

Learning to Branch in Combinatorial Optimization
With Graph Pointer Networks

Rui Wang , Senior Member, IEEE, Zhiming Zhou , Kaiwen Li , Tao Zhang ,
Ling Wang , Xin Xu , Senior Member, IEEE, and Xiangke Liao

 Abstract—Traditional expert-designed branching rules in
branch-and-bound (B&B) are static, often failing to adapt to
diverse and evolving problem instances. Crafting these rules is
labor-intensive, and may not scale well with complex problems.
Given the frequent need to solve varied combinatorial optimiza-
tion problems, leveraging statistical learning to auto-tune B&B
algorithms for specific problem classes becomes attractive. This
paper proposes a graph pointer network model to learn the
branch rules. Graph features, global features and historical fea-
tures are designated to represent the solver state. The graph neu-
ral network processes graph features, while the pointer mecha-
nism assimilates the global and historical features to finally deter-
mine the variable on which to branch. The model is trained to
imitate the expert strong branching rule by a tailored top-k Kull-
back-Leibler divergence loss function. Experiments on a series of
benchmark problems demonstrate that the proposed approach
significantly outperforms the widely used expert-designed bran-
ching rules. It also outperforms state-of-the-art machine-lear-
ning-based branch-and-bound methods in terms of solving speed
and search tree size on all the test instances. In addition, the
model can generalize to unseen instances and scale to larger
instances.
 Index Terms—Branch-and-bound (B&B), combinatorial optimiza-

tion, deep learning, graph neural network, imitation learning.

I. Introduction

COMBINATORIAL optimization seeks to explore dis-
crete decision spaces, and to find the optimal solution in

an acceptable execution time. Combinatorial optimization
problems arise in diverse real-world domains such as manu-
facturing, telecommunications, transportation and various
types of planning problem [1], [2]. These kinds of problems
can be immensely difficult to solve, since it is computation-
ally impractical to find the best combination of discrete vari-
ables through exhaustive enumeration. In fact, most of the
NP-hard problems in mathematical and operational research
fields are typical examples of combinatorial optimization,
such as the traveling salesman problem (TSP), maximum
independent set [3], graph coloring [4], Boolean satisfiability
[4], etc.

A large number of approaches have been proposed to tackle
combinatorial optimization challenges these years [5]. Exact
algorithms can always find the optimal solution to a combina-
torial optimization problem [6]. A naive way is searching all
possible solutions through enumeration, which results in an
intractable solving time. Some advanced techniques have been
proposed, such as branch-and-bound [7], to efficiently prune
the searching space. Approximation algorithms are used when
the optimal solution cannot be found in polynomial time [8].
They guarantee a solution within a certain ratio of the optimal
one. Examples include algorithms for problems like vertex-
cover or set-cover. However, such algorithms may not exist
for all real-world combinatorial optimization problems.
Heuristic algorithms are designed to find a good (if not opti-
mal) solution quickly, and are useful when the problem is too
large or complex for exact methods. Greedy algorithms, local
search, and hill climbing are examples of heuristic methods
[9]. Metaheuristic algorithms provide a higher-level, general
strategy that can be applied to many different types of combi-
natorial optimization problems. These are often inspired by
natural processes and include genetic algorithms, simulated
annealing, ant colony optimization, particle swarm optimiza-
tion, and more. Metaheuristic algorithms cannot guarantee
finding the optimal solution, however, require less computing
time than exact algorithms [10].

B&B

As exact algorithms can always solve an problem to opti-
mality, modern optimization solvers generally employ exact
algorithms to solve combinatorial optimization problems,
which can be formulated as mixed-integer linear programs
(MILPs). The branch-and-bound () method is a typical

Manuscript received June 14, 2023; revised August 31, 2023; accepted

November 7, 2023. This work was supported by the Open Project of
Xiangjiang Laboratory (22XJ02003), Scientific Project of the National
University of Defense Technology (NUDT) (ZK21-07, 23-ZZCX-JDZ-28),
the National Science Fund for Outstanding Young Scholars (62122093),
and the National Natural Science Foundation of China (72071205).
Recommended by Associate Editor Weiping Ding. (Corresponding authors:
Kaiwen Li and Tao Zhang.)

Citation: R. Wang, Z. Zhou, K. Li, T. Zhang, L. Wang, X. Xu, and X. Liao,
“Learning to branch in combinatorial optimization with graph pointer
networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 157–169, Jan.
2024.

R. Wang is with the Xiangjiang Laboratory and the College of Systems
Engineering, National University of Defense Technology, Changsha 410073,
China (e-mail: rui_wang@nudt.edu.cn).

Z. Zhou is with the Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: zhiming.zhou@ia.ac.cn).

K. Li and T. Zhang are with the College of Systems Engineering, National
University of Defense Technology, Changsha 410073, and also with the
Hunan Key Laboratory of Multi-Energy System Intelligent Interconnection
Technology, Changsha 410073, China (e-mail: likaiwen@nudt.edu.cn;
zhangtao@nudt.edu.cn).

L. Wang is with the Department of Automation, Tsinghua University,
Beijing 100084, China (e-mail: wangling@mail.tsinghua.edu.cn).

X. Xu is with the College of Intelligence Science and Technology, National
University of Defense Technology, Changsha 410073, China (e-mail:
xinxu@nudt.edu.cn).

X. Liao is with the College of Computer Science and Technology, National
University of Defense Technology, Changsha 410073, China (e-mail:
xkliao@nudt.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2023.124113

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024 157

http://orcid.org/0000-0001-9048-2979
http://orcid.org/0009-0007-8074-637X
http://orcid.org/0000-0003-1550-5987
http://orcid.org/0000-0002-0432-2942
http://orcid.org/0000-0003-1226-2801
http://orcid.org/0000-0003-3238-745X
http://orcid.org/0000-0002-6125-3330
http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2023.124113

B&B
exact method that solves MILPs in a divide-and-conquer man-
ner. [7] recursively splits the search space of the prob-
lem into smaller regions in a tree structure, where each node
represents the subproblem that searches subsets of the solu-
tion set. Subtrees can be pruned once it provably cannot pro-
duce better solutions than the current best solution; otherwise,
the subtree is further partitioned into subproblems until an
integral solution is found or the subproblem is infeasible. In
this solving process, there are several decision-making prob-
lems that should be considered to improve performance: node
selection problem, i.e., which node/subproblem should be
selected to process next given a set of leaf nodes in the search
tree? Variable selection problem (a.k.a. branching), i.e., which
variable should branch on to partition the current node/sub-
problem?

Historically, decisions related to MILP instances have relied
on meticulously crafted heuristics. The creation of these hard-
coded expert heuristics often requires considerable design
efforts and extensive trial-and-error. However, the advent of
artificial intelligence has sparked increased interest in using
machine learning models to learn these heuristics, rather than
relying on expert design. This shift is logical, as heuristics
often consist of a series of rules, which could feasibly be
parameterized by models such as deep neural networks.

Recent investigations have indeed begun to explore these
learning-based approaches [11]−[14]. Yet, these pioneering
efforts still pose significant challenges: identifying effective
features to represent the current state of the B&B process on
which the branching decision is based; and developing effec-
tive models that can map the B&B state to the branching deci-
sion. These challenges underline the need for continued
research and development in this promising area.

This paper presents an innovative approach to addressing
the branching problem in B&B using a graph pointer network
model, trained to imitate the effective yet computationally
intensive “expert” strong branch heuristic. We aim to produce
strategies that result in a small number of search nodes,
approaching the performance of the strong branch heuristic,
while maintaining a low computation cost. Though this idea is
not new [13]−[15], we improve the performance of the learn-
ing model in a novel way. The contributions of this work are
summarized as follows:

1) Traditional B&B methods, which depend on manually-
designed branching heuristics, often struggle with adaptabil-
ity and efficiency across diverse problem scenarios. In con-
trast, we propose using neural networks to automatically learn
these branching heuristics.

2) In addition the typical graph features that are commonly
explored, global and historical features are designed in this
work, providing a more comprehensive and richer representa-
tion of the problem state.

3) We introduce an innovative model that combines the
graph neural network with a pointer mechanism. The graph
neural network processes the graph features, while the pointer
mechanism assimilates the global and historical features to
finally determine the variable on which to branch.

4) Our research presents a top-k Kullback-Leibler diver-

gence loss function, specifically designed to train the model to
imitate the strong branch heuristic effectively.

5) Notably, our proposed method consistently surpasses
both expert-crafted branching rules and contemporary machi-
ne learning techniques across all tested problems. Once
trained, our model demonstrates remarkable generalization
abilities, effortlessly adapting to even unseen, larger instances.

The remainder of the paper is organized as follows. Section II
reviews the recent advances of applying artificial intelligence
methods for combinatorial optimization. Section III intro-
duces the preliminaries of the work. The proposed graph
pointer network model is described in Section IV. Section V
outlines the imitation learning method for optimizing the
model parameters. The experiment setup and numerical results
are presented in Section VI-A. The last section gives the con-
cluding remarks and future perspectives.

II. Related Work

Recent days have seen a surge of applying artificial intelli-
gence methods for combinatorial optimization.

Vinyals et al. [16] developed a pointer network model for
solving small scale combinatorial optimization problems like
the traveling salesman problems (TSPs). It borrowed the idea
of the widely used sequence-to-sequence model in the
machine translation field, and used the attention mechanism to
map the input sequence to the output sequence. This work
inspired a number of subsequent research that involved using
machine/deep learning methods for combinatorial optimiza-
tion.

Most the current works focus on solving the combinatorial
optimization problems in an end-to-end manner. Bello et al.
[17] first proposed the use of a deep reinforcement learning
(DRL) method to optimize the pointer network model, which
can output the solution sequence directly. Nazari et al. [18]
investigated the vehicle routing problem (VRP) by modifying
the pointer network and the attention mechanism. Dai et al.
[19] developed a structure2vec graph neural network (GNN)
model for combinatorial optimization. The GNN model can
encode the graph feature of the problem and aid the decisions.
Other works [20]−[23] explored advanced GNN models like
the graph convolution networks (GCNs) and diverse training
methods to solve the combinatorial optimization problems
more effectively. Moreover, authors in [24], [25] improved
the attention mechanism of the pointer network by leveraging
the recent advances of the famous Transformer model [26] in
the field of seqence-to-seqence learning. The attention model
developed by Kool et al. [25] achieved state-of-the-art perfor-
mance among the above approaches. This model can solve a
number of combinatorial optimization problems, such as the
TSP, VRP, the orienteering problem, etc. In addition, Li et al.
[27] extended this line of work to a multiobjective version.

B&B

B&B

The initial efforts in using statistical learning for devising
branching rules in were spearheaded by Khalil et al.
[12]. They devised a branching rule tailored for an individual
instance during the procedure. This approach was also
explored by Alvarez et al. [28] and Hansknecht et al. [29],
where they focused on learning a branching rule offline from a

 158 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

set of related instances. In all these studies, the aim was to
learn a branching strategy by emulating the expertise of strong
branching. Specifically, both Khalil et al. [12] and Han-
sknecht et al. [29] approached it as a ranking challenge, aimed
at learning a hierarchical order of the candidates by the expert.
On the other hand, Alvarez et al. [28] approached this as a
regression task, intending to directly ascertain the strong
branching scores for each candidate. Gasse et al. [13] pio-
neered the application of GNN for branching policies in MIPs.
Their approach leveraged the inherent variable-constraint
bipartite graph representation, utilizing imitation learning to
swiftly approximate strong branching. Extending upon this
foundation, Gupta et al. [14] introduced a hybrid framework.
In their system, the GNN model operates at the root node,
while a computationally efficient (albeit weaker) model gov-
erns the subsequent nodes. Moreover, Nair et al. [30] pre-
sented two innovative models: neural diving and neural
branching, to augment the capabilities of traditional MIP
solvers. The neural diving model is adept at predicting partial
assignments for integer variables, facilitating the generation of
more compact MIPs. Conversely, neural branching harnesses
a GNN model to approximate optimal branching policies.

In a broader context, numerous researchers have developed
machine learning techniques to refine exact optimization
methods, even outside the scope of general MILPs. A compre-
hensive review on this topic was recently presented by Blum
and Roli [10].

III. Preliminaries

A. Problem Definition
1) Mixed Integer Linear Program: A combinatorial opti-

mization problem can be always modeled as a MILP, having
the form

min cT x
s.t. Ax ≤ b

l ≤ x ≤ u
xi ∈ Z, i ∈ I
c ∈ Rn, A ∈ Rm×n, b ∈ Rm, l,u ∈ Rn. (1)

I ⊆ {1, . . . ,n}
Z A,b

l,u

The aim is to find an optimal set of x to minimize the objec-
tive function with c as the objective coefficient vector. There
are m constraints and n decision variables. A subset of the
decision variables are integers. is their index set,
and is their decision space. are the coefficient matrix
and the right-hand-side vector of the constraints. bound the
decision variables.

2) LP Relaxation of a MILP: Given the complexity of MILP
problems, where some variables are required to be integer val-
ues, they can be quite challenging and computationally expen-
sive to solve exactly. LP relaxation simplifies these problems
by ignoring the integer constraints and treating all variables as
continuous. This results in a standard linear programming
problem, which is significantly easier and faster to solve using
well-established algorithms such as the Simplex method. This
LP relaxation serves as a lower bound (in minimization prob-

lems) for the original MILP problem. This is because relaxing
the integer constraints allows for a broader feasible region and
hence, potentially, a smaller minimum value.

x∗

3) Branch-and-Bound: Branch-and-bound begins by solv-
ing the LP relaxation of the original MILP. The obtained solu-
tion provides the lower bound to the problem. If the
obtained solution respects all the MILP integrality constraints,
it is the optimal solution to (1), and the algorithm terminates.
If not, the LP relaxation is further partitioned into two sub-
problems by branching on an integer variable that does not
respect integrality of the MILP. This is done by adding the
following two constraints into the LP relaxation, respectively
[13]:

xi ≤
⌊
x⋆i

⌋
, xi ≥

⌈
x⋆i

⌉
, ∃i ∈ I | x⋆i < Z (2)

⌊x⋆i ⌋
x⋆i ⌈x⋆i ⌉
x⋆i

where refers to the maximum integer value that is smaller
than , and is the minimum integer value that is larger
than . Here, i is called the branching variable.

x̂

x̂

By branching on i, two new LPs are constructed, which
refer to the leaf nodes/subproblems of the search tree. The
next step is to pick one leaf node, and repeat the above steps.
Once a feasible solution is found, that is, all the MILP inte-
grality constraints are satisfied, there is an upper bound to the
problem. If a solution is found with a lower objective value
than , the upper bound is updated. On the other hand, if a
solution is found with worse objective value than the current
upper bound, this subproblem is pruned and no longer
branched. The subproblem is also fathomed if the solution is
an integer or the LP is infeasible. The above procedures are
repeated until no subproblems remains. The incumbent solu-
tion with the best bound is returned [13].

B. Branching Strategies

C = {i | x⋆i < Z, i ∈ I}
C

B&B

In the branching variable selection decision process, an inte-
ger variable i is selected among the candidate variables

 that do not satisfy the integer constraint.
Existing methods usually score each candidate variable in
according to some handcrafted heuristics, and the variable
with the largest score is selected for branching. The most
commonly used scoring criterion is the change of the lower
bound of the sub-problem after the variable is branched [31].
Based on this criterion, a series of branch rules are designed to
improve the efficiency of .

B&B

x∗ z∗

N−i N+i
z∗−i

z∗+i N−i N+i z∗−i z∗+i

Strong branching (SB) is an effective yet expensive scoring
heuristic. Empirically, it has been found that it consistently
produces the smallest search tree compared to other
heuristics [12]. The SB rule explicitly measures the upper and
lower bounds changes of the sub-problem, so as to select the
best branching variable, which is computed as follows. For the
LP sub-problem corresponding to the current node N, its LP
solution is , and its corresponding objective value is . By
branching on variable i, two LP sub-problems and are
obtained, and the corresponding objective values are and

. If and have no feasible solutions, then and
are set to very large values. Therefore, the change of the
objective function value after branching on variable i is

WANG et al.: LEARNING TO BRANCH IN COMBINATORIAL OPTIMIZATION WITH GPN 159

∆−i = z∗−i − z∗ ∆+i = z∗+i − z∗ and . The SB score is calculated as
[12]

S Bi = score
(
max

{
∆−i , ϵ

}
,max

{
∆+i , ϵ

})
(3)

score (a,b) = a×b

C

B&B

where the product function is usually considered as the scor-
ing function, that is, . ϵ is a small constant.
The SB rule computes the SB scores for all the candidate vari-
ables in the candidate set , and selects the decision variable
with the largest SB score to branch on. Each branching deci-
sion requires long computational time since computing each
SB score requires solving two LP sub-problems. In this case,
the SB-based algorithm usually suffers heavy computa-
tional burden although SB can greatly reduce the search tree
size.

Ψ−j Ψ+j PBi

In view of the heavy computational burden of the SB
method, calculating the pseudocost instead of the SB score is
another commonly used method in the current optimization
solver. Pseudocost branching (PB) estimates the score of a
variable according to its historical scores during the previous
search process. Instead of solving the two sub-problems by
branching on i, the upwards (downwards) score of variable i is
the average value of the objective value changes when
upwards (downwards) branching on variable i in the previous
branching process. This can greatly shorten the calculation
time. Denote the upwards and downwards average scores of
variable i as and , where its pseudocost score is cal-
culated as [12]

PBi = score
((

x∗i −
⌊
x∗i

⌋)
Ψ−i ,

(⌈
x∗i

⌉
− x∗i

)
Ψ+i

)
(4)

x∗i −⌊x∗i ⌋ x∗i −
⌈
x∗i

⌉
and where and represent the decimal part of
the variable value. The PB method can effectively reduce the
computing time of each branching decision. However, the
search tree is much larger than that obtained by SB, since
there is no sufficient historical data in the early stage of the
search to estimate the variable score, which results in incor-
rect branching decisions. In view of the pros and cons of SB
and PB, the reliability branching (RB) method applies SB at
the beginning of the search until enough historical data is
accumulated, and then applies PB in the subsequent process.

It can be seen that there is a contradiction between the
branching performance and the time cost by making each
branching decision. This work aims to leverage the power of
neural networks to emulate the SB rule, striving for compara-
ble performance but with significantly reduced computational
expenditure.

IV. Model

A graph pointer network (GPN) model is proposed to simu-
late the SB strategy previously mentioned. This model’s input
is the current state of the solver, while the output corresponds
to the decision on variable selection. First, the B&B proce-
dure is structured as a Markov decision process. At each stage,
the model interprets the current state and selects an appropri-
ate variable, causing a corresponding change in the solver’s
state. Then, the state of the solver is defined to encompass the
graph structure feature, global feature, and historical feature.
Finally, a graph pointer neural network model is developed in

accordance with the state definition, enabling the perception
of the solver’s current state and facilitating the execution of
branching decisions.

A. Markov Decision Process Modeling
B&B can be modeled as a Markov decision process [13], as

shown in Fig. 1.

x1 = 1.3, x2 = 4.6, x3 = 2, ... x1 = 1.3, x2 = 4.6, x3 = 2, ...

??

Candidates = {x2, x3, x7}

Candidates = {x1, x5, x8}

x4 ≥ 3

x1 ≤ 1
x1 ≤ 1

x1 ≥ 2x1 ≥ 2

x4 ≤ 3
x4 ≤ 3

x7 ≤ 4 x7 ≥ 4

??

Action = x7

st st+1

State
transition

Fig. 1. Markov decision process of the branch-and-bound.

st

st
at = i C = {i | x⋆i < Z, i ∈ I}

π(at |st)

At each decision step t, the current state of the solver is ,
which represents the state of the current search tree. Based on
the current state of the solver , the agent selects a variable

 from the candidate set according to
the strategy .

st+1
π(at+1 |st+1)

The solver solves the two LP sub-problems after branching
on variable i. Subsequently, the solver updates the upper and
lower bounds, prunes the search tree, and selects the next leaf
node to branch. At this time, the solver has been converted to
a new state . Then, the solver applies the branch strategy

 again to make the branching decision. This pro-
cess is looped until all the leaf nodes are explored.

s0
B&B

The initial state of the Markov decision process corre-
sponds to the root node of the search tree. And the final
state is the end of the optimization process, i.e., all leaf nodes
cannot be branched further. Denote the branching policy as π,
where the Markov decision process can be modeled as [13]

pπ(s0, . . . ,sT) = p(s0)
T−1∏
t=0

∑
a∈C(st)

π(a |st)p(st+1 |st,a). (5)

st

st
at

B&B

B&B

In this paper, we learn the branching policy π to imitate the
SB rule, which is realized through the following steps: 1) De-
fine the problem state . At each step of the branch decision,
the branch decision needs to be made according to the current
problem state. However, there is no standardized definition of
the solver state. It is necessary to extract effective features to
better represent the solver state, so as to make better decisions
accordingly. 2) Parameterize the branch policy π via a novel
model. The model should be able to map the problem state
to the branching action correctly. The models, such as neu-
ral networks, random forests and support vector machines,
need to be designed according to the characteristics of .
3) Optimize the parameters of the model by an effective train-
ing algorithm. The model π can be learned through a variety
of machine learning methods to minimize the size of the
search tree or reduce the total run-time of the algorithm.

B&BThe proposed deep learning-based method consists of

 160 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

the above three parts introduced as follows.

B. State Definition
st B&B

st

st = (V,C,E,G,H)

First, the state of at the decision-making step t is
defined in this section. In addition to the graph features intro-
duced in [13], the global features and historical features are
designed, which can provide a more thorough representation
of the solver state. Therefore, is composed of variable fea-
tures, constraint features, edge features, global features, and
historical features, namely .

(V,C,E)

x1, x2, . . . , xn

(i, j) ∈ E

The graph features of the problem is defined by the
bipartite graph of the current solver state, as shown in Fig. 2.
The bipartite graph is composed of m constraints and n vari-
ables. Variables are on the left side of the graph.
The right-hand side (constant) term of the constraint is on the
right side of the graph. The edge of the graph is the
connection of the variable i and the constraint j, i.e., whether
the constraint j includes the variable i. The weight of the edge
is the coefficient of the variable i in constraint j.

Fig. 2. Graph structure of the MILP state.

According to the bipartite graph structure, the solver state is
comprised of variable features, constraint features, edge fea-
tures, global features, and historical features.

n×d

1) Variable features represent the attributes of candidate
variables at branching step t, including the variable type, vari-
able coefficient, current value of the variable, whether the cur-
rent value of the variable is on the boundary, the decimal part
of the solution value of the variable, etc. There are n candi-
date variables in total, and the feature dimension is d. There-
fore, the variable feature dimension is . The detailed
introduction of the variable features is listed Table I.

m× c

2) Constraint features represent the attributes of the LP con-
straint at branching step t, such as the right value of the con-
straint, whether the left value of the constraint exactly reaches
the boundary, the similarity of the constraint coefficient and
the target coefficient, etc. The current LP problem has a total
of m constraints, and the feature dimension is c. Thus, the
dimension of the constraint feature is , and the descrip-
tion of the constraint features can be found in Table II. Refer
to [13] for a detailed description of variable and constraint

features.

m×n
3) The edge feature is the coefficient of each variable in

each constraint. Therefore, there are edges in total, and
the feature dimension is 1. The coefficient value is 0 if the
constraint does not contain a certain variable.

B&B

4) Global feature G represents the global state of the solver,
such as the current optimality gap of the problem, the gap
between the objective value of the current node and the
upper/lower bounds, the depth of the current search tree, the
depth of the current node, etc. We design and extract the
global features using the API interface of PySCIPOpt, which
is an open source solver. The detailed global features are
listed in Table III.

G mainly includes two parts: a) Global features of the whole
MILP, including the gap between the upper and lower bounds
of the current stage of MILP, the number of feasible
solutions/infeasible solutions, etc.; b) Global features of the
current LP sub-problem node, including the depth of the cur-
rent node, the LP objective value information of the current
node, etc.

The depth of the current node and the gap between the
upper and lower bounds can be directly obtained by calling
the PySCIPOpt interface. The number of feasible/infeasible
solutions is computed by the proportion of leaf nodes that pro-
duce feasible/infeasible solutions:

TABLE I

Variable Features

Feature Numeric type

Variable type, 0: 0-1 binary; 1: Integer; and 2: Continuous 　Categorical

Normalized variable coefficient in the objective function 　Real

If the variable owns a upper/lower bound 　Binary

If the current solution value of the variable is its upper/lower
bound

　Binary

Fractional part of the variable’s current solution value 　Real

0: The variable is at its lower bound; 1: Variable’s value lies
between the upper and lower bounds (basic); 2: The vari-
able is at its upper bound; 3: Rare case

　Categorical

Reduced cost, the variable’s solution value can become pos-
itive if we reduce the objective coefficient of the variable by
this value

　Real

Number of LP iterations since the last time the variable was
basic

　Integer

Solution value of the variable at current node 　Real

The variable’s value of the best primal solution 　Real

Average value of the variable in all the feasible solutions
found so far

　Real

TABLE II

Constraint Features

Feature Numeric type

Similarity between the left-hand-side coefficients of the
constraint and the objective coefficients

　Real

Normalized right-hand-side (constant) value of the con-
straint

　Real

Number of iterations since the last time the constraint was
active

　Integer

Dual variable’s value of the constraint 　Real

If the constraint is at the bounds 　Binary

WANG et al.: LEARNING TO BRANCH IN COMBINATORIAL OPTIMIZATION WITH GPN 161

Pfeasible =
Nfeasible

max(Nleaves,0.1)
(6)

Nleaves
vLP

vb

where is the number of all leaves. The gap between the
current node’s LP objective value and the global upper/
lower bounds is calculated by the following formula
according to [15]:

gap =


0, if xy < 0

|vLP− vb|
max

{|vLP|, |vb|,1×10−10} , else (7)

where the current node’s LP objective value and the global
upper/bounds are obtained from the PySCIPOpt interface.

pos
vu vl

|vLP−vu |
|vLP−vu |

The relative position of the current node’s LP objective
value to the global upper bound and lower bound is com-
puted as .

C1 = a1 · · ·at−1 1 · · · t−1
C2 = x1, x2, . . .

C2

5) The historical feature consists of two parts. The first part
is comprised of features of all past branching decisions

 at previous steps . The second part is
comprised of features of variables whose val-
ues have changed when generating the current node. That is,

 is the set of variables whose values have changed in the
solution of the new problem after adding an integer constraint
to the parent problem.

st

Traditional approaches only considers variable features,
constraint features and edge features [13]. This work further
extracts global features and historical features, so as to obtain
a richer representation of the environment state . The global
status of the current search tree and the current node can pro-
vide more information for the agent to make branching deci-
sions. Moreover, observing the variables whose values have
changed when generating the current node, and observing the
variables selected during the historical branching process, can
also provide effective information for making the branching
decisions. Therefore, it is expected that adding additional
global features and historical features can better describe the
state of the current problem.

C. Graph Pointer Network Model
In this section, a GPN that combines the graph neural net-

work and the pointer mechanism is proposed to model the

branching policy, which can map the solver state to the
branching decisions effectively.

From the features extracted in the previous section, it can be
seen that the solver state has a bipartite graph structure, that is,
the left nodes (variables) and the right nodes (constraints) are
connected by edges, as shown in Fig. 2. Graph neural net-
work can effectively process the information of the graph
structure, and has been successfully applied to various
machine learning tasks with graph structure input, such as
social networks and citation networks. Therefore, we encode
the graph structure of the solver state by a graph neural net-
work model.

In addition, we take the global and historical features as a
query, and compute the attention value, which is then normal-
ized as a softmax probability distribution, as a pointer to the
input sequence. In this way, the variable with the largest prob-
ability is selected as the branching variable.

The proposed graph pointer neural network model is com-
posed of two parts: 1) The graph neural network calculates the
feature vector for each variable based on variable features,
constraint features and edge features; 2) The pointer mecha-
nism outputs the variable selection probabilities by comput-
ing the attention values according to variables’ feature vec-
tors and the query which is constructed by the global and his-
torical features. The detailed process of modeling the branch-
ing policy is as follows.

dh xv
xc xe xg

1) Initial Embedding Calculation: Variable features, con-
straint features, edge features, and global features have differ-
ent dimensions. For example, the variable feature is 13-dimen-
sional, and the global feature is 9-dimensional. Therefore, the

-dimensional embeddings of the variable features , con-
straint features , edge features and global features are
computed as follows:

xv← EMBEDDING (xv)

xc← EMBEDDING (xc)

xe← EMBEDDING (xe)

xg← EMBEDDING(xg) (8)
EMBEDDING(·)

dh

where is a two-layer fully connected neural
network. The hidden dimension is and the activation func-
tion between layers is LeakyRELU

LeakyRELU (x) =
x, if x ≥ 0

10−2× x, otherwise.
(9)

2) Graph Neural Network: Next, the final variable features
are computed by a graph convolution neural network similar
to [13]

xi
c← fC

(
xi

c,

(i, j)∈E∑
j

gC
(
xi

c,x
j
v,x

i, j
e

))

x j
v← fV

(
x j

v,

(i, j)∈E∑
j

gV
(
x j

v,xi
c,x

i, j
e

))
. (10)

g(·)Function is defined as

g
(
xi

c,x
j
v,x

i, j
e

)
= FF

(
xi

c+x j
v+xi, j

e

)
(11)

TABLE III

Global Features

Feature Numeric type

Depth of the current node 　Integer

Normalized number of feasible solutions 　Real

Normalized number of infeasible solutions 　Real

Gap between the global upper and lower bounds 　Real

Gap between the current node’s LP objective value and the
global upper bound

　Real

Gap between the current node’s LP objective value and the
global lower bound

　Real

Relative position of the current node’s LP objective value to
the global upper/lower bounds

　Real

Gap between the current node’s LP objective value and the
root node’s upper bound

　Real

Gap between the current upper bound and the root node’s
upper bound 　Real

 162 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

FF
f(·)

xi
c

x j
v

xi, j
e

x j
v

xi
c

xi, j
e

where is a two-layer fully connected neural network with
LeakyRELU activation function. Function is also a two-
layer fully connected neural network with LeakyRELU activa-
tion function. As demonstrated in (10), the graph embedding
is computed by two successive convolution passes, one from
variables to constraints and the next from constraints to vari-
ables. The first convolution step computes the features of
constraint i according to features of its connected variables
j, features of the edge and its own features. The second
step computes the embedding of variable j according to the
obtained features of its connected constraints i, features of
the edge and its own features. Through the graph convolu-
tion process, the final variable features aggregate the original
variable features, constraint features and coefficient features
of the problem, so as to effectively contain the graph informa-
tion of the MILP state.

C1 = a1 · · ·at−1 1 · · · t−1
dh

3) Historical Feature Calculation: At branching step t, the
first part of the historical features is the past branching deci-
sions at steps . We compute this part of

-dimensional historical features as

xt
h1 = FF

(1
t−1

t−1∑
i=1

xai
v

)
(12)

FF
ai

where is a single-layer fully connected neural network
layer, and is the variable selected by the solver at step i.

C2
C2

dh xt
h2 xt

h2 xt
h1

t == 0

The second part of the historical feature is the variable set
 whose value changes during the process of generating the

current node. The same operation is performed on to obtain
the -dimensional vector . In addition, and are
zero vectors if .

4) Pointer Mechanism: The attention value, which can be
seen as a pointer to the candidate variables, is computed by a
compatibility function of the query with the key. The query,
which is composed of global features and historical features,
represents the current state of the solver. The key represents
the feature of each candidate variable. Specifically, the query
vector is calculated as the weighted average of global and his-
torical features

qt = w1×xt
g+w2×xt

h1+w3×xt
h2 (13)

w1, w2, w3
ki =

Wkxi
v, i ∈ C

qt
ki, i ∈ C

where are weight values to be optimized while
training. Moreover, the key of variable i is defined as

, which is the linear projection of the variable fea-
tures. Denote the query at branching step t as and the keys
of candidate variables as , where one has

ut
i =W3 (W1ki+W2qt) , i ∈ (1, . . . ,n)

pt
i = softmax

(
ut

i

)
, i ∈ (1, . . . ,n) (14)

ut
i

softmax
pt

i

pt
i

where is the attention value computed by the compatibility
function. Note that other compatibility function can also be
applied to compute the attention, which can refer to [26] for
more details. is used to normalize the attention value
to the probability distribution , representing the probability
of selecting variable i at branching step t. In this case, we can
choose the variable with the highest probability as the
branching variable.

In addition, it is necessary to normalize the variable fea-

tures, constraint features, edge features, and global features
due to their different data range. To this end, the prenorm
layer is applied as introduced in [13] to normalize the vari-
able, constraint, and edge features. We also add a prenorm
layer of global features accordingly, so that the neural net-
work model can deal with problem instances with global fea-
tures of different scales.

D. Branch and Bound Algorithm Based on GPN

B&B B&B
The proposed GPN model is then used to select the branch-

ing variable in . The GPN-based is illustrated in
Algorithm 1.

Algorithm 1 Branch and Bound Algorithm Based on GPN

Input: Root node R, representing the LP relaxation of the original
MILP

S ∗Output: Optimal solution
R.lowerBound←−∞1: 　　/*Initialize the lower bound of R*/
Queue← {R}2: 　　/*Store the unexplored node into the Queue*/
U pperBound←∞3: 　　/*Initialize the global upper bound*/
S ∗← null4:

Queue5: while is not empty do
N← Queue.get()6: 　 　　/*Dequeue the node*/

N.lowerBound ≥ U pperBound7: 　if then
8: 　　/*If node N’s parent node’s lower bound is greater than the

global upper bound, prune this node*/
9: 　　continue
10: 　end if

S r ← solve(N)11: 　
S r12: 　if is not feasible then

13: 　　/*prune this node*/
14: 　　continue
15: 　end if

Or ← S r.ob jectiveValue16: 　
Or > U pperBound17: 　if then

18: 　　/*If node N’s lower bound is greater than the global upper
bound, prune this node*/

19: 　　continue
20: 　end if

S r21: 　if is feasible then
U pperBound← Or22: 　　

S ∗← S r23: 　　

S ∗24: 　　/*Update the global upper bound and */
25: 　　continue
26: 　end if

state = (V,C,E,G,H)27: 　Extract features of the solver state,
V ← GPN(S r, state)28: 　 　 　 /*Select varibale V by the GPN
model*/
a← floor(V.value)29: 　
L← addConstraint(N,V ≤ a)30: 　
R← addConstraint(N,V ≥ a)31: 　

32: 　/*Branch on V and obtain the two LP sub-porblems*/
L.lowerBound← Or R.lowerBound← Or33: 　 ,
Queue.add(L) Queue.add(R)34: 　 ,

35: end while
S ∗36: return

First, the LP relaxation of the original MILP problem is set

WANG et al.: LEARNING TO BRANCH IN COMBINATORIAL OPTIMIZATION WITH GPN 163

as the root node. The queue data structure is maintained to
store the sub-problem nodes to be solved. Each node defines
an initial lower bound l, which represents the lower bound of
its parent node. After the global upper bound is updated, if l is
greater than the global upper bound, then the node will be
pruned. When the node is taken out of the queue, its lower
bound is compared with the global upper bound, and the node
is pruned if the lower bound is greater than the global upper
bound. The global upper bound is initialized to ∞, and is
updated every time a better feasible solution is obtained. Vari-
able, constraint, edge, global and historical features of candi-
date variables are extracted, which are subsequently input to
the GPN model. The model outputs the probability distribu-
tion of the candidate variables. The one with the highest prob-
ability can be selected as the variable to branch on. Two sub-
problems are generated accordingly. This process loops until
the queue is empty, i.e., all leaves of the search tree are
explored.

O(mndh) dh

With n variables and m constraints, the computational com-
plexity of the GPN model is where is the dimen-
sion of hidden layers. When applying the GPN model for
branching, a single forward pass through the GPN model can
yield the result. Therefore, it costs much less running time
than the classical SB rule, which requires solving a number of
subproblems.

V. Training Method

{χ1,χ2, . . . ,χm} χi = ⟨si
1,a

i
1,s

i
2,a

i
2, . . .⟩

si
1, ai

1

B&B
D = {(s1,a1) , (s2,a2) , (s3,a3) , . . .} ai

An imitation learning method is proposed to train the pro-
posed model. The objective is to imitate the strong branching
rule. Imitation learning [32] can solve various multi-step deci-
sion-making problems. In comparison with unsupervised rein-
forcement learning methods, imitation learning can improve
the training efficiency with the help of expert experiences.
Imitation learning requires labeled training data provided by
human experts , where .

 represents the “state-action” pairs in a Markov decision
process generated by solving an instance using the SB-based

. Therefore, the labeled training set can be constructed as
. Denote as the label, the

variable selection problem can be converted into a classifica-
tion problem. The objective is to minimize the difference
between the expert actions and the predicted actions.

B&B

D =
{(si,a⋆i)}Ni=1 a⋆

τθ(s)

Specifically, the SB-based is conducted on randomly
generated combinatorial optimization instances. The “state-
action” pairs are recorded to form a training set

. Denote the expert actions as and the predicted
actions as , where the model parameters θ are optimized
by minimizing

L(θ) =
1
N

∑
(s,a∗)∈D

loss
(
τθ(s),a⋆

)
(15)

loss(∗)

loss(∗)

where is a function that defines the difference between
the true value and the predicted value. For classification prob-
lems, there are a number of functions such as the accu-
racy and cross entropy.

B&BHowever, in , SB scores of different variables might be
the same or pretty close. It is equivalent to select these vari-

D = {(si, score⋆i)}Ni=1

ables. But only one variable is selected when constructing the
labeled dataset. By applying loss functions like cross entropy,
the similarities of SB scores between different variables can-
not be leveraged. In this case, we choose to imitate the distri-
bution of the SB scores instead of the branching actions. To
this end, the SB scores of all the candidate variables are
recorded to construct the training set . And
Kullback-Leibler (KL) divergence is used as a measure of the
difference between the SB score distribution and the pre-
dicted probability distribution. By minimizing the KL diver-
gence, the model can work better for the above situation
where multiple variables own the same or similar SB scores. It
can better help the model imitate the SB scores.

Denote P as the true distribution of the data and Q as the
predicted distribution of the model to fit P, KL divergence is
defined as

DKL(P∥Q) =
∑
x∈X

P(x) log
(

P(x)
Q(x)

)
. (16)

πθ(s)Therefore, given the probabilities of the candidate
variables output by the model, the model parameters θ are
optimized by minimizing

L(θ) = DKL(score⋆∥πθ(s)) =
∑

(s,score⋆)∈D
score⋆ log

(
score⋆

πθ(s)

)
.

(17)

πθ(s)
Ik

Ik

DKL(score⋆Ik
∥πθ(s)Ik)

In addition, we only care about the variables with high SB
scores. The probability distribution of other variables has no
effect on the branching variable selection. Thereby, we
emphasize the similarity loss of variables with high SB scores
in the training phase. Specifically, the variables are sorted
according to their probabilities output by the model. More
attention should be paid to the first few variables. To this end,
the KL divergence of the top-k variables is added to the loss
item. In specific, the probabilities output by the model
are sorted, and the first k variables are selected. The KL
divergence value of variables is computed by (16) as

. And the loss for training the model is
defined as

L(θ) = DKL(score⋆∥πθ(s))+DKL(score⋆Ik
∥πθ(s)Ik). (18)

The first term of the loss can make the overall predicted dis-
tribution similar to the distribution of the SB scores, while the
second term makes the model pay more attention to the vari-
ables of large probabilities and weakens the distribution of
irrelevant variables for selecting the branching variables. This
can alleviate the situation where a large amount of training
time is cost to fit the distribution of irrelevant variables.

VI. Experimental Results and Discussion

A. Experiment Settings
1) Comparison Algorithm: The proposed approach is com-

pared against the following approaches.

B&B
a) First, the proposed approach is compared against the clas-

sic algorithm. The branching rule of reliability branch-
ing (RB), strong branching (SB) and pseudocost branching

 164 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

(PB) are compared respectively. They are all implemented in
the well-known SCIP solver. The cutting plane is only
allowed at the root node. Other heuristics are disabled during
the branching process for fair comparison. Our method is also
implemented in the SCIP solver, and uses the same set of
parameters as the competitor methods.

B&B
b) Next, the proposed approach is compared with the state-

of-the-art machine learning-based algorithms, often
regarded as standard comparisons in the literature. The algo-
rithms under consideration are: branching method based on
ExtraTrees [33] model [28] (TREES); branching method [12]
(SVMRANK) and [29] (LMART) based on SVMrank [34]
and LambdaMART [35] model; branching method based on
graph neural network [13] (GNN).

2) Test Problems: Effectiveness of the proposed method is
evaluated on the following three benchmark combinatorial
optimization problems.

a) Set covering problem [36]: The set covering instances
contain 1000 columns. The model is trained on instances with
500 rows, and is evaluated on instances with 500 and 1000
rows, respectively.

b) Capacitated facility location problem [37]: The instances
are generated with 100 facilities. The model is trained on
instances with 100 customers, and is evaluated on instances
with 100 and 200 customers, respectively.

c) Maximum independent set problem [38]: The instances
are generated following the process in [38]. The model is
trained on instances of 500 nodes, and is evaluated on
instances with 500 and 1000 nodes, respectively.

dh = 64
k = 10

3) Experimental Parameter Settings: All compared algo-
rithms are implemented by Python on the SCIP solver. SCIP
uses its default parameters. The hidden dimensions of the
models are set to . The Adam optimizer is used for
training with learning rate of 0.001. is set for the top-k
imitation learning. The learning rate decreases 80% if the loss
does not decrease for 10 epochs. The training is terminated if
the loss does not decrease for 20 epochs.

4) Training Data Generation: The SCIP solver with default
settings is used to collect training samples offline. Random
instances are generated and solved using the SCIP. During the
collecting procedure, the branching rule of RB is adopted with
a probability of 95%, and the branching rule of SB is adopted
with a probability of 5%. Only the samples generated by SB
are collected. The data of variable, constraint, edge, global
and historical features, candidate variable sets, and SB scores
of the variables is collected.

Instances are randomly generated and solved until 140 000
samples are collected. 100 000 samples are used as the train-
ing set, 2000 samples are used as the validation set, and 2000
samples are used as the test set.

5) Evaluation: First, the capability of the GPN model in
imitating the SB rule is examined. Since multiple variables
may have the same or similar SB scores, the following indices
are used to evaluate the model accuracy [13]: a) The percent-
age of times the output of the model is exactly the variable
with the highest SB score (acc@1); b) The percentage of
times the output of the model is one of the five variables with

B&B

the highest SB scores (acc@5); c) The percentage of times the
output of the model is one of the ten variables with the high-
est SB scores (acc@10). Moreover, the total solving time of
the GPN-based in comparison with benchmark methods
is evaluated.

B. Results
Figs. 3−5 present the training performances of the proposed

GPN model in comparison to the classic GNN model across
three test problems. The convergence of the loss and model
accuracy on the validation set are both compared.

0 50 100 150 200

0.35

0.40

0.45

0.50

Loss

GPN
GNN

(a) Loss

0 50 100 150 200

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

Accuracy

GPN
GNN

(b) Model accuracy

Fig. 3. Training performances of the models on the set covering.

Results indicate that the proposed GPN model surpasses the
conventional GNN in both convergence speed and overall
convergence performance during training. Additionally, GPN
consistently outshines GNN in model accuracy for all three
problems on the validation set. The superiority of GPN is par-
ticularly evident on the location problem and the maximum
independent set problem; here, GPN converges to values of
0.66 and 0.003, respectively, while GNN reaches only 0.72
and 0.0047.

The superior convergence performance of the GPN over the
GNN model stems from its advanced modeling capabilities
and informative features that represent the problem state. By

WANG et al.: LEARNING TO BRANCH IN COMBINATORIAL OPTIMIZATION WITH GPN 165

incorporating an attention-based pointer mechanism, the GPN
model comprehends the graph, global and historical character-
istics of the problem more effectively, thereby facilitating
more accurate decision-making. Therefore, when compared to
the GNN model, which solely employs a graph convolution
network to process constraint and variable features, the GPN
model exhibits a more expedient convergence rate and lesser
validation loss. This highlights the advantage of the GPN
model in fostering computational efficiency while maintain-
ing high-quality performance.

Tables IV−VI present the model accuracy of GPN, TREES,
SVMRANK, LMART, and GNN methods on the test set.
Results of TREES, SVMRANK and LMART are from [13].
Results of acc@1, acc@5 and acc@10 are listed respectively.

Results outlined in Tables IV−VI indicate that for the set
covering, capacitated facility location, and maximum indepen-
dent set problems respectively, the GPN method consistently
outperforms other approaches. This superiority is evident
across all metrics: acc@1, acc@5, and acc@10. This empiri-
cal evidence solidifies the GPN’s position as the leading
method in these scenarios. Its performance is distinctly supe-
rior in the maximum independent set problem. This observa-
tion aligns seamlessly with the performance of the model dur-

ing the training and validation process, indicating a consistent
model behaviour. This empirical evidence affirms our premise

0 25 50 75 100 125 150 175

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Loss

GPN
GNN

(a) Loss

0 25 50 75 100 125 150 175
(b) Model accuracy

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

Accuracy

GPN
GNN

Fig. 4. Training performances of the models on the capacitated facility
location.

0 20 40 60 80 100

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

Loss

GPN
GNN

(a) Loss

0 20 40 60 80 100
(b) Model accuracy

0.40

0.45

0.50

0.55

0.60

Accuracy

GPN
GNN

Fig. 5. Training performances of the models on the maximum independent
set.

TABLE IV

Results of Model Accuracy on Set Covering

acc@1 acc@5 acc@10

　　TREES [28] 51.8 80.5 91.4

　　SVMRANK [12] 57.6 84.7 94

　　LMART [29] 57.4 84.5 93.8

　　GNN [13] 65.5 92.4 98.2
　　GPN 66.5 92.7 98.2

TABLE V

Results of Model Accuracy on Capacitated
Facility Location

acc@1 acc@5 acc@10

　　TREES [28] 63 97.3 99.9

　　SVMRANK [12] 67.8 98.1 99.9

　　LMART [29] 68 98 99.9

　　GNN [13] 71.2 98.6 99.9
　　GPN 72.2 98.7 99.9

 166 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

that the GPN method is adept at imitating the SB rule, sur-
passing the alternative methods examined.

B&B

In addition, the running time of the approaches is evaluated,
since the aim of the branching models is to reduce the overall
solving time of . The solving time is determined by the
size of the search tree, that is, the number of explored nodes.
It is also determined by the time consumed making the branch
decisions. Therefore, a ood branching model can reduce the
size of the search tree while making fast branching decisions.

Tables VII−IX list the results of solving time and the num-
ber of explored nodes when using GPN and the compared
approaches for solving the three test problems. The “TimeB”
index represents the duration required to make a single
branching decision. Results are obtained by solving 100 ran-
domly generated problems and taking the average.

TABLE VII

Results of Running Time on Set Covering

500 rows 1000 rows

Methods Time Nodes TimeB Time Nodes TimeB

　SB 7.02 12.5 0.562 173.9 227.5 0.764

　PB 2.88 98.6 0.029 19.8 2211.2 0.009

　RB 3.73 18.8 0.198 22.1 1192.5 0.019

　GNN [13] 2.07 43.9 0.047 14.2 900.6 0.016
　GPN 2.04 42.3 0.048 13.9 891.2 0.016

Table VII shows that, in comparison with the PB and RB
rule, the proposed GPN method achieves at least 40% increase
in the solution speed when solving the 500-row and 1000-row
set covering instances. In terms of the number of explored
nodes, GPN outperforms all of the compared methods except
for the SB rule on the set cover instances. SB can always get
the smallest search tree. But its total solving time has no
advantage over our method due to its long computation time
of making branching decisions. It is obvious that the GPN
method outperforms all the compared machine learning meth-
ods in terms of solving speed and the ability to reduce the
search tree on the set covering instances.

It can be seen from Table VIII that the GPN method shows
greater advantages in solving the 100-customer and 200-cus-
tomer capacitated facility location instances compared to other
methods. In specific, GPN runs twice as fast as the PB and RB
method. Compared with the machine learning methods, GPN
has the fastest solving speed and the fewest number of nodes.

On maximum independent set instances, GPN achieves
nearly 10% improvement in the solution speed and 20%

reduction in the number of nodes as seen in Table IX. The
solving time is reduced nearly twice when using the GPN
compared with the PB and RB methods.

Upon analysis of the results, it is evident that the proposed
GPN method is capable of delivering branching performance
commensurate with the SB rule, but with markedly less com-
putational time. As a result, the solving speed of the B&B
method is significantly enhanced. This illustrates the effi-
ciency of the GPN approach.

Note that, the test instances are generated randomly, and are
different from the training set. Once the model is trained, it
can be generalized to unseen instances, and scale to larger
instances. Although the RB heuristic is carefully handcrafted
by experts, it is still defeated by the proposed GPN method,
which can learn heuristics from the data. Experiments vali-
date the novelty and efficiency of the GPN method.

B&BThe goal of is to solve the combinatorial optimization
problem as fast as possible, so the branch strategy should be a
trade-off between the quality of the decision and the time
spent on each decision. An extreme example is the SB branch
rule: by calculating the SB score for variable selection, the
final solution can be obtained with a small number of
searches, but each decision step is very time-consuming, so
that the overall running time is very long. From the results of
the 500-row set covering problem in Table VII, the SB rule
takes 0.562 s in average to make a single branching decision,
while our GPN method takes just 0.048 s. Despite GPN pro-
cessing more nodes (42.3) than SB (12.5), its total solving
time is shorter. Similarly, PB, although faster in decision-
making than GPN, processes more nodes (98.6) leading to a
longer overall solving time. Comparatively, while SB has the
best branching decisions, it’s the slowest. PB is the quickest
but lacks in efficiency. GPN presents an optimal balance of
performance and speed, offering the most effective solution

TABLE VI

Results of Model Accuracy on Maximum Independent Set

acc@1 acc@5 acc@10

　　TREES [28] 51.8 80.5 91.4

　　SVMRANK [12] 57.6 84.7 94

　　LMART [29] 57.4 84.5 93.8

　　GNN [13] 65.5 92.4 98.2
　　GPN 66.5 92.7 98.2

TABLE VIII

Results of Running Time on Capacitated
Facility Location

100 customers 200 customers

Methods Time Nodes TimeB Time Nodes TimeB

　SB 157.4 116.5 1.351 1163.3 158.7 7.330

　PB 82.8 541.9 0.153 510.7 614.2 0.831

　RB 96.7 264.7 0.365 598.9 303.5 1.973

　GNN [13] 37.4 467.4 0.080 145.6 529.6 0.275
　GPN 35.2 428.9 0.082 140.3 516.2 0.272

TABLE IX

Results of Running Time on Maximum Independent Set

500 nodes 1000 nodes

Methods Time Nodes TimeB Time Nodes TimeB

　SB 87.1 35.41 2.460 2844.4 164.5 17.291

　PB 14.6 1937.8 0.008 2002.9 17 213 0.116

　RB 11.4 92.7 0.123 210.2 6717 0.031

　GNN [13] 5.01 61.7 0.081 222.5 14 862 0.015
　GPN 4.63 45.3 0.102 198.6 12 587 0.016

WANG et al.: LEARNING TO BRANCH IN COMBINATORIAL OPTIMIZATION WITH GPN 167

time for B&B. This observation remains consistent across all
other instances, validating the fact that the proposed method
can achieve a better balance between the decision quality and
decision time, therefore reducing the overall solving time of
B&B.

VII. Conclusion

B&B

B&B

This paper has presented a novel method of modeling the
variable selection strategy in using a deep neural net-
work model. We made use of graph features and introduced
global and historical features to represent the solver state. The
architecture combines a graph neural network with a pointer
mechanism, enabling effective variable selection. Our experi-
mental results on benchmark problems show that our approach
surpasses traditional expert-designed branching rules and also
outperforms state-of-the-art machine-learning-based
methods.

Looking ahead, there are several promising avenues for
extending and refining our work.

1) The process of constructing labeled datasets for imitation
learning can be computationally intensive. To mitigate this, a
potential solution would be to integrate reinforcement learn-
ing techniques. By using reinforcement learning, we could
harness unsupervised training strategies that could alleviate
the need for labor-intensive labeled datasets, paving the way
for more scalable and efficient learning.

2) While our model has demonstrated its effectiveness on
benchmark problems, it is essential to test it on a wider spec-
trum of practical problems. Exploring its applicability in
diverse domains will provide insights into the generalizability
and robustness of our approach.

3) The current model leverages graph, global, and historical
features. Future work can explore the inclusion of other types
of features, potentially capturing more nuanced aspects of the
problem space, leading to even more informed decisions dur-
ing the branching process.

B&B

4) One exciting direction would be the introduction of
mechanisms allowing the neural network model to adapt in
real-time based on feedback during the process. This
could lead to models that fine-tune their strategies on-the-fly,
adjusting to the unique characteristics of the problem being
solved.

5) As deep learning models can be computationally inten-
sive, especially in real-time scenarios, future work can also
explore optimizations tailored to specific hardware platforms,
ensuring efficient execution and reduced computational over-
head.

In conclusion, the present work lays a foundation upon
which numerous exciting advancements can be built. We
believe that the interplay of optimization and deep learning
has much more to offer, and we are enthusiastic about the
potential breakthroughs the future may bring.

References
 P. Festa, “A brief introduction to exact, approximation, and heuristic
algorithms for solving hard combinatorial optimization problems,” in
Proc. 16th Int. Conf. Transparent Optical Networks, Graz, Austria,
2014, pp. 1–20.

[1]

 A. Schrijver, “On the history of combinatorial optimization (till 1960),”[2]

Handb. Oper. Res. Manage. Sci., vol. 12, pp. 1–68, 2005.
 K. Abe, I. Sato, and M. Sugiyama, “Solving NP-hard problems on
graphs by reinforcement learning without domain knowledge,” arXiv
preprint arXiv: 1905.11623, 2020

[3]

 E. Yolcu and B. Póczos, “Learning local search heuristics for Boolean
satisfiability,” in Proc. 33rd Int. Conf. Neural Information Processing
Systems, Vancouver, Canada, 2019, pp. 7992–8003.

[4]

 Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for
combinatorial optimization: A methodological tour d’Horizon,” Eur. J.
Oper. Res., vol. 290, no. 2, pp. 405–421, Apr. 2021.

[5]

 D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell,
“Branch-and-bound algorithms: A survey of recent advances in
searching, branching, and pruning,” Discrete Optim., vol. 19, pp. 79–
102, Feb. 2016.

[6]

 A. H. Land and A. G. Doig, “An automatic method for solving discrete
programming problems,” in 50 Years of Integer Programming
1958–2008, M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser,
W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, Eds.
Berlin, Germany: Springer, 2010, pp. 105–132.

[7]

 N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman,
“Learning combinatorial optimization on graphs: A survey with
applications to networking,” IEEE Access, vol. 8, pp. 120388–120416,
Jun. 2020.

[8]

 E. A. Silver, “An overview of heuristic solution methods,” J. Oper. Res.
Soc., vol. 55, no. 9, pp. 936–956, May 2004.

[9]

 C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35,
no. 3, pp. 268–308, Sept. 2003.

[10]

 H. He, H. Daume III, and J. Eisner, “Learning to search in branch and
bound algorithms,” in Proc. 27th Int. Conf. Neural Information
Processing Systems, Montreal, Canada, 2014, pp. 3293–3301.

[11]

 E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina,
“Learning to branch in mixed integer programming,” in Proc. 30th
AAAI Conf. Artificial Intelligence, Phoenix, Arizona, 2016, pp.
724–731.

[12]

 M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact
combinatorial optimization with graph convolutional neural networks,”
in Proc. 33rd Int. Conf. Neural Information Processing Systems,
Vancouver, Canada, 2019, p. 1396.

[13]

 P. Gupta, M. Gasse, E. B. Khalil, M. P. Kumar, A. Lodi, and Y. Bengio,
“Hybrid models for learning to branch,” in Proc. 34th Int. Conf. Neural
Information Processing Systems, Vancouver, Canada, 2020, p. 1518.

[14]

 G. Zarpellon, J. Jo, A. Lodi, and Y. Bengio, “Parameterizing branch-
and-bound search trees to learn branching policies,” in Proc. AAAI
Conf. Artificial Intelligence, 2021, pp. 3931–3939.

[15]

 O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc.
28th Int. Conf. Neural Information Processing Systems, Montreal,
Canada, 2015, pp. 2692–2700.

[16]

 I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” in Proc. 5th
Int. Conf. Learning Representations, Toulon, France, 2016.

[17]

 M. Nazari, A. Oroojlooy, L. V. Snyder, and M. Takáč, “Deep
reinforcement learning for solving the vehicle routing problem,” arXiv
preprint arXiv: 1802.04240, 2018.

[18]

 H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Proc. 31st Int.
Conf. Neural Information Processing Systems, Long Beach, USA, 2017,
pp. 6351–6361.

[19]

 A. Mittal, A. Dhawan, S. Manchanda, S. Medya, S. Ranu, and A. Singh,
“Learning heuristics over large graphs via deep reinforcement learning,”
arXiv preprint arXiv: 1903.03332, 2019.

[20]

 A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, “A note on learning
algorithms for quadratic assignment with graph neural networks,” arXiv
preprint arXiv: 1706.07450, 2017.

[21]

 C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph
convolutional network technique for the travelling salesman problem,”
arXiv preprint arXiv: 1906.01227, 2019.

[22]

 Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Proc. 32nd Int.
Conf. Neural Information Processing Systems, Montréal, Canada, 2018,
pp. 537–546.

[23]

 168 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

http://dx.doi.org/10.1016/j.ejor.2020.07.063
http://dx.doi.org/10.1016/j.ejor.2020.07.063
http://dx.doi.org/10.1016/j.disopt.2016.01.005
http://dx.doi.org/10.1109/ACCESS.2020.3004964
http://dx.doi.org/10.1057/palgrave.jors.2601758
http://dx.doi.org/10.1057/palgrave.jors.2601758
http://dx.doi.org/10.1145/937503.937505

 M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M.
Rousseau, “Learning heuristics for the TSP by policy gradient,” in Proc.
15th Int. Conf. Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, Delft, The Netherlands, 2018,
pp. 170–181.

[24]

 W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve
routing problems,” in Proc. 7th Int. Conf. Learning Representations,
New Orleans, USA, 2019.

[25]

 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Proc. 31st Int. Conf. Neural Information Processing Systems, Long
Beach, USA, 2017, pp. 5998–6008.

[26]

 K. Li, T. Zhang, and R. Wang, “Deep reinforcement learning for
multiobjective optimization,” IEEE Trans. Cyber., vol. 51, no. 6, pp.
3103–3114, Jun. 2021.

[27]

 A. M. Alvarez, Q. Louveaux, and L. Wehenkel, “A machine learning-
based approximation of strong branching,” INFORMS J. Comput.,
vol. 29, no. 1, pp. 185–195, Jan. 2017.

[28]

 C. Hansknecht, I. Joormann, and S. Stiller, “Cuts, primal heuristics, and
learning to branch for the time-dependent traveling salesman problem,”
arXiv preprint arXiv: 1805.01415, 2018.

[29]

 V. Nair, S. Bartunov, F. Gimeno, I. Von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, R. Addanki,
T. Hapuarachchi, T. Keck, J. Keeling, P. Kohli, I. Ktena, Y. J. Li, O.
Vinyals, and Y. Zwols, “Solving mixed integer programs using neural
networks,” arXiv preprint arXiv: 2012.13349, 2020.

[30]

 E. Mitchell, “Branch-and-cut algorithms for combinatorial optimization
problems,” Handbook of Applied Optimization, vol. 1, no. 1, pp. 65–77,
2002.

[31]

 A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Comput. Surv., vol. 50, no. 2, p.
21, Mar. 2018.

[32]

 P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Mach. Learn., vol. 63, no. 1, pp. 3–42, Mar. 2006.

[33]

 T. Joachims, “Optimizing search engines using clickthrough data,” in
Proc. 8th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, Edmonton, Canada, 2002, pp. 133–142.

[34]

 C. J. C. Burges, “From RankNet to LambdaRank to LambdaMART: An
overview,” Microsoft Corp., Seattle, USA, Microsoft Research
Technical Report MSR-TR-2010-82, 2010.

[35]

 E. Balas and A. Ho, “Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: A computational study,”
Combinatorial Optimization I, M. W. Padberg, Ed. Berlin, Germany:
Springer, 1980, pp. 37–60.

[36]

 G. Cornuejols, R. Sridharan, and J. M. Thizy, “A comparison of
heuristics and relaxations for the capacitated plant location problem,”
Eur. J. Oper. Res., vol. 50, no. 3, pp. 280–297, Feb. 1991.

[37]

 D. Bergman, A. A. Cire, W.-J. Van Hoeve, and J. Hooker, Decision
Diagrams for Optimization. Cham, Germany: Springer, 2016.

[38]

Rui Wang (Senior Member, IEEE) received the B.S.
degree in system engineering from the National Uni-
versity of Defense Technology (NUDT) in 2008, and
the Ph.D. degree in system engineering from the Uni-
versity of Sheffield, UK in 2013. Currently, he is
with the National University of Defense Technology.
His current research interests include evolutionary
computation, multiobjective optimization and the
development of algorithms applicable in practice.
 Dr. Wang has authored more than 40 referred

papers including those published in IEEE Transactions on Evolutionary Com-
putation, IEEE Transactions on Cybernetics, and Information Sciences. He
serves as an Associate Editor of the IEEE Transacions on Evolutionary Com-
putation, Swarm and Evolutionary Computation, Expert System with Applica-
tions, etc. He is the recipients of The Operational Research Society Ph.D.
Prize in 2014, of the Funds for Distinguished Young Scientists from the Natu-
ral Science Foundation of Hunan province at 2016, of the Wu Wen-Jun Artifi-
cial Intelligence Outstanding Young Scholar at 2017, of the National Science
Fund for Outstanding Young Scholars at 2021.

Zhiming Zhou received the B.S. and Ph.D. degrees
in control science and engineering from Beijing Insti-
tute of Technology in 2015 and 2021, respectively.
He is a Assistant Research Fellow with the Institute
of Automation, Chinese Academy of Sciences. His
research interests include reinforcement learning,
optimal control and flight control and decisions mak-
ing.

Kaiwen Li received the B.S., M.S. and Ph.D.
degrees in management science and engineering
from National University of Defense Technology
(NUDT), in 2016, 2018 and 2022, respectively. He is
a Lecturer with the College of Systems Engineering,
NUDT. His research interests include prediction
technique, multiobjective optimization, reinforce-
ment learning, data mining, and optimization meth-
ods on energy Internet.

Tao Zhang received the B.S., M.S, and Ph.D.
degrees in management science and engineering
from National University of Defense Technology
(NUDT) in 1998, 2001 and 2004, respectively. He is
a Professor with the College of Systems Engineering,
NUDT. His research interests include multicriteria
decision making, optimal scheduling, data mining,
and optimization methods on energy Internet net-
work.

Ling Wang received the B.Sc. degree in automation,
and the Ph.D. degree in control theory and control
engineering from Tsinghua University in 1995 and
1999, respectively. Since 1999, he has been with the
Department of Automation, Tsinghua University,
where he became a Full Professor in 2008. His cur-
rent research interests include intelligent optimiza-
tion and production scheduling.
 He was the recipient of the National Natural Sci-
ence Fund for Distinguished Young Scholars of

China, the National Natural Science Award (second place) in 2014, the Sci-
ence and Technology Award of Beijing City in 2008, and the Natural Science
Award (first place in 2003, and second place in 2007) nominated by the Min-
istry of Education of China.

Xin Xu (Senior Member, IEEE) received the B.S.
and the Ph.D. degrees in control science and engi-
neering from National University of Defense Tech-
nology (NUDT) in 1996 and 2022, respectively. He
is currently a Full Professor with the Institute of
Unmanned Systems, College of Intelligence Science
and Technology, NUDT. His research interests
include intelligent control, reinforcement learning,
approximate dynamic programming, machine learn-
ing, robotics, and autonomous vehicles. He received

the National Science Fund for Outstanding Youth in China and the second-
class National Natural Science Award of China.

Xiangke Liao received the B.S. degree in computer
science and technology from Tsinghua University in
1985, and the M.S. degree in computer science and
technology from the National University of Defense
Technology (NUDT) in 1988, both in computer sci-
ence. He is currently a Professor with the College of
Computer Science and Technology, NUDT. His
research interests include high-performance comput-
ing systems, operating systems, and parallel and dis-
tributed computing. He is the Principle Investigator

and Chief Designer of Tianhe-2 supercomputer.

WANG et al.: LEARNING TO BRANCH IN COMBINATORIAL OPTIMIZATION WITH GPN 169

http://dx.doi.org/10.1109/TCYB.2020.2977661
http://dx.doi.org/10.1287/ijoc.2016.0723
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1016/0377-2217(91)90261-S

	I Introduction
	II Related Work
	III Preliminaries
	A Problem Definition
	B Branching Strategies

	IV Model
	A Markov Decision Process Modeling
	B State Definition
	C Graph Pointer Network Model
	D Branch and Bound Algorithm Based on GPN

	V Training Method
	VI Experimental Results and Discussion
	A Experiment Settings
	B Results

	VII Conclusion
	References

