint is at the bounds 　Binary
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Pfeasible =
Nfeasible

max(Nleaves,0.1)
(6)

Nleaves
vLP

vb

where  is the number of all leaves. The gap between the
current  node’s  LP  objective  value  and  the  global  upper/
lower  bounds  is  calculated  by  the  following  formula
according to [15]:
 

gap =


0, if xy < 0

|vLP− vb|
max

{|vLP|, |vb|,1×10−10} , else (7)

where  the  current  node’s  LP  objective  value  and  the  global
upper/bounds are obtained from the PySCIPOpt interface.

pos
vu vl

|vLP−vu |
|vLP−vu |

The relative position  of the current node’s LP objective
value to the global upper bound  and lower bound  is com-
puted as .

C1 = a1 · · ·at−1 1 · · · t−1
C2 = x1, x2, . . .

C2

5) The historical feature consists of two parts. The first part
is  comprised  of  features  of  all  past  branching  decisions

 at  previous  steps .  The  second  part  is
comprised  of  features  of  variables  whose  val-
ues  have changed when generating the  current  node.  That  is,

 is  the  set  of  variables  whose  values  have  changed  in  the
solution of the new problem after adding an integer constraint
to the parent problem.

st

Traditional  approaches  only  considers  variable  features,
constraint  features  and  edge  features  [13].  This  work  further
extracts global features and historical features, so as to obtain
a richer representation of the environment state . The global
status of the current search tree and the current node can pro-
vide more information for  the agent  to  make branching deci-
sions.  Moreover,  observing  the  variables  whose  values  have
changed when generating the current node, and observing the
variables selected during the historical branching process, can
also  provide  effective  information  for  making  the  branching
decisions.  Therefore,  it  is  expected  that  adding  additional
global  features  and  historical  features  can  better  describe  the
state of the current problem.  

C.  Graph Pointer Network Model
In  this  section,  a  GPN that  combines  the  graph neural  net-

work  and  the  pointer  mechanism  is  proposed  to  model  the

branching  policy,  which  can  map  the  solver  state  to  the
branching decisions effectively.

From the features extracted in the previous section, it can be
seen that the solver state has a bipartite graph structure, that is,
the left nodes (variables) and the right nodes (constraints) are
connected  by  edges,  as  shown  in Fig. 2.  Graph  neural  net-
work  can  effectively  process  the  information  of  the  graph
structure,  and  has  been  successfully  applied  to  various
machine  learning  tasks  with  graph  structure  input,  such  as
social  networks  and  citation  networks.  Therefore,  we  encode
the  graph  structure  of  the  solver  state  by  a  graph  neural  net-
work model.

In  addition,  we  take  the  global  and  historical  features  as  a
query, and compute the attention value, which is then normal-
ized  as  a  softmax probability  distribution,  as  a  pointer  to  the
input sequence. In this way, the variable with the largest prob-
ability is selected as the branching variable.

The  proposed  graph  pointer  neural  network  model  is  com-
posed of two parts: 1) The graph neural network calculates the
feature  vector  for  each  variable  based  on  variable  features,
constraint  features  and  edge  features;  2)  The  pointer  mecha-
nism  outputs  the  variable  selection  probabilities  by  comput-
ing  the  attention  values  according  to  variables’ feature  vec-
tors and the query which is constructed by the global and his-
torical features. The detailed process of modeling the branch-
ing policy is as follows.

dh xv
xc xe xg

1)  Initial  Embedding  Calculation: Variable  features,  con-
straint features, edge features, and global features have differ-
ent dimensions. For example, the variable feature is 13-dimen-
sional, and the global feature is 9-dimensional. Therefore, the

-dimensional  embeddings  of  the  variable  features ,  con-
straint features , edge features  and global features  are
computed as follows:
 

xv← EMBEDDING (xv)

xc← EMBEDDING (xc)

xe← EMBEDDING (xe)

xg← EMBEDDING(xg) (8)
EMBEDDING(·)

dh

where  is  a two-layer fully connected neural
network. The hidden dimension is  and the activation func-
tion between layers is LeakyRELU
 

LeakyRELU (x) =
x, if x ≥ 0

10−2× x, otherwise.
(9)

2) Graph Neural Network: Next, the final variable features
are  computed  by  a  graph  convolution  neural  network  similar
to [13]
 

xi
c← fC

(
xi

c,

(i, j)∈E∑
j

gC
(
xi

c,x
j
v,x

i, j
e

) )

x j
v← fV

(
x j

v,

(i, j)∈E∑
j

gV
(
x j

v,xi
c,x

i, j
e

) )
. (10)

g(·)Function  is defined as
 

g
(
xi

c,x
j
v,x

i, j
e

)
= FF

(
xi

c+x j
v+xi, j

e

)
(11)

 

TABLE III 

Global Features

Feature Numeric type

Depth of the current node 　Integer

Normalized number of feasible solutions 　Real

Normalized number of infeasible solutions 　Real

Gap between the global upper and lower bounds 　Real

Gap between the current node’s LP objective value and the
global upper bound

　Real

Gap between the current node’s LP objective value and the
global lower bound

　Real

Relative position of the current node’s LP objective value to
the global upper/lower bounds

　Real

Gap between the current node’s LP objective value and the
root node’s upper bound

　Real

Gap between the current upper bound and the root node’s
upper bound 　Real
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FF
f(·)

xi
c

x j
v

xi, j
e

x j
v

xi
c

xi, j
e

where  is  a  two-layer  fully  connected neural  network with
LeakyRELU  activation  function.  Function  is  also  a  two-
layer fully connected neural network with LeakyRELU activa-
tion  function.  As  demonstrated  in  (10),  the  graph embedding
is  computed by two successive convolution passes,  one from
variables to constraints and the next from constraints to vari-
ables.  The  first  convolution  step  computes  the  features  of
constraint i according to features  of its connected variables
j,  features  of  the  edge  and  its  own  features.  The  second
step computes the embedding  of variable j according to the
obtained features  of its connected constraints i, features of
the edge  and its own features. Through the graph convolu-
tion process, the final variable features aggregate the original
variable  features,  constraint  features  and  coefficient  features
of the problem, so as to effectively contain the graph informa-
tion of the MILP state.

C1 = a1 · · ·at−1 1 · · · t−1
dh

3)  Historical  Feature Calculation: At branching step t,  the
first  part  of  the  historical  features  is  the  past  branching deci-
sions  at steps . We compute this part of

-dimensional historical features as
 

xt
h1 = FF

( 1
t−1

t−1∑
i=1

xai
v

)
(12)

FF
ai

where  is  a  single-layer  fully  connected  neural  network
layer, and  is the variable selected by the solver at step i.

C2
C2

dh xt
h2 xt

h2 xt
h1

t == 0

The second  part  of  the  historical  feature  is  the  variable  set
 whose value changes during the process of generating the

current node. The same operation is performed on  to obtain
the -dimensional  vector .  In  addition,  and  are
zero vectors if .

4)  Pointer  Mechanism: The  attention  value,  which  can  be
seen as a pointer to the candidate variables, is computed by a
compatibility  function  of  the  query  with  the  key.  The  query,
which  is  composed  of  global  features  and  historical  features,
represents  the  current  state  of  the  solver.  The  key  represents
the feature of each candidate variable. Specifically, the query
vector is calculated as the weighted average of global and his-
torical features
 

qt = w1×xt
g+w2×xt

h1+w3×xt
h2 (13)

w1, w2, w3
ki =

Wkxi
v, i ∈ C

qt
ki, i ∈ C

where  are  weight  values  to  be  optimized  while
training.  Moreover,  the  key  of  variable i is  defined  as 

, which is the linear projection of the variable fea-
tures. Denote the query at branching step t as  and the keys
of candidate variables as , where one has
 

ut
i =W3 (W1ki+W2qt) , i ∈ (1, . . . ,n)

pt
i = softmax

(
ut

i

)
, i ∈ (1, . . . ,n) (14)

ut
i

softmax
pt

i

pt
i

where  is the attention value computed by the compatibility
function.  Note  that  other  compatibility  function  can  also  be
applied  to  compute  the  attention,  which  can  refer  to  [26]  for
more details.  is used to normalize the attention value
to  the  probability  distribution ,  representing  the  probability
of selecting variable i at branching step t. In this case, we can
choose  the  variable  with  the  highest  probability  as  the
branching variable.

In  addition,  it  is  necessary  to  normalize  the  variable  fea-

tures,  constraint  features,  edge  features,  and  global  features
due  to  their  different  data  range.  To  this  end,  the  prenorm
layer  is  applied  as  introduced  in  [13]  to  normalize  the  vari-
able,  constraint,  and  edge  features.  We  also  add  a  prenorm
layer  of  global  features  accordingly,  so  that  the  neural  net-
work model can deal with problem instances with global fea-
tures of different scales.  

D.  Branch and Bound Algorithm Based on GPN

B&B B&B
The proposed GPN model is then used to select the branch-

ing  variable  in .  The  GPN-based  is  illustrated  in
Algorithm 1.

Algorithm 1 Branch and Bound Algorithm Based on GPN

Input: Root node R, representing the LP relaxation of the original
MILP

S ∗Output: Optimal solution 
R.lowerBound←−∞1: 　　/*Initialize the lower bound of R*/
Queue← {R}2: 　　/*Store the unexplored node into the Queue*/
U pperBound←∞3: 　　/*Initialize the global upper bound*/
S ∗← null4: 

Queue5: while  is not empty do
N← Queue.get( )6: 　 　　/*Dequeue the node*/

N.lowerBound ≥ U pperBound7: 　if  then
8: 　　/*If node N’s parent node’s lower bound is greater than the

global upper bound, prune this node*/
9: 　　continue
10: 　end if

S r ← solve(N)11: 　
S r12: 　if  is not feasible then

13: 　　/*prune this node*/
14: 　　continue
15: 　end if

Or ← S r.ob jectiveValue16: 　
Or > U pperBound17: 　if  then

18: 　　/*If node N’s lower bound is greater than the global upper
bound, prune this node*/

19: 　　continue
20: 　end if

S r21: 　if  is feasible then
U pperBound← Or22: 　　

S ∗← S r23: 　　

S ∗24: 　　/*Update the global upper bound and */
25: 　　continue
26: 　end if

state = (V,C,E,G,H)27: 　Extract features of the solver state, 
V ← GPN(S r, state)28: 　 　 　 /*Select  varibale V by  the  GPN
model*/
a← floor(V.value)29: 　
L← addConstraint(N,V ≤ a)30: 　
R← addConstraint(N,V ≥ a)31: 　

32: 　/*Branch on V and obtain the two LP sub-porblems*/
L.lowerBound← Or R.lowerBound← Or33: 　 , 
Queue.add(L) Queue.add(R)34: 　 , 

35: end while
S ∗36: return 

First, the LP relaxation of the original MILP problem is set
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as  the  root  node.  The  queue  data  structure  is  maintained  to
store  the sub-problem nodes to  be solved.  Each node defines
an initial lower bound l, which represents the lower bound of
its parent node. After the global upper bound is updated, if l is
greater  than  the  global  upper  bound,  then  the  node  will  be
pruned.  When  the  node  is  taken  out  of  the  queue,  its  lower
bound is compared with the global upper bound, and the node
is  pruned if  the  lower  bound is  greater  than the  global  upper
bound.  The  global  upper  bound  is  initialized  to  ∞,  and  is
updated every time a better feasible solution is obtained. Vari-
able,  constraint,  edge, global and historical  features of candi-
date  variables  are  extracted,  which  are  subsequently  input  to
the  GPN  model.  The  model  outputs  the  probability  distribu-
tion of the candidate variables. The one with the highest prob-
ability can be selected as the variable to branch on. Two sub-
problems  are  generated  accordingly.  This  process  loops  until
the  queue  is  empty,  i.e.,  all  leaves  of  the  search  tree  are
explored.

O(mndh) dh

With n variables and m constraints, the computational com-
plexity of the GPN model is  where  is the dimen-
sion  of  hidden  layers.  When  applying  the  GPN  model  for
branching, a single forward pass through the GPN model can
yield  the  result.  Therefore,  it  costs  much  less  running  time
than the classical SB rule, which requires solving a number of
subproblems.  

V.  Training Method

{χ1,χ2, . . . ,χm} χi = ⟨si
1,a

i
1,s

i
2,a

i
2, . . .⟩

si
1, ai

1

B&B
D = {(s1,a1) , (s2,a2) , (s3,a3) , . . .} ai

An imitation  learning  method  is  proposed  to  train  the  pro-
posed model. The objective is to imitate the strong branching
rule. Imitation learning [32] can solve various multi-step deci-
sion-making problems. In comparison with unsupervised rein-
forcement  learning  methods,  imitation  learning  can  improve
the  training  efficiency  with  the  help  of  expert  experiences.
Imitation  learning  requires  labeled  training  data  provided  by
human  experts ,  where .

 represents the “state-action” pairs in a Markov decision
process  generated  by solving an  instance  using the  SB-based

. Therefore, the labeled training set can be constructed as
.  Denote  as  the  label,  the

variable selection problem can be converted into a classifica-
tion  problem.  The  objective  is  to  minimize  the  difference
between the expert actions and the predicted actions.

B&B

D =
{(si,a⋆i )}Ni=1 a⋆

τθ(s)

Specifically,  the  SB-based  is  conducted on randomly
generated  combinatorial  optimization  instances.  The “state-
action” pairs  are  recorded  to  form  a  training  set 

. Denote the expert actions as  and the predicted
actions as ,  where the model parameters θ are optimized
by minimizing
 

L(θ) =
1
N

∑
(s,a∗)∈D

loss
(
τθ(s),a⋆

)
(15)

loss(∗)

loss(∗)

where  is a function that defines the difference between
the true value and the predicted value. For classification prob-
lems, there are a number of  functions such as the accu-
racy and cross entropy.

B&BHowever, in , SB scores of different variables might be
the  same or  pretty  close.  It  is  equivalent  to  select  these  vari-

D = {(si, score⋆i )}Ni=1

ables. But only one variable is selected when constructing the
labeled dataset. By applying loss functions like cross entropy,
the similarities  of  SB scores  between different  variables  can-
not be leveraged. In this case, we choose to imitate the distri-
bution  of  the  SB scores  instead  of  the  branching  actions.  To
this  end,  the  SB  scores  of  all  the  candidate  variables  are
recorded to construct the training set . And
Kullback-Leibler (KL) divergence is used as a measure of the
difference  between  the  SB  score  distribution  and  the  pre-
dicted  probability  distribution.  By  minimizing  the  KL  diver-
gence,  the  model  can  work  better  for  the  above  situation
where multiple variables own the same or similar SB scores. It
can better help the model imitate the SB scores.

Denote P as  the  true  distribution  of  the  data  and Q as  the
predicted distribution of the model to fit P,  KL divergence is
defined as
 

DKL(P∥Q) =
∑
x∈X

P(x) log
(

P(x)
Q(x)

)
. (16)

πθ(s)Therefore,  given  the  probabilities  of  the  candidate
variables  output  by  the  model,  the  model  parameters θ are
optimized by minimizing
 

L(θ) = DKL(score⋆∥πθ(s)) =
∑

(s,score⋆)∈D
score⋆ log

(
score⋆

πθ(s)

)
.

(17)

πθ(s)
Ik

Ik

DKL(score⋆Ik
∥πθ(s)Ik )

In addition,  we only care about  the variables  with high SB
scores.  The  probability  distribution  of  other  variables  has  no
effect  on  the  branching  variable  selection.  Thereby,  we
emphasize the similarity loss of variables with high SB scores
in  the  training  phase.  Specifically,  the  variables  are  sorted
according  to  their  probabilities  output  by  the  model.  More
attention should be paid to the first few variables. To this end,
the KL divergence of  the top-k variables is  added to the loss
item.  In  specific,  the  probabilities  output  by  the  model
are  sorted,  and  the  first k variables  are  selected.  The  KL
divergence  value  of  variables  is  computed  by  (16)  as

.  And  the  loss  for  training  the  model  is
defined as
 

L(θ) = DKL(score⋆∥πθ(s))+DKL(score⋆Ik
∥πθ(s)Ik ). (18)

The first term of the loss can make the overall predicted dis-
tribution similar to the distribution of the SB scores, while the
second term makes the model pay more attention to the vari-
ables  of  large  probabilities  and  weakens  the  distribution  of
irrelevant variables for selecting the branching variables. This
can  alleviate  the  situation  where  a  large  amount  of  training
time is cost to fit the distribution of irrelevant variables.  

VI.  Experimental Results and Discussion
  

A.  Experiment Settings
1)  Comparison Algorithm: The  proposed approach is  com-

pared against the following approaches.

B&B
a) First, the proposed approach is compared against the clas-

sic  algorithm.  The  branching  rule  of  reliability  branch-
ing  (RB),  strong  branching  (SB)  and  pseudocost  branching
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(PB) are compared respectively.  They are all  implemented in
the  well-known  SCIP  solver.  The  cutting  plane  is  only
allowed at the root node. Other heuristics are disabled during
the branching process for fair comparison. Our method is also
implemented  in  the  SCIP  solver,  and  uses  the  same  set  of
parameters as the competitor methods.

B&B
b) Next, the proposed approach is compared with the state-

of-the-art  machine  learning-based  algorithms,  often
regarded  as  standard  comparisons  in  the  literature.  The  algo-
rithms  under  consideration  are:  branching  method  based  on
ExtraTrees [33] model [28] (TREES); branching method [12]
(SVMRANK)  and  [29]  (LMART)  based  on  SVMrank  [34]
and  LambdaMART  [35]  model;  branching  method  based  on
graph neural network [13] (GNN).

2)  Test  Problems: Effectiveness  of  the  proposed method is
evaluated  on  the  following  three  benchmark  combinatorial
optimization problems.

a)  Set  covering  problem  [36]: The  set  covering  instances
contain 1000 columns. The model is trained on instances with
500  rows,  and  is  evaluated  on  instances  with  500  and  1000
rows, respectively.

b) Capacitated facility location problem [37]: The instances
are  generated  with  100  facilities.  The  model  is  trained  on
instances  with  100  customers,  and  is  evaluated  on  instances
with 100 and 200 customers, respectively.

c)  Maximum  independent  set  problem  [38]: The  instances
are  generated  following  the  process  in  [38].  The  model  is
trained  on  instances  of  500  nodes,  and  is  evaluated  on
instances with 500 and 1000 nodes, respectively.

dh = 64
k = 10

3)  Experimental  Parameter  Settings: All  compared  algo-
rithms are  implemented by Python on the SCIP solver.  SCIP
uses  its  default  parameters.  The  hidden  dimensions  of  the
models  are  set  to .  The  Adam  optimizer  is  used  for
training with learning rate of 0.001.  is set for the top-k
imitation learning. The learning rate decreases 80% if the loss
does not decrease for 10 epochs. The training is terminated if
the loss does not decrease for 20 epochs.

4) Training Data Generation: The SCIP solver with default
settings  is  used  to  collect  training  samples  offline.  Random
instances are generated and solved using the SCIP. During the
collecting procedure, the branching rule of RB is adopted with
a probability of 95%, and the branching rule of SB is adopted
with  a  probability  of  5%.  Only  the  samples  generated by SB
are  collected.  The  data  of  variable,  constraint,  edge,  global
and historical features, candidate variable sets, and SB scores
of the variables is collected.

Instances are randomly generated and solved until  140 000
samples are collected. 100 000 samples are used as the train-
ing set, 2000 samples are used as the validation set, and 2000
samples are used as the test set.

5)  Evaluation: First,  the  capability  of  the  GPN  model  in
imitating  the  SB  rule  is  examined.  Since  multiple  variables
may have the same or similar SB scores, the following indices
are used to evaluate the model accuracy [13]: a) The percent-
age  of  times  the  output  of  the  model  is  exactly  the  variable
with  the  highest  SB  score  (acc@1);  b)  The  percentage  of
times the output of the model is one of the five variables with

B&B

the highest SB scores (acc@5); c) The percentage of times the
output of the model is one of the ten variables with the high-
est  SB  scores  (acc@10).  Moreover,  the  total  solving  time  of
the GPN-based  in comparison with benchmark methods
is evaluated.  

B.  Results
Figs. 3−5 present the training performances of the proposed

GPN model  in  comparison  to  the  classic  GNN model  across
three  test  problems.  The  convergence  of  the  loss  and  model
accuracy on the validation set are both compared.
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Fig. 3.     Training performances of the models on the set covering.
 

Results indicate that the proposed GPN model surpasses the
conventional  GNN  in  both  convergence  speed  and  overall
convergence performance during training.  Additionally,  GPN
consistently  outshines  GNN  in  model  accuracy  for  all  three
problems on the validation set. The superiority of GPN is par-
ticularly  evident  on  the  location  problem  and  the  maximum
independent  set  problem;  here,  GPN  converges  to  values  of
0.66  and  0.003,  respectively,  while  GNN  reaches  only  0.72
and 0.0047.

The superior convergence performance of the GPN over the
GNN  model  stems  from  its  advanced  modeling  capabilities
and  informative  features  that  represent  the  problem state.  By
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incorporating an attention-based pointer mechanism, the GPN
model comprehends the graph, global and historical character-
istics  of  the  problem  more  effectively,  thereby  facilitating
more accurate decision-making. Therefore, when compared to
the  GNN  model,  which  solely  employs  a  graph  convolution
network to  process  constraint  and variable  features,  the  GPN
model  exhibits  a  more expedient  convergence rate  and lesser
validation  loss.  This  highlights  the  advantage  of  the  GPN
model  in  fostering  computational  efficiency  while  maintain-
ing high-quality performance.

Tables IV−VI present the model accuracy of GPN, TREES,
SVMRANK,  LMART,  and  GNN  methods  on  the  test  set.
Results  of  TREES,  SVMRANK  and  LMART  are  from  [13].
Results of acc@1, acc@5 and acc@10 are listed respectively.

Results  outlined  in Tables IV−VI indicate  that  for  the  set
covering, capacitated facility location, and maximum indepen-
dent  set  problems respectively,  the  GPN method consistently
outperforms  other  approaches.  This  superiority  is  evident
across all  metrics:  acc@1, acc@5, and acc@10. This empiri-
cal  evidence  solidifies  the  GPN’s  position  as  the  leading
method in these scenarios.  Its  performance is distinctly supe-
rior  in  the  maximum independent  set  problem.  This  observa-
tion aligns seamlessly with the performance of the model dur-

ing the training and validation process, indicating a consistent
model behaviour. This empirical evidence affirms our premise
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Fig. 4.     Training  performances  of  the  models  on  the  capacitated  facility
location.
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Fig. 5.     Training performances of the models on the maximum independent
set.
 

 

TABLE IV 

Results of Model Accuracy on Set Covering

acc@1 acc@5 acc@10

　　TREES [28] 51.8 80.5 91.4

　　SVMRANK [12] 57.6 84.7 94

　　LMART [29] 57.4 84.5 93.8

　　GNN [13] 65.5 92.4 98.2
　　GPN 66.5 92.7 98.2
 

 

TABLE V 

Results of Model Accuracy on Capacitated
Facility Location

acc@1 acc@5 acc@10

　　TREES [28] 63 97.3 99.9

　　SVMRANK [12] 67.8 98.1 99.9

　　LMART [29] 68 98 99.9

　　GNN [13] 71.2 98.6 99.9
　　GPN 72.2 98.7 99.9
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that  the  GPN  method  is  adept  at  imitating  the  SB  rule,  sur-
passing the alternative methods examined.

B&B

In addition, the running time of the approaches is evaluated,
since the aim of the branching models is to reduce the overall
solving time of .  The solving time is  determined by the
size of the search tree, that is, the number of explored nodes.
It is also determined by the time consumed making the branch
decisions.  Therefore,  a   ood  branching  model  can  reduce  the
size of the search tree while making fast branching decisions.

Tables VII−IX list the results of solving time and the num-
ber  of  explored  nodes  when  using  GPN  and  the  compared
approaches  for  solving  the  three  test  problems.  The “TimeB”
index  represents  the  duration  required  to  make  a  single
branching  decision.  Results  are  obtained  by  solving  100 ran-
domly generated problems and taking the average.
 

TABLE VII 

Results of Running Time on Set Covering

500 rows 1000 rows

Methods Time Nodes TimeB Time Nodes TimeB

　SB 7.02 12.5 0.562 173.9 227.5 0.764

　PB 2.88 98.6 0.029 19.8 2211.2 0.009

　RB 3.73 18.8 0.198 22.1 1192.5 0.019

　GNN [13] 2.07 43.9 0.047 14.2 900.6 0.016
　GPN 2.04 42.3 0.048 13.9 891.2 0.016
 
 

Table VII shows  that,  in  comparison  with  the  PB  and  RB
rule, the proposed GPN method achieves at least 40% increase
in the solution speed when solving the 500-row and 1000-row
set  covering  instances.  In  terms  of  the  number  of  explored
nodes, GPN outperforms all of the compared methods except
for the SB rule on the set cover instances. SB can always get
the  smallest  search  tree.  But  its  total  solving  time  has  no
advantage  over  our  method due  to  its  long  computation  time
of  making  branching  decisions.  It  is  obvious  that  the  GPN
method outperforms all the compared machine learning meth-
ods  in  terms  of  solving  speed  and  the  ability  to  reduce  the
search tree on the set covering instances.

It can be seen from Table VIII that the GPN method shows
greater  advantages  in  solving  the  100-customer  and  200-cus-
tomer capacitated facility location instances compared to other
methods. In specific, GPN runs twice as fast as the PB and RB
method.  Compared with the machine learning methods,  GPN
has the fastest solving speed and the fewest number of nodes.

On  maximum  independent  set  instances,  GPN  achieves
nearly  10% improvement  in  the  solution  speed  and  20%

reduction  in  the  number  of  nodes  as  seen  in Table IX.  The
solving  time  is  reduced  nearly  twice  when  using  the  GPN
compared with the PB and RB methods.

Upon analysis of the results,  it  is evident that the proposed
GPN method is  capable  of  delivering branching performance
commensurate with the SB rule, but with markedly less com-
putational  time.  As  a  result,  the  solving  speed  of  the  B&B
method  is  significantly  enhanced.  This  illustrates  the  effi-
ciency of the GPN approach.

Note that, the test instances are generated randomly, and are
different  from  the  training  set.  Once  the  model  is  trained,  it
can  be  generalized  to  unseen  instances,  and  scale  to  larger
instances.  Although the  RB heuristic  is  carefully  handcrafted
by  experts,  it  is  still  defeated  by  the  proposed  GPN method,
which  can  learn  heuristics  from  the  data.  Experiments  vali-
date the novelty and efficiency of the GPN method.

B&BThe goal of  is to solve the combinatorial optimization
problem as fast as possible, so the branch strategy should be a
trade-off  between  the  quality  of  the  decision  and  the  time
spent on each decision. An extreme example is the SB branch
rule:  by  calculating  the  SB  score  for  variable  selection,  the
final  solution  can  be  obtained  with  a  small  number  of
searches,  but  each  decision  step  is  very  time-consuming,  so
that the overall running time is very long. From the results of
the  500-row  set  covering  problem  in Table VII,  the  SB  rule
takes 0.562 s in average to make a single branching decision,
while our GPN method takes just  0.048 s.  Despite GPN pro-
cessing  more  nodes  (42.3)  than  SB  (12.5),  its  total  solving
time  is  shorter.  Similarly,  PB,  although  faster  in  decision-
making  than  GPN,  processes  more  nodes  (98.6)  leading  to  a
longer overall solving time. Comparatively, while SB has the
best  branching  decisions,  it’s  the  slowest.  PB  is  the  quickest
but  lacks  in  efficiency.  GPN  presents  an  optimal  balance  of
performance  and  speed,  offering  the  most  effective  solution

 

TABLE VI 

Results of Model Accuracy on Maximum Independent Set

acc@1 acc@5 acc@10

　　TREES [28] 51.8 80.5 91.4

　　SVMRANK [12] 57.6 84.7 94

　　LMART [29] 57.4 84.5 93.8

　　GNN [13] 65.5 92.4 98.2
　　GPN 66.5 92.7 98.2
 

 

TABLE VIII 

Results of Running Time on Capacitated
Facility Location

100 customers 200 customers

Methods Time Nodes TimeB Time Nodes TimeB

　SB 157.4 116.5 1.351 1163.3 158.7 7.330

　PB 82.8 541.9 0.153 510.7 614.2 0.831

　RB 96.7 264.7 0.365 598.9 303.5 1.973

　GNN [13] 37.4 467.4 0.080 145.6 529.6 0.275
　GPN 35.2 428.9 0.082 140.3 516.2 0.272
 

 

TABLE IX 

Results of Running Time on Maximum Independent Set

500 nodes 1000 nodes

Methods Time Nodes TimeB Time Nodes TimeB

　SB 87.1 35.41 2.460 2844.4 164.5 17.291

　PB 14.6 1937.8 0.008 2002.9 17 213 0.116

　RB 11.4 92.7 0.123 210.2 6717 0.031

　GNN [13] 5.01 61.7 0.081 222.5 14 862 0.015
　GPN 4.63 45.3 0.102 198.6 12 587 0.016
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time for B&B. This observation remains consistent across all
other  instances,  validating  the  fact  that  the  proposed  method
can achieve a better balance between the decision quality and
decision  time,  therefore  reducing  the  overall  solving  time  of
B&B.  

VII.  Conclusion

B&B

B&B

This  paper  has  presented  a  novel  method  of  modeling  the
variable  selection  strategy  in  using  a  deep  neural  net-
work  model.  We  made  use  of  graph  features  and  introduced
global and historical features to represent the solver state. The
architecture  combines  a  graph  neural  network  with  a  pointer
mechanism, enabling effective variable selection. Our experi-
mental results on benchmark problems show that our approach
surpasses traditional expert-designed branching rules and also
outperforms  state-of-the-art  machine-learning-based 
methods.

Looking  ahead,  there  are  several  promising  avenues  for
extending and refining our work.

1) The process of constructing labeled datasets for imitation
learning can be computationally intensive. To mitigate this, a
potential  solution  would  be  to  integrate  reinforcement  learn-
ing  techniques.  By  using  reinforcement  learning,  we  could
harness  unsupervised  training  strategies  that  could  alleviate
the  need  for  labor-intensive  labeled  datasets,  paving  the  way
for more scalable and efficient learning.

2)  While  our  model  has  demonstrated  its  effectiveness  on
benchmark problems, it is essential to test it on a wider spec-
trum  of  practical  problems.  Exploring  its  applicability  in
diverse domains will provide insights into the generalizability
and robustness of our approach.

3) The current model leverages graph, global, and historical
features. Future work can explore the inclusion of other types
of features, potentially capturing more nuanced aspects of the
problem space, leading to even more informed decisions dur-
ing the branching process.

B&B

4)  One  exciting  direction  would  be  the  introduction  of
mechanisms  allowing  the  neural  network  model  to  adapt  in
real-time  based  on  feedback  during  the  process.  This
could lead to models that fine-tune their strategies on-the-fly,
adjusting  to  the  unique  characteristics  of  the  problem  being
solved.

5)  As  deep  learning  models  can  be  computationally  inten-
sive,  especially  in  real-time  scenarios,  future  work  can  also
explore optimizations tailored to specific hardware platforms,
ensuring efficient execution and reduced computational over-
head.

In  conclusion,  the  present  work  lays  a  foundation  upon
which  numerous  exciting  advancements  can  be  built.  We
believe  that  the  interplay  of  optimization  and  deep  learning
has  much  more  to  offer,  and  we  are  enthusiastic  about  the
potential breakthroughs the future may bring.
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