
 

Data-Driven Learning Control Algorithms for
Unachievable Tracking Problems

Zeyi Zhang , Hao Jiang , Dong Shen , Senior Member, IEEE, and Samer S. Saab , Senior Member, IEEE

 
   Abstract—For unachievable tracking problems, where the sys-
tem output cannot precisely track a given reference, achieving the
best possible approximation for the reference trajectory becomes
the objective. This study aims to investigate solutions using the P-
type learning control scheme. Initially, we demonstrate the neces-
sity of gradient information for achieving the best approximation.
Subsequently,  we  propose  an  input-output-driven  learning  gain
design  to  handle  the  imprecise  gradients  of  a  class  of  uncertain
systems.  However,  it  is  discovered  that  the  desired  performance
may  not  be  attainable  when  faced  with  incomplete  information.
To  address  this  issue,  an  extended  iterative  learning  control
scheme  is  introduced.  In  this  scheme,  the  tracking  errors  are
modified through output data sampling, which incorporates low-
memory  footprints  and  offers  flexibility  in  learning  gain  design.
The  input  sequence  is  shown  to  converge  towards  the  desired
input, resulting in an output that is closest to the given reference
in  the  least  square  sense.  Numerical  simulations  are  provided to
validate the theoretical findings.
    Index Terms—Data-driven  algorithms,  incomplete  information,
iterative  learning  control,  gradient  information,  unachievable  prob-
lems.
  

I.  Introduction

I TERATIVE learning control  (ILC) is  a  powerful  approach
for addressing tracking problems in repetitive processes [1],

[2].  It  leverages  historical  information  obtained  during
repeated iterations to improve performance in subsequent iter-
ations [3], similar to how humans learn through experience. In
ILC, an iteration refers to a system operating over a finite time
interval, and input and output data from previous iterations are
used  to  compute  the  input  for  the  current  iteration  [4],  [5].
Among  various  ILC  schemes,  the  P-type  learning  control
algorithm has been widely studied and applied due to its sim-
ple  structure,  where  the  tracking  error  is  linearly  mapped  to
the  input  space  using  a  learning  gain  matrix  [6].  However,
designing the learning gain matrix requires knowledge of the

system,  which  can  be  challenging  when  the  system model  is
unknown or uncertain and the available data is incomplete.

Many  studies  have  highlighted  the  challenges  posed  by
unknown/uncertain system models and incomplete data in the
context of ILC [7]–[12]. Robust and data-driven control meth-
ods  have  been  developed  to  address  these  issues.  Incomplete
data scenarios often involve data dropouts [13], [14], commu-
nication delays [15], [16], and varying operation lengths [17],
[18]. In such scenarios, the unit does not receive all the infor-
mation,  but  instead,  it  obtains  input  and  output  fragments  at
certain  time  instants  and  dimensions.  The  incompleteness  is
typically modeled using a 0-1 distribution to indicate whether
the data is obtained.

However, the P-type learning control algorithm can achieve
high-precision  tracking  performance  despite  the  challenges
posed  by  unknown/uncertain  models  and  incomplete  data
[19].  This  is  predicated  on  the  assumption  that  the  reference
trajectory is realizable [20]–[22], meaning that there exists an
input that can produce an output equal to the reference trajec-
tory  over  the  entire  operation  interval.  Achieving  perfect
tracking,  in  this  case,  requires  zero  initial  tracking  error  at
each iteration [23], although precise initialization is often dif-
ficult  to  guarantee  in  practice.  Various  techniques  have  been
developed to relax this condition [24], [25].

However,  what  happens  when ILC encounters  an  unrealiz-
able reference trajectory? An unrealizable reference trajectory
refers to a situation where the tracking errors cannot be simul-
taneously  reduced  to  zero  for  all  time  instants,  regardless  of
the  input  used.  This  problem  frequently  arises  in  underactu-
ated  systems,  where  the  dimension  of  the  inputs  is  less  than
that  of  the  output  [26].  In  such  cases,  neither  ILC  nor  other
control methods can ensure that the system output matches the
desired reference. This is known as the unachievable tracking
problem, which has received limited attention in previous ILC
studies.

One approach to address the unachievable tracking problem
is  to  minimize  the  accumulated  error  index  over  the  entire
operation  interval.  In  an  earlier  work  [27],  the  authors  pro-
posed  a  P-type  ILC method to  minimize  the  Euclidean  norm
of tracking errors, leveraging the system model to achieve the
best possible tracking performance. However, the information
necessary  to  achieve  optimal  performance  remains  unspeci-
fied.  A  preliminary  work  [28]  addressed  the  unachievable
tracking  problem  under  random  data  dropouts;  however,  it
required system information, and the learning control scheme
was limited to specific inputs. Thus, a more rigorous formula-
tion is needed to tackle the unachievable tracking problem.
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For  the  achievable  tracking  problem,  ILC can  ensure  zero-
error  tracking  performance  over  the  entire  time  interval,  and
most existing ILC studies have focused on this problem. How-
ever,  for  the  unachievable  tracking  problem,  it  is  inherently
impossible to achieve perfect zero-error tracking performance
for  a  given  reference  over  the  entire  time  interval,  which  is
jointly determined by the system model and the desired refer-
ence.  Hence,  it  is  not  merely  a  technical  control  issue  but
rather an inherent property. In this case, the goal is to approxi-
mate  the  desired  reference  as  closely  as  possible  in  a  certain
sense.  Motivated  by  this  idea,  we  use  an  optimization  objec-
tive  to  model  the  best  achievable  tracking  performance,
describe  the  necessary  information  to  solve  the  optimization
objective,  and propose data-driven ILC algorithms for practi-
cal  applications.  In  summary,  our  work  aims  to  address  the
following issues related to the unachievable tracking problem:

1)  Can  the  widely  used  P-type  learning  control  scheme
solve the optimization objective, and what information is nec-
essary for the design?

2) How can a data-driven P-type learning control scheme be
established to handle uncertain/unknown system models?

3)  What  is  the  essential  effect  of  incomplete  tracking data,
and how can this difficulty be overcome?

To  tackle  these  problems,  this  study  makes  the  following
contributions:

1) We characterize the concept of the unachievable tracking
problem  and  demonstrate  the  necessity  of  the  true  gradient
information  in  achieving the  control  objective  using the  con-
ventional P-type ILC (Proposition 2 and Claim 1).

2) To handle uncertain/unknown system models, we design
a  new  learning  gain  matrix  using  an  input  and  output  (I/O)
sampling strategy (Algorithm 1).  This  strategy extracts  suffi-
cient gradient information from the available input and output
data and achieves the optimization objective in the mean squ-
are sense without relying on the system matrix (Theorem 1).

3) Incomplete input and output data can affect  the learning
process and lead to drift in the gradient information (Proposi-
tion 3).  To overcome this challenge, we propose an extended
ILC scheme that combines the sampling strategy with an error
compensation  strategy  (Algorithm  2).  The  extended  scheme
incorporates error correction and achieves convergence of the
input  error  to  zero in  the mean square sense,  thereby achiev-
ing the optimization objective (Theorem 2).

Given  the  inherent  difficulties  introduced  by  the  unachiev-
able  tracking  problem,  this  paper  presents  two  novel  data-
driven schemes of the P-type ILC that aim to achieve an opti-
mization  objective.  In  comparison  to  [27],  we  clarify  the
necessity  of  gradient  information and highlight  the impact  of
incomplete data on the convergence of the unachievable prob-
lem,  which  does  not  occur  when  the  reference  is  realizable.
Previous  methods  such  as  [9],  [10],  [29],  [30]  identify  a
dynamic  system  model,  whereas  our  proposed  sampling
scheme constructs the learning gain matrix directly from sam-
ples, eliminating the need for system identification. The com-
pensation  method in  [11]  accelerates  robust  ILC by compen-
sating  for  the  input,  and  [12]  presents  a  real-time  data-based
compensation  method  to  address  external  disturbances.  In

contrast, our second scheme aims to compensate for the track-
ing  error  of  the  unrealizable  reference.  Compared  to  the  ear-
lier attempt in [28], this study defines the unachievable track-
ing problem, reveals the necessity of gradient information for
learning,  and  proposes  novel  data-driven  learning  control
algorithms. Furthermore, the algorithm in [28] can be seen as
a special case of Algorithm 2 presented in this study. Overall,
the  existing  ILC  literature  rarely  addresses  the  unachievable
tracking  problem,  and  this  work  represents  the  first  compre-
hensive investigation of this topic.

Organization: Section II  presents  the  problem formulation.
Section III demonstrates the necessity of the gradient. Section
IV proposes an ILC scheme with a sampling strategy. Section
V elaborates the effect of incomplete data, which then is over-
come in Section VI by proposing an extended ILC scheme. In
Section VII, numerical simulations verify the theoretical anal-
ysis. Section VIII concludes the paper.

E[·]
Range(M) Null(M)

S⊥

∥·∥ ∥·∥F

Notations:  denotes  the  mathematical  expectation  of  a
random  variable.  and  denote  the  column
space  and  null  spaces  of  a  matrix M,  respectively.  is  the
complementary orthogonal space of S.  and  denote the
2-norm and the Frobenius norm of a matrix, respectively.  

II.  Problem Formulation

Consider the discrete time-varying linear system,
 

xk(t+1) = At xk(t)+Btuk(t)

yk(t) =Ct xk(t) (1)
t = 0,1, . . . ,N

xk(t) ∈ Rn uk(t) ∈ Rp yk(t) ∈ Rq

At ∈ Rn×n Bt ∈
Rn×p Ct ∈ Rq×n

where t denotes time instants, , and k denotes the
iteration label. ,  and  denote the
system  state,  input,  and  output,  respectively. , 

,  and  are the system matrices with appropriate
dimensions.

yr(t)

yk(t) yr(t)

The desired  reference  for  tracking  is  denoted  by .  The
objective  is  to  generate  an  input  signal  such  that  the  output

 tracks the reference  well.
The following assumptions are given for analysis.

Ct+1Bt
∀t = 0, . . . ,N −1

Assumption  1: The  input-output  coupling  matrix  is
of full column rank .

Remark 1: Assumption 1 is necessary to ensure the unique-
ness of the input solution based on the minimum performance
index. Relaxing the requirement of the full column rank does
not  affect  the essence of  the analysis  but  leads to more com-
plex  derivations.  Additionally,  Assumption  1  does  not  con-
sider  the case of  full  row rank because the latter  implies that
any given reference can be perfectly tracked.

xk(0)
x0

Assumption 2: The initial state  is reset to an unknown
invariant value  for all iterations.

xr(0) yr(0) =C0xr(0)

Remark  2: To  emphasize  our  main  contributions,  Assump-
tion 2 is  used as  an initialization condition.  This  condition is
more practical than the commonly used identical initialization
condition, where the initial state is required to be reset to the
desired state  satisfying . The latter condi-
tion  ensures  that  the  desired  reference  is  achievable,  as
defined below. Assumption 2 only requires the initial state to
be  reset  to  a  fixed  point  for  each  iteration,  which  is  easy  to
implement in various applications.

Generally, learning tracking problems are classified into two
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categories: achievable and unachievable tracking problems.

yr(t)
ur(t)

1)  The achievable  tracking  problem indicates  that  the
desired reference  can be precisely tracked by the system
output, i.e., a  (unnecessarily unique) exists such that
 

xr(t+1) = At xr(t)+Btur(t)

yr(t) =Ct xr(t) (2)
xr(0) yr(0) =C0xr(0)

yr(t)

ur(t)

ur(t)

where the initial state  satisfies . Here, the
desired reference  is called realizable. The tracking prob-
lem is widely investigated in the existing literature, where the
existence  and  uniqueness  of  are  usually  required  as  an
assumption.  The  convergence  of  the  output  sequence  to  the
desired  reference  can  be  verified  by  showing  that  the  input
sequence converges to  for all time instants.

yr(t)
2) The unachievable tracking problem refers to the case that

the desired reference  is unrealizable, i.e., no input exists
such  that  (2)  is  satisfied.  In  this  case,  the  system  cannot
achieve  zero-error  tracking  simultaneously  for  all  time
instants.  Instead,  the  control  objective  becomes  to  approxi-
mate  the  desired  reference  as  closely  as  possible  in  a  certain
sense.

For the unachievable tracking problem, this study considers
the tracking performance index,
 

J =
N∑

t=1

∥y(t)− yr(t)∥2 (3)

y(t)

J

where  is  output  generated  by  the  system (1).  Our  objec-
tive is to iteratively generate an input sequence converging to
a limit that minimizes the index  by designing suitable ILC
algorithms without knowing the system information.

∥yk(0)− yr(0)∥2

yk(0) xk(0)

Remark  3: The  tracking  performance  at  the  initial  time
instant,  i.e., ,  is  not  included  in  the  index  (3)
for  the  following  reasons:  First,  the  output  at  the  initial  time
instant  is solely determined by the initial state  and
cannot  be  improved  by  any  input  signal  due  to  the  system’s
relative  degree  being  one,  based  on  Assumption  1.  For  sys-
tems  with  a  higher  relative  degree,  the  performance  index
could  be  modified  accordingly,  but  the  subsequent  deriva-
tions  remain  valid  with  slight  modifications.  Therefore,
adding this term does not affect finding the minimum index. If
the  initial  state  is  available,  the  tracking  reference  for  the
remaining time instants can be adjusted accordingly, such that
the  performance  index  adequately  determines  the  learning
control  problem.  Several  initial  state  learning  mechanisms
proposed  in  [31]  can  be  combined  with  the  learning  control.
However, investigating these mechanisms is beyond the scope
of this study.

We employ the  lifting formulation of  the  system dynamics
[1],  integrate  the  time  domain  dynamics  into  super-vectors,
and highlight the iteration dynamics,  thus making the deriva-
tions uncomplicated. The super-vectors are defined as follows:
 

Yk = [yT
k (1),yT

k (2), . . . ,yT
k (N)]T ∈ RqN

Uk = [uT
k (0),uT

k (1), . . . ,uT
k (N −1)]T ∈ RpN

Yr = [yT
r (1),yT

r (2), . . . ,yT
r (N)]T ∈ RqN .

Then, the system matrix G is given by 



C1B0 0 0 · · · 0
C2A1B0 C2B1 0 · · · 0

C3A2
1B0 C3A2B1 C3B2 · · · 0
...

...
...

. . .
...

CN AN−1
1 B0 CN AN−1

2 B1 CN AN−1
3 B2 · · · CN BN−1


Ai

j ≜ AiAi−1 · · ·A j i ≥ jwhere , .  As  a  result,  the  system  (1)  is
identical to
 

Yk = GUk +Mx0 (4)
M = [(C1A0)T , (C2A1

0)T , . . . , (CN AN−1
0 )T ]Twhere .

Consequently, the tracking performance index (3) becomes
 

J = ∥Y −Yr∥2 s.t. Y = GU +Mx0. (5)
Yk

Uk

Ud = [uT
d (0),uT

d (1), . . . ,uT
d (N −1)]T

Here, Y and U are  vectors  with  the  same dimensions  as 
and , respectively. From Assumption 1, G is of full column
rank;  therefore,  minimizing  (5)  leads  to  the  unique  desired
input, denoted by . Theoret-
ically, the desired input is
 

Ud = argminU∈RN p∥GU +Mx0−Yr∥2. (6)
Uk Ud

Yd Yd =

GUd +Mx0
Ud

Yd −Mx0 ∈Range(G)
Yr −Mx0

Yr −Yd
Range(G)

Replacing the input  in (4) with the desired input , we
obtain  the best  achievable  reference ,  given  by 

.  Hence,  the control  objective can be summarized
as  finding  through  iterative  learning  of  the  input  using
input/output  data.  Moreover,  the  vector 
corresponds  to  the  unique  vector  closest  to  in  the
least  square  sense.  Consequently,  is  orthogonal  to

,  and  the  minimum  performance  index  (5)  is
obtained as follows:
 

Jmin = ∥Yr −Yd∥2. (7)
Yr = Yr −Mx0

Yd = Yd −Mx0

For  the  sake  of  brevity,  we  denote  and
 as  the modified  reference and modified  best

achievable reference, respectively.

U0

Next,  we introduce the conventional P-type ILC algorithm.
Given an  arbitrary  initial  input ,  the  update  law is  defined
as follows:
 

Uk+1 = Uk −αLEk (8)
Ek ≜ Yk −Yr
α > 0 L = diag{L0 L1, . . . ,LN−1}

Lt ∈ Rp×q

where  represents  the  tracking error  in  the  lifting
form,  is  the step size,  and ,  is
the learning gain matrix with  as diagonal blocks.

Remark  4: The  conventional  P-type  ILC algorithm,  known
for  its  simplicity,  has  been  widely  utilized  in  the  literature.
The learning gain matrix L plays a crucial role in determining
the update direction during the learning process. Furthermore,
the  block  diagonal  structure  of  the  matrix L allows  for  inde-
pendent  implementation  of  the  algorithm  (8)  at  each  time
instant.

To describe the control objective for the unachievable track-
ing  problem,  we  formulate  an  optimization  problem.  In  the
subsequent sections, we will elaborate on how the P-type ILC
algorithm achieves the control objective by addressing the fol-
lowing aspects:

1) We demonstrate the necessity of precise gradient for the
algorithm (8) to solve the problem (3) (see Section III).

2) We propose a data-driven sampling strategy to obtain an
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alternative gradient and analyze the convergence of the associ-
ated ILC algorithm (see Section IV).

3) We delve into the profound impact of incomplete data on
the P-type ILC (see Section V).

4)  We  design  an  extended  ILC  scheme  to  mitigate  the
effects of incomplete data (see Section VI).  

III.  Necessity of Gradient for Best
Tracking Performance

Uk ∈ U0+Range(L)

ρ(I−αLG) < 1 ρ(·)

Since it is evident from (8) that  by the
recursion, the learning gain matrix L determines the space for
the input renewal process. Hence, to ensure effective learning,

 is  widely  required  in  ILC [1],  where 
denotes  the  spectral  radius.  Based  on  this  condition,  we  can
obtain an in-depth understanding of the tracking ability of the
P-type ILC scheme for the unachievable tracking problem.

I−αLG
RqN = Range(G)⊕Null(L)

Proposition 1: If the spectral radius of  is less than
one, then .

I−αLG

dimNull(L) = qN − pN
dimRange(G)+dimNull(L) = qN
Range(G)∩Null(L) = {0}
y , 0 y ∈ Range(G)∩Null(L) x , 0

y = Gx LGx = Ly = 0

Proof: First, LG should be of full rank; otherwise, 
must have an eigenvalue equal to one. Thus, L is  of full  row
rank,  implying  that ,  and  then

.  It  is  sufficient  to  show
.  Supposing  that  a  nonzero  vector

 exists,  such  as ,  a  vector 
can be produced such that , resulting in .
This finding contradicts the full rank property of LG. ■

Yr

According  to  the  above  proposition,  we  decompose  the
modified reference  into two parts,
 

Yr = YG+YL (9)
YG ∈ Range(G) YL ∈ Null(L)

UG
YG = GUG

UG = (GT G)−1GT YG

where  and  are  unique  as  per
Proposition  1.  Subsequently,  a  unique  input ,  satisfying

, is produced because G is of full column rank; the-
oretically, .

UGSubtracting  from both  sides  of  (8)  leads  to  the  expres-
sion shown below:
 

Uk+1−UG = Uk −UG−αL(GUk +Mx0−Yr)

= Uk −UG−αL(GUk −YG−YL)

= (I−αLG)(Uk −UG)
LYL = 0

Uk −UG→ 0
(I−αLG)

where  is applied. Based on the conventional contrac-
tion  mapping  principle,  it  is  evident  that  if  the
spectral radius of  is less than one.

YL = 0
ρ(I−αLG) < 1 Uk

UG GUk YG = Yr =

Yr −Mx0 Yk→ Yr

YL(, 0)
YG

Remark 5: For the achievable tracking problem,  nat-
urally holds. Thus, for any L satisfying ,  has
a unique limit  meaning that  converges to 

, i.e., . Therefore, for the achievable tracking
problem, L has  a  relatively  wide  design  range  implying  that
the  reference  can  be  perfectly  tracked  even  if  the  model  is
uncertain.  However,  for  the  unachievable  tracking  problem,
different L would lead to different  and then to differ-
ent convergence limits .

LtCt+1Bt
0 < α < 2/ρ(LG)

Yr {Uk}
UG = (GT G)−1GT YG YG

Proposition 2: Consider the system (1). Let Assumptions 1
and 2 hold, all  eigenvalues of  be positive real num-
bers for all time instants, and α satisfy . Then,
for  any  desired  reference ,  the  input  sequence  gener-
ated  by  (8)  converges  to ,  where  is
determined by the decomposition (9).

Ct+1Bt

0 < α < 2/ρ(LG)
I−αLG

Proof: Note  that G is  a  block  lower  triangular  matrix  with
 being its diagonal block. By Assumption 1, G is of full

column rank; hence, there must exist L such that LG has posi-
tive  eigenvalues.  Then, LG is  nonsingular.  Hence,  the  selec-
tion  of  ensures  that  the  spectral  radius  of

 is less than one. ■
Yk

YG+Mx0 YG
Yr

YG+Mx0

From  Proposition  2,  the  system  output  converges  to
,  where  is  uniquely determined by the  reference

 according to Proposition 1 and the direct  sum decomposi-
tion (9). However, we emphasize that the limit  does
not  necessarily  achieve  the  minimum  of  the  tracking  perfor-
mance  index  (5).  Indeed,  the  tracking  performance  using  the
learning gain matrix L is characterized by
 

JL = ∥YG+Mx0−Yr∥2 = ∥YL∥2 ≥ Jmin.

YL

Null(L) YL
Range⊥(G) JL =Jmin

Null(L) = Range⊥(G)

This is because  is never learned since the updated route
is  restricted  by  the  learning  gain  matrix L.  Mathematically
speaking,  the  linear  space  containing  is  not  natu-
rally  identical  to .  Therefore,  if  and
only  if .  This  observation  leads  to  the
following claim.

LT
Claim  1: A  necessary  condition  for  minimizing  (5)  is  that

all columns of  belong to the space spanned by G.

L = GT
If we know the precise system matrix G, a simple choice for

L is , which leads to the standard gradient algorithm,
 

Uk+1 = Uk −αGT Ek.

Ud GT

L = ΛGT

ΛGT G
GT

This  algorithm generates  an  input  sequence  that  converges
to  defined by (6) [27]. Hence,  is referred to as the stan-
dard gradient. A more general design that satisfies Claim 1 is

, where Λ is a nonsingular matrix such that all eigen-
values  of  are  positive.  Such  an L is  not  equal  to  the
standard  gradient ,  but  it  contains  the  necessary  gradient
information to achieve the control objective.

rank(Ct+1Bt) = rank(Ct+1)
Lt = (Ct+1Bt)T L = diag{L0,L1, . . . ,

LN−1}

Remark  6: The  necessity  of  the  gradient  information  does
not imply that the full system matrix G must be known for the
design.  For  example,  if ,  it  is  evi-
dent that the selection of  and 

 satisfies  Claim  1.  This  selection  does  not  require  full
system information.  A  sampling  strategy  is  proposed  in  Sec-
tion IV to generate a sufficient learning gain matrix L.

ΛGT

GT ΛGT

A typical design for providing the necessary gradient infor-
mation is to choose Λ as a symmetric positive-definite (SPD)
matrix. In this case,  is considered a subgradient. We col-
lectively refer to  and  as the gradient.

JL

Overall, Claim 1 demonstrates the necessity of the gradient
in  determining L to  minimize  the  unlearned  part  and
achieve  the  best  approximation.  However,  the  system  matrix
G is often unknown or uncertain in many applications. Conse-
quently,  the  associated  learning  gain  matrix L may  be  incor-
rect,  defective,  or  unavailable.  To  address  this  problem,  the
next section presents a sampling strategy.  

IV.  ILC With Sampling Strategy

This section addresses learning control for the deterministic
system  (4)  without  any  data  incompleteness.  We  use  prior-
sampled  I/O  data  to  acquire  system  information  and  resolve
the  unachievable  tracking  problem  without  system  informa-
tion. In particular, these data are used to form the randomized
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learning  gain  matrix,  avoiding  the  direct  use  of  the  system
matrix; thus, this mechanism is data-driven.

{Uk,Yk}
Definition 1 (Sample): A sample refers to a pair of I/O data

 generated by the system (4).

Range(G)
Range(G)

{U◦i }i=0,1,...,l
{Y◦i }i=0,1,...,l

Zi = Y◦i −Y◦0 Xi = U◦i −U◦0
i ∈ I I ≜ {1,2, . . . , l}

{(Xi,Zi)}i∈Is ZT
Is
= XT

Is
GT

Is = {i1, . . . , ils } ⊂ I ZIs = [Zi1 , . . . ,Zis ]
XIs = [Xi1 , . . . ,Xils ]

Section  III  discloses  that  the  learning  gain  matrix  must
detect the gradient to ensure the best tracking performance. It
is  difficult  to  regulate  the  control  direction  without  system
matrix G. From a mathematical perspective, the gradient algo-
rithm requires the row space of the learning gain matrix to be
equal  to .  Fortunately,  the  difference  between  out-
puts  naturally  belongs  to  the  space ,  which  moti-
vates us to employ the sampled I/O data reflecting the system
information to regulate the learning control direction. To this
end, we set a group of  as the sample inputs. These
inputs  generate  the  outputs  as  per  the  dynamics
(4). Subsequently, we compute  and 
for , where  is the index set. Consequently,
the  sampling  set  satisfies  for  any
subset ,  where  and

 are  matrices  constructed  by  column  vec-
tors.  Therefore,  we  obtain  an  implicit  gradient  to  design  the
learning gain matrix. An ILC scheme with the sampling strat-
egy is presented in Algorithm 1.

Algorithm 1 ILC With a Random Sampling Strategy

{Xi,Zi}i∈I D = {I1, . . . ,Iτ}1: Determine  and division .
U0 k = 02: Initialize arbitrary , .

k ≤ K3: while  do
Is ps ZIs XIs4: 　Select  with probability , construct  and .

Uk+1 = Uk −αXIs ZT
Is

Ek5: 　 .
k = k+16: 　 .

7: end while
Uk8: return 

D
I D

D

Is ∈ D ps > 0 s = 1, . . . , τ

I = ∪sIs
{(Xi,Zi)}i∈I

XIZT
I

XiZT
i

Remark 7: The predetermined division  is a set of subsets
of .  We use  just  to make the algorithm more general for
various practical cases. Hence,  does not have to be explic-
itly  generated  and  stored  in  practice.  The  sampling  index  set

 is  selected  with  a  probability ,  dur-
ing each iteration. Then, for the full utilization of all samples,
we require . In this way, the division is ergodic over

.  Consequently,  the  division  can  be  arbitrary  con-
sidering  computational  capacity  and  memory  size.  A  special
case is the use of all samples in each iteration, indicating that
the gain matrix is , which is deterministic. Another spe-
cial  case is that the gain matrix  uses only one data pair
with low-memory footprints.

Since  the  deterministic  P-type  form  is  obtained  by  taking
mathematical  expectations to  the recursion,  the input  updates
defined in Step 5 in Algorithm 1 can be interpreted as a ran-
domized  version  of  the  conventional  P-type  learning  control
algorithm (8), which results in the following expression:
 

E[Uk+1] = E[Uk]−αE[XIsZIs
T Ek]

= E[Uk]−αE[XIsZIs
T ](GE[Uk]−Yr).

E[XIsZ
T
Is

] = E[XIs XT
Is

]GT

Range(GE[XIs XT
Is

]) ⊂ Range(G)
Note  that  satisfies  the  gradient

requirement, i.e.,  in Claim 1.

Moreover, this selection leads to the following Lemma 1.
{Xi}i∈I RpN

I = ∪sIs Is

E[XIs XT
Is

]

Lemma 1: If  contains a basis of the linear space 
and , each sampling subset  can be selected with a
positive probability, then  is SPD.

XIs XT
Is

XIXT
I ∀v ∈ RpN E[XIs XT

Is
]v =∑τ

s=1 psXIs XT
Is

v = 0⇔ XIs XT
Is

v = 0,∀s⇔ XiXT
i v = 0,∀i ∈ I⇔

XIXT
Iv = 0 Null(E[XIs XT

Is
]) = Null(XIXT

I )
E[XIs XT

Is
]

Proof: Note  that  is  symmetric  semi-positive  defi-
nite  and  is  SPD. ,  then 

  
.  Thus, ,  and  then
 is SPD. ■

M1 M2
M1M2

Lemma  2  ([32]): Suppose  that  and  are  real SPD
matrices.  Then,  all  eigenvalues  of  are  positive  real
numbers.

XIs XT
Is

GT

XIs XT
Is

XIs

XIs XT
Is

ls

XIs XT
Is

GT =
∑ls

i=1 XiXT
i GT

Remark 8: In a single iteration,  may not  yield a
sufficient gradient since  may be singular. However, it
provides  an  unbiased  estimation  of  the  gradient,  and  Algo-
rithm 1 obtains the gradient in a randomized manner. From a
matrix perspective,  the more columns  contains,  the more
likely non-singular  is, resulting in a more accurate gra-
dient estimation. From an estimation perspective, a larger  in

 corresponds  to  more  samples  and
leads  to  a  more  accurate  estimation  of  the  gradient.  In  sum-
mary,  using  more  samples  benefits  the  learning  process  by
providing  a  more  accurate  estimation  of  the  gradient,  but  it
also involves more computational effort.

We  now  present  the  convergence  of  Algorithm  1  for  the
system (1).

E[XIs XT
Is

]
Yr

Uk
Ud

Theorem 1: Consider system (1) with Assumptions 1 and 2
holding.  Let α be  a  sufficiently  small  number and 
be  nonsingular.  Then,  for  any  unachievable  reference ,  the
input  generated  by  Algorithm  1  converges  to  the  desired

 in the mean square sense.
ZIs = GXIs

δk = Uk −Ud

Proof: Substituting  into  Step  5  in  Algorithm 1
and denoting , we have
 

δk+1 = Uk −Ud −αXIs (GXIs )
T Ek

= δk −αXIs XT
Is

GT (GUk −GUd +Yd −Yr)

= δk −αXIs XT
Is

GT Gδk (10)

Yd −Yr Range{G}
E[XIs XT

Is
] GT G

E[XIs XT
Is

]GT G

QE[XIs XT
Is

]GT G+GT GE[XIs XT
Is

]Q =
IpN δk+1

∥δk+1∥2Q ≜ δ
T
k+1Qδk+1

where the  orthogonality  of  and  is  applied.
For the SPD matrices  and , all eigenvalues of
the product  are positive real numbers by Lem-
ma 2.  Based on the Lyapunov stability theory,  a unique SPD
matrix Q satisfying 

 is  obtained.  Next,  we introduce a weighted norm of 
with  respect  to Q: .  By  substituting  (10)
into the weighted norm, the expression below is obtained:
 

∥δk+1∥2Q = ∥δk∥
2
Q+α

2∥XIs XT
Is

GT Gδk∥2Q
−αδTk (QXIs XT

Is
GT G+GT GXIs XT

Is
Q)δk.

Taking mathematical expectation on this equality, we have
 

E∥δk+1∥2Q =E∥δk∥
2
Q−αE∥δk∥

2+α2E∥XIs XT
Is

GT Gδk∥2Q.
c1 c2

E∥XIs XT
Is

GT Gδk∥2Q ≤ c1E∥δk∥2Q E∥δk∥2 ≥ c2E∥δk∥2Q
There  exist  suitable  constants  and  satisfying  that

 and .  Thus,
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E∥δk+1∥2Q ≤ (1+α2c1−αc2)E∥δk∥2Q
α < c2/c1 0 < 1+α2c1−αc2 < 1

E∥δk∥2Q

.  If α is  sufficiently  small
such that , then . Consequently,

 must converge to zero by the contraction principle. ■
Theorem  1  reveals  that  the  random  sampling  strategy  can

probe  the  inherent  gradient,  removing  the  requirement  of
exact system model matrices for the conventional P-type ILC
algorithms.  Because  the  random  sampling  strategy  is  a  data-
driven strategy without  providing an  estimate  of G,  it  differs
from  the  estimation-based  methodology.  Nevertheless,  it
offers an explicit candidate for the learning gain matrix L, dif-
fering  from  the  conventional  P-type  ILC  algorithms  which
give a design condition of L.

E[XIs XT
Is

]
{Xi}i∈I

RpN

{Xi}i∈I
IpN

Remark  9: The  condition  of  the  matrix  being
nonsingular holds if and only if  contains a basis of the
linear space  and an ergodic sampling over the basis (see
Lemma 1).  For  example,  traverses  all  columns  of  the
identity  matrix .  Notably,  it  is  easy  to  ensure  this  condi-
tion by selecting suitable inputs.

Sections  III  and  IV  clarify  the  necessity  of  gradients  for
unachievable  tracking  and  how  to  obtain  them  without  an
exact model. In the next section, we will investigate how these
findings  are  undermined  if  the  received  data  is  randomly
incomplete.  

V.  Gradient Drift by Incomplete Data

This  section  shows  that  algorithms  in  the  form  (8)  cannot
achieve the best tracking performance in incomplete data sce-
narios even if a precise system matrix G is employed.

ΓkEk

Γk ∈ RqN×qN

Γk

Γk

Γk
Γ ≜ E[Γk]

To this end, we first present a general model of the incom-
plete  data  environment.  In  this  study,  we  use  to  repre-
sent  the  available  error  information  for  the  input  updating.
Data  incompleteness  is  modeled  by  a  random  matrix

 multiplying the corresponding data vector, where
each entry of  is subject to 0-1 distribution: the entry being
equal  to  1  if  the  associated  information  is  available  and  0  if
the associated information is lost. Therefore,  is not directly
available  to  the  controller  but  is  indicated  by  the  obtained
data. For further analysis, we assume that  is independent of
the  iteration k and  is  nonsingular.  The  following
incomplete data scenarios are covered by this model.

γk(t)
γk(t) = 1 γk(t) = 0

Γk = diag{γk(1), . . . ,γk(N)}⊗ Iq
ΓkEk

1)  Random Data  Dropouts: The  outputs  are  randomly  lost
during  the  information  exchange  through  an  unreliable  com-
munication  channel.  We  compensate  for  the  output  with  the
desired reference signal if  the output is  lost.  Then, a variable

 is employed to denote the transmission effect on the out-
put at time instant t, where  and  correspond
to  successful  transmission  and  data  dropout,  respectively.
Finally,  is  defined  to  denote
the virtual error for the learning control algorithm by .

Nk
{N,N +1, . . . ,N}

γk(t)

γk(t) Γk = diag{INk ,
0N−Nk }⊗ Iq

2)  Randomly  Varying  Lengths: The  operation  process  for
each iteration randomly ends before the desired length N. The
iteration  length  is  modeled  by ,  randomly  varying  in  the
candidate  set .  In  this  scenario,  we  also  use

 to  denote  the  occurrence of  the  output  at  time instant t.
Differing  from  the  previous  scenario,  the  random  variables

 are  not  mutually  dependent,  resulting  in 
.

Remark 10: Bernoulli random variables are most popular in

Γk

modeling various  randomness  such as  data  dropouts,  varying
trial  lengths,  and communication  delays  [33].  These  are  cov-
ered in our setting where  is independent regarding the itera-
tion number. More complex settings such as the Markov chain
and  random  sequence  model  can  be  considered;  however,
these  models  are  omitted  in  this  study  to  highlight  the  main
novelty.

L = GT

L = GT

limk→∞Uk = Ud

We provide a proposition to show the convergence of the P-
type ILC algorithm (8) employing the precise gradient 
under incomplete data. In Section III,  guarantees that

 if  the  received  data  are  complete.  However,
this conclusion may fail to hold if the received tracking error
information is incomplete.

L = GT

GT G
ΓkEk

Proposition 3: Consider the system (1). Let Assumptions 1
and 2 hold, ,  and α be smaller  than the inverse of  the
maximum  eigenvalue  of .  Applying  the  P-type  learning
control  algorithm  (8)  using  the  incomplete  data ,  the
update process becomes
 

Uk+1 = Uk −αGTΓkEk. (11)
Uk Udrift

Udrift

Then,  converges to the drifted input  in the expecta-
tion sense, where  is specified in the proof.

Proof: Taking expectation on both sides of (11), the follow-
ing expression is obtained:
 

E[Uk+1] = E[Uk]−αGTE[Γk](GE[Uk]−Yr)

= E[Uk]−αGTΓ(GE[Uk]−Yr). (12)

GTΓ

E[Uk] Udrift
Yr RqN =

Range(G)⊕Null(GTΓ)
Yr=Ydrift+Y+drift Ydrift ∈Range(G) Y+drift ∈Null(GTΓ)

Udrift Ydrift = GUdrift

This  recursion  can  be  treated  similarly  to  Proposition  2,
where  corresponds  to L.  Therefore,  the  sequence  of

 converges  to  a  limit  denoted  by  and  determined
by  an  alternative  decomposition  of .  Particularly, 

 results  in  the  unique  decomposition:
, where  and .

As  a  result,  a  unique  satisfying  is  pro-
duced. ■

L = GT

Jdrift = ∥Yr −Ydrift∥2 =
∥Y+drift∥

2 Null(GTΓ)
Null(GT ) Γ

Jdrift ≥ Jmin Γ

Jmin

Several observations are obtained from Proposition 3. First,
Proposition 3 reveals that the convergence limit of the gener-
ated  input  sequence  may  drift  from  the  desired  input  due  to
the  data  incompleteness  even  though  the  standard  gradient

 is  used.  We  refer  to  this  phenomenon  as limit  drift.
That  is,  the  convergence  limit  is  drifted  by  incomplete  data.
Indeed,  the  limit  of  the  generated  input  sequence  is  jointly
determined by the learning gain matrix and the received data.
Moreover,  the  tracking  performance  under  incomplete  data
environments  is  characterized  by 

 in the expectation sense. Note that  is non-
identical  to  unless  is  a  scalar  matrix.  Therefore,

, and the equality holds if and only if  is a scalar
matrix.  Therefore,  even  if G is  precisely  known,  the  best
tracking performance  is difficult to achieve.
Γ Γ =WT WIf  has a decomposition , the recursion (12) can

be rewritten as follows:
 

E[Uk+1] = E[Uk]−α(WG)T (WGE[Uk]−WYr). (13)
EUkThus, the limit of  solves the optimization problem,

 

min
U∈RN p

∥WGU −WYr∥2 = min
U∈RN p

∥GU −Yr∥2
Γ (14)

Γwhich  is  a  weighted  optimization  problem  depending  on .
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GTΓ

J GT

GT

GTΓ

This result provides an alternative understanding of the effect
of incomplete data. That is, solving the problem (14) requires
the  gradient  to  be ;  however,  the  gradient  required  for
minimizing  in (3) is . Thus, in an expectation view, the
limit  drift  is  caused  by  the  drift  of  the  gradient  from  to

. In other words, the gradient for the learning process has
drifted  because  of  incomplete  data.  We  refer  to  this  phe-
nomenon as gradient drift due to incomplete data.

GU = Yr Ud

Γ

Remark  11: When  the  tracking  problem is  achievable,  i.e.,
 holds, the solution of (14) is the unique , which is

not affected by . This verifies that the P-type ILC is robust to
incomplete data for the achievable tracking problem.

Next, we provide an example to show that the best tracking
performance  (7)  cannot  be  achieved  by  the  P-type  learning
control algorithm (8) without a precise gradient.

x0 = 0
Example 1: First, we consider the system (4) and algorithm

(8) with , where G and L are given by
 

G =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 1 0 1 0
0 1 0 1 0 1
0 0 0 0 0 0



, L =



1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0


Yr = [1,0,1,0,1,0,1,0,1]T

Jmin = 1.5811 Ud = [1,
0.5, −1, 0, 1, −0.5]T

Yd = [1, 0.5, 0, 0, 0.5, 0, 1, 0, 0]T

U0 = 0
limk→∞Uk = [1, 1, −1, 0, 1, −1]T limk→∞Yk = [1, 1, 0,
0, 1, 0, 1, 0, 0]T JL = 1.7321

Γk Γ = diag{1,1,1,0.8,0.1,1,0.1,0.2,1}
GTΓkEk

limk→∞EUk = [1, 0.0909, −1, 0, 1, −0.0909]T

limk→∞EYk = [1, 0.0909, 0, 0, 0.0909, 0, 1, 0, 0]T

Jdrift = 1.6837 >Jmin

and .  Notably,  the  minimum  of  the
performance  index  is  achieved  by 

,  and  the  best  achievable  reference  is
.  Using  algorithm  (8)  with

the  imprecise  gradient L and ,  limits  are  identified  as
 and 

. The minimum for this case is ,
verifying  Proposition  2.  Then,  data  incompleteness  is  mod-
eled  by  with .  Using
algorithm (11),  where  is  employed for  updating,  we
have the limits 
and .  The
expected minimum for this case is , ver-
ifying Proposition 3. ■

Uk+1 = Uk −αXIs Z
T
Is
ΓkEk

Furthermore, while Algorithm 1 offers a practical methodol-
ogy  to  address  the  issue  of  unknown systems,  this  algorithm
cannot  be  applied  to  incomplete  data  environments.  In  the
case of incomplete data, Algorithm 1 yields a revision to Step
5: .  Hence,  taking  mathematical
expectation leads to
 

E[Uk+1] = E[Uk]−αE[XIs XT
Is

]GTΓ(GE[Uk]−Yr).

Null(E[XIs XT
Is

]GTΓ) = Null(GTΓ)
Udrift

By  observing  that ,  the
limit of the input sequence in expectation is also .

Γk

Γ

Γ̂k =
1
k
∑k

i=1Γi E[Γ̂k] = Γ Γ̂−1
k

Although the matrix  is indicated by the received data, its
expectation  indicating the statistics of incomplete data envi-
ronments  is  generally  unknown.  One  may  design  an  estima-
tion  satisfying  and  use  to  elimi-

Γ E[Γ̂−1
k ] , Γ

−1
Γ̂−1

knate  in (11).  However,  indicates that  is  a
biased estimation. Thus, this idea is not applicable.

L

In  the learning control  algorithm (8),  making learning gain
matrix L provide  a  gradient  requires  precise  system matrices
and statistical information of incomplete data. This is very dif-
ficult  in  real  world  applications.  Thus,  in  the  following  sec-
tion, we offer a new idea to avoid providing gradients of .  

VI.  Extended ILC Scheme

While considering the unachievable tracking problem under
incomplete data environments, we observe a random gradient
drift.  As  there  is  no  input  ensuring  the  simultaneous  perfect
tracking  at  all  time  instants,  it  is  required  that  the  control
direction  (reflected  by  the  learning  gain  matrix)  must  be  the
gradient  direction,  either  implicitly  or  explicitly,  to  achieve
the  best  tracking  performance.  Note  that  this  requirement  is
unnecessary for the achievable tracking problem (see Remarks
5  and  11).  Therefore,  we  aim  to  resolve  the  unachievable
tracking problem under incomplete data environments from a
novel  perspective  significantly  differing  from  the  sampling
strategy  in  Section  IV.  In  particular,  we  refine  the  tracking
error by adding a correction term defined by the sampling data
such  that  the  modified  reference  signals  for  updating  are
asymptotically  achievable  as  the  iteration  number  increases.
Then, any conventional P-type learning control scheme can be
used  to  solve  the  unachievable  tracking  problem  using  the
refined tracking errors. The integrated framework is called the
extended ILC scheme.

{U◦i }i∈I U◦1 = 0
Y◦i = GU◦i +Mx0 i ∈ I
{Xi,Zi}i∈I

Given  in which ,  we obtain complete output
 as  a  sample, .  Then,  we  compute

 according  to  the  sampling  strategy.  The  extended
ILC scheme is  given in Algorithm 2,  where the conventional
P-type  scheme (8)  is  integrated  with  a  sampling-based  error-
refining mechanism.

Algorithm 2 Extended ILC Algorithm

{Xi,Zi}i∈I D = {I1, . . . ,Iτ}1: Determine  and division .
U0 z0 = Yr −Y◦1 k = 02: Initialize arbitrary , , .

k ≤ K3: while  do
Is ps ZIs4: 　Select  with probability , construct .

zk+1 = zk −
ZIs ZT

Is
∥ZIs ∥2F

zk5: 　 .
Uk+1 = Uk −αL(ΓkEk +Γkzk+1)6: 　 .
k = k+17: 　 .

8: end while
Uk9: return 

zk
Yr −Yd

Yr − zk

zk

The  extended  computation  is  to  actively  learn  the
unachievable part . In this way, the modified reference

 becomes realizable asymptotically (see Lemma 3), and
we  use  the  modified  reference  instead  of  the  original  refer-
ence for input updating. The following lemma shows the con-
vergence of , whose proof is put in the Appendix.

Yr −Yd − zkLemma  3: The  sequence  converges  monotoni-
cally to zero in the mean square sense.

Consequently, we have the following convergence result for
Algorithm 2, whose proof is put in the Appendix.

LΓG
Theorem 2: Consider the system (1). Let Assumptions 1 and

2 hold, α be sufficiently small, and all eigenvalues of  be
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Yr Uk
Ud

positive  real  numbers.  Then,  for  any  unachievable  reference
,  the  input  sequence  generated  by  Algorithm  2  con-

verges  to  the  desired  defined  by  (6)  in  the  mean  square
sense.

Range(ΓG)
Range(G)

ΓG
ΓG

Γ

Γ

L ≜ diag{L0, . . . ,LN−1}
Γ Γ

Remark  12: From  a  mathematical  perspective, 
and  may  be  unequal.  In  other  words,  as  the  actual
control  direction  changes  from G to ,  the  learning  gain
matrix L should serve for  rather than G.  Thus, the selec-
tion  of L seems  to  require  prior  information  of .  However,
completely knowing  is unnecessary due to two facts. First,
an interval selection of these parameters is sufficient in prac-
tice based on the robust design principle [34], [35]. Second, if
we design , the block diagonal matrices
L and  are  commutable,  making  the  information  of  no
longer necessary.

Uk Uk+1 = Uk −αLΓk(Yk−
(Yr − zk+1)) Yr

Yr − zk+1
Yr Yr − z0 = Mx0

Yr − zk (1−µk)Yr +µk(Yr − zk) µk
k→∞

The  update  of  is  rewritten  as 
.  It  is  seen that  the original  reference trajectory 

is replaced with . As an alternative, it is beneficial to
start from  instead of  for the learning process,
i.e.,  we  replace  with ,  where 
goes from 0 to 1 as .

Uk+1 = Uk −αLΓk(Ek +µkzk+1)
Corollary  1: If  Step  6  of  Algorithm  2  is  modified  as

, Theorem 2 still holds.
The proof of this corollary is put in the Appendix.
We  emphasize  that  the  central  idea  of  Algorithm  2  is  to

introduce an active reference refinement mechanism such that
the  modified  reference  is  asymptotically  achievable.  Then,
any learning control method for the achievable tracking prob-
lem can be integrated into the proposed scheme to resolve the
unachievable tracking problem. The primary advantage of this
scheme is  to relax the requirement for precise gradient infor-
mation, which might be unavailable due to various conditions.
Particularly,  the  sampling  mechanism  given  in  Algorithm  1
can be embedded into the input update step of Algorithm 2. In
this case, the entire framework is completely data-driven. The
convergence is summarized in the following corollary, whose
proof is omitted for brevity.

XIs Z
T
Is
ΓT

k

Corollary 2: In Step 6 of  Algorithm 2,  if  the learning gain
matrix L is  replaced  with ,  the  convergence  results
of Theorem 2 still hold.

E[XIsZ
T
Is
ΓT

k ΓkG] = E[XIs XT
Is

]GTΓ
T
ΓGNote that  is applica-

ble to Lyapunov equation theory based on Lemma 2.
Table I summarizes  the  information  required  for  the  algo-

rithms. Here, PILC, SILC, and EILC represent the P-type ILC,
ILC with sampling strategy, and extended ILC, respectively.
 

TABLE I 

Convergence Requirements of the Algorithms

Algorithms Precise system model Complete data

PILC yes yes

SILC no yes

EILC no no
  

VII.  Illustrative Simulations

In  this  section,  we  validate  the  theoretical  results  through
numerical  simulations  conducted  on  a  toy  example  and  a
chemical  batch  reactor  system.  We evaluate  the  performance

of  gradient-based  ILC  (GILC),  PILC  with  block  diagonal
gain,  SILC,  and  EILC  under  both  complete  and  incomplete
data environments. GILC, which utilizes the precise gradient,
serves  as  the  benchmark  for  comparison.  The  relationships
between  the  simulation  outcomes  and  theoretical  results  are
summarized in Table II.
 

TABLE II 

Correspondence Between Figures and Theoretical Results

Fig. 1 Proposition 2 and Claim 1

Fig. 3 Proposition 3

Fig. 1 Theorem 1

Fig. 4 Theorem 2
 
 

In practical implementations, ILC is often deployed within a
networked  control  structure,  where  information  and  data  are
transmitted  through  communication  networks.  However,  net-
work  congestion  and  limited  bandwidth  can  lead  to  data
packet  loss during transmission [13].  Therefore,  data dropout
is a typical scenario in incomplete data environments, which is
adopted  in  this  section  to  illustrate  the  challenges  posed  by
incomplete data.  

A.  Numerical Case
(At,Bt,Ct)We consider the system represented by ,

 

At =


0.5 0 0

0 0.5sin(t−5) 0

0 0 0.7et−13

 , Bt =


1 1

1 1

0 1


Ct =


1 0 0

0 1−0.1t 0

0 0 1

 .
Let the reference trajectory be

 

yr(t) =


0.18t2−4.8t−14.8

−0.007t3+0.235t2−4.125t+11.625

6sin2(t−5)−0.4t−1.8

 .
[0,10] 1,2, . . . ,10

The  following  settings  are  considered:  the  time  interval  is
set to ; the time instants calculated in (3) are ;
and the initial input and state are zero vectors.

L = GT

Lc
t = (Ct+1Bt)T

0.25
pN +1

U◦i i = 0,1, . . . , pN U◦i −U◦0
Y◦i i = 0,1, . . . , pN

(Xi,Zi) Xi = U◦i −U◦0
Zi = Y◦i −Y◦0 i ∈ I′ ≜ 1,2, . . . , pN

{(Xi,Zi)}i∈I′

XIs
ZIs D

1) Complete Data Environment: For GILC, we set .
For PILC and EILC, we set . The step size α is
set  to  for all  schemes. To implement the sampling strat-
egy  for  SILC  and  EILC,  we  first  randomly  generate 
vectors denoted by  ( ) such that  are
linearly  independent.  Then,  ( )  is  produced
by  the  system  accordingly.  This  prior  given  data  constitutes
the  set  of  sample  pairs ,  where  and

 for .  The  rule  for  selecting
samples  is  as  follows:  in  each  iteration,  ten  sample  pairs  are
randomly and uniformly extracted from the set  to
obtain  a  sufficient  gradient  estimate  without  causing  heavy
computation,  and the selected pairs  are  used to  construct 
and . This avoids an explicit expression of .

To  assess  the  performance  of  each  scheme,  all  results  are
normalized by the error at  the first  iteration, ensuring that all
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10lines in the corresponding figures start from .
∥δk∥2

k < 30

Yr − zk

Lc
t

Fig. 1 shows  the  decrease  in  the  input  error  for  the
four schemes: GILC, PILC, SILC, and EILC. The y-axis scale
is  logarithmic.  Based  on  the  30th  iteration  as  the  dividing
point,  we  analyze  the  performance  of  the  different  schemes.
For  the  first  stage  ( ),  GILC,  which  utilizes  full  system
information,  achieves  the  fastest  convergence  and  is  consid-
ered the benchmark (solid line). PILC (dotted line) and EILC
(dashed line) utilize only the control and measurement matrix
knowledge,  making  them  slower  than  GILC.  SILC  (dashed-
dotted  line)  is  the  slowest  among  the  four  schemes,  as  its
search space is at most ten-dimensional according to Proposi-
tion  1,  whereas  the  other  schemes  have  a  20-dimensional
search  space.  Additionally,  EILC  exhibits  slower  conver-
gence  than  PILC  because  it  uses  a  revised  reference ,
which  can  be  far  from  the  best  achievable  reference  in  the
early  stage.  For  the  second  stage,  when  the  learning  gain 
does  not  provide  the  precise  gradient,  PILC  does  not  con-
verge to the desired input,  even in the case of complete data.
This  behavior  is  explained  by  Proposition  2  and  Claim  1.  It
can be observed that GILC, EILC, and SILC show zero con-
vergence  tendencies,  demonstrating  their  effectiveness,  with
SILC being particularly guaranteed by Theorem 1.
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10−15

10−10

10−5

100

In
pu

t e
rr

or

Benchmark
PILC
SILC
EILC

300 50 100 150

 
Fig. 1.     Input error profiles for GILC, PILC, SILC, and EILC, where GILC
is labeled as a benchmark.
 

Furthermore, Fig. 2 depicts  the  decrease  in  the  tracking
error, providing further support for the observations described
above. In the subplot, we observe that GILC, EILC, and SILC
achieve the best approximation performance, while PILC sig-
nificantly  deviates  from  the  other  three  methods  in  terms  of
approximation performance.

γk(t)
γk(t)
E[γk(t)] = γ(t) γ(t)

γk(t)(yk(t)− yr(t))

2) Incomplete Data Environments: We discard PILC as it is
invalid  even  under  complete  data  and  maintain  the  bench-
mark  performance  under  complete  data  for  comparison.  Fol-
lowing  [13],  we  model  the  random  data  dropout  using .
Here,  is  generated  according  to  the  Bernoulli  distribu-
tion  with ,  where  is  predetermined  and
unknown  to  any  algorithm.  The  affected  tracking  error

 is  used  in  the  schemes  for  updating.  Other
settings remain the same as in the previous subsection.

Fig. 3 depicts the input error decrease in GILC (dotted line),

SILC,  and  EILC  using  incomplete  data.  As  indicated  by  our
analysis  in  Proposition 3,  GILC and SILC lose their  efficacy
due  to  gradient  drift.  In  particular,  GILC  and  SILC  cannot
handle random missing data and consequently exhibit oscilla-
tory  behavior  without  achieving  convergence.  Only  EILC
demonstrates a continuous decreasing trend, confirming Theo-
rem  2.  As  shown  in Fig. 4,  while  EILC  reaches  the  bench-
mark  performance,  GILC  and  SILC  fail  to  converge  to  the
benchmark  and  exhibit  oscillatory  behavior.  This  highlights
the effectiveness of the EILC scheme.
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Fig. 3.     Input error profiles for GILC, SILC, and EILC.  

B.  Chemical Batch Reactor Simulation

A→ B

ILC  research  has  considered  a  nonlinear  chemical  batch
reactor,  which  exhibits  a  second-order  exothermic  reaction

 [30], [36]. In this reactor, the temperature of the cool-
ing  jacket  is  directly  manipulated,  while  the  objective  is  to
track a reference temperature trajectory. The dynamics of the
reactor  can  be  described  by  the  following  continuous  equa-
tions:
 

Ṫ = − UA
MCp

(T −T j)+
(−∆H)V

MCp
k0e−E/RT C2

A

ĊA = −k0e−E/RT C2
A (15)

CA T jwhere T, ,  and  represent  the  reaction temperature,  con-
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Fig. 2.     Tracking error profiles for GILC, PILC, SILC, and EILC.
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centration  of  reactant A,  and  temperature  of  the  coolant
stream, respectively. The parameters used in the model are as
follows [36]:
 

UA
MCp

= 0.09(1/min),
(−∆H)V

MCp
= 1.64(Kl / mol)

k0 = 2.53×1019 (l/mol min),
E
R
= 13550(K).

xk(t) = [T,CA]T

uk(t) = T j

We  define  the  state  variables  as  and  the
input  as .  Additionally,  we  introduce  the  following
notations:
 

f (xk(t)) =

−
UA

MCp
T +

(−∆H)V
MCp

k0e−E/RT C2
A

−k0e−E/RT C2
A


gt =

 UA
MCp

0

 .
With these definitions, we can rewrite (15) as a state-space

model,
 

ẋk(t) = f (xk(t))+gtuk(t) (16)
[T0,CA0]T = [25◦ C,0.9 mol/l]Twhere the initial state is  for all

iterations. It is worth noting that the system (16) has two out-
puts and one input. There may exist reference trajectories that
are not achievable, making the ILC tracking problem infeasi-
ble. Let the reference trajectory be defined as follows:
 

T (t) =



7
9

t+
200

9
, 0 ≤ t < 10

7
30

t+
62
3
, 10 ≤ t < 40

3
10

t+15, 40 ≤ t < 50

33, 50 ≤ t < 60

−4
5

t+81, 60 ≤ t < 70

25, 70 ≤ t < 80

CA(t) = 0.1734e−1.927t +0.009325.
For  the  system  described  by  (15),  a  linear  model-based

{U◦i }i∈I
{Y◦i }i∈I

Zi = Y◦i −Y◦1 Xi = U◦i −U◦1 i ∈ I

design  approach  can  be  employed  [36].  Although  the  algo-
rithms  in  this  study  are  designed  for  linear  systems,  it  is
important  to  acknowledge the  existence of  nonlinear  systems
such  as  (15).  Consequently,  we  discretize  the  system  (16)
using  inputs  and  obtain  the  corresponding  outputs

,  where  the  time  interval  is  from  0  to  80  min  with  a
sampling  time  of  1  min.  We  then  preprocess  this  data  using
Algorithm 1: , , .  Subsequently,
we construct the learning gain L for P-type ILC by employing
the least squares principle,
 

LT = argmin
L∈R160×80

∑
i∈I
∥Zi− LXi∥2.

The sampling data required for Algorithms 1 and 2 are con-
structed from the available data, and additional operations are
not  necessary  for  subsequent  iterations.  Each  iteration
involves  a  random  selection  of  10  samples.  Notably,  we  do
not present an input error analysis due to the inability to ana-
lytically solve for the desired input trajectory in the presence
of  system  nonlinearity.  Therefore,  our  performance  analysis
focuses on tracking errors.

α = 1 u0(t) = 26
t = 0, . . . ,80

1) Complete Data Environment: In the complete data envi-
ronment,  PILC,  SILC,  and  EILC  are  applied  to  the  reactor
tracking problem using the same learning gain matrix L.  The
step size is  set  to ,  and the initial  input  is  for

. The actual tracking error profiles of PILC, SILC,
and EILC are shown in Fig. 5.
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Fig. 5.     Actual tracking error profiles for PILC, SILC, and EILC.
 

Fig. 5 demonstrates  that  the  actual  tracking  error  decreases
as  the  iterations  progress,  indicating  that  all  three  methods
improve their performance over time. The y-axis values in the
figure  are  normalized  by  the  first  iteration  error.  SILC
(dashed-dotted  line)  shows  slower  convergence  compared  to
PILC  (solid  line)  and  EILC  (dashed  line).  PILC  and  EILC
exhibit  similar  performance  levels  since  they  use  the  same
learning  gain  matrix.  However,  from  the  subplot,  it  can  be
observed that EILC yields a more steady convergence.

2) Incomplete Data Environment: Incomplete data environ-
ments  are  simulated  by  introducing  data  dropouts,  where  the
tracking error at each time instant is multiplied by a Bernoulli
random  variable.  PILC,  SILC,  and  EILC  are  tested  on  the
nonlinear  system (16)  using  the  same learning  gain  matrix L
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Fig. 4.     Tracking error profiles for GILC, SILC, and EILC.
 

 214 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024



for  PILC  and  EILC.  Due  to  the  presence  of  data  dropouts,
which can reduce the convergence rate, we perform 150 itera-
tions to observe the convergence trends.

Fig. 6 shows the actual  tracking errors of  PILC, SILC, and
EILC under data dropouts. It can be observed that the perfor-
mance  comparison  of  the  algorithms  is  similar  to  that  of  the
complete  data  case.  However,  the  random  dropouts  induce
larger  oscillations,  making  it  difficult  to  conclude  that  EILC
performs  significantly  better  than  PILC.  This  indicates  the
need for improved application methods for nonlinear systems,
as the sampling data of nonlinear systems may not fully reflect
the global system properties.
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Fig. 6.     Actual tracking errors profiles of PILC, SILC, and EILC.
 

In Fig. 7, the 1st, 20th, 40th, 60th, and 80th iterations of the
reaction  temperature  generated  by  EILC  under  incomplete
data  are  presented.  Since  temperature  control  is  the  main
objective, only the reaction temperature is plotted (dotted red
line).  The  figure  shows  that  the  reference  trajectory  (solid
black line) is gradually tracked. Due to the fixed initial state of
25  instead  of  the  reference  value  22.2,  the  reaction  tempera-
ture in the first few minutes shows a tendency to approach the
reference  but  does  not  perfectly  reach  it.  Overall,  the  output
achieves  satisfactory  tracking  performance  within  20  itera-
tions. This indicates that EILC can provide benefits for a class

of nonlinear systems.  

VIII.  Conclusions

This  study  has  successfully  formulated  and  characterized
the unachievable tracking problem, which arises when the ref-
erence  cannot  be  precisely  achieved  at  all  time  instants.  In
response to this problem, we have provided and analyzed dif-
ferent ILC solutions based on specific requirements. Notably,
we  extensively  clarified  the  necessity  of  precise  gradients  in
the  conventional  P-type  ILC.  Moreover,  when  the  system
information is unknown, preventing the establishment of gra-
dients, we identified the capabilities of the P-type ILC for lin-
ear time-varying systems and devised a data-driven approach.
Additionally,  to  address  systems  operating  under  incomplete
data  environments,  we  proposed  an  extended  ILC  scheme  to
mitigate  the  gradient  drift  effect.  Through  investigations,  we
demonstrated  that  the  proposed  learning  control  algorithms
can achieve the best approximation performance of the unreal-
izable reference in a mean square sense. For future research, it
is  imperative  to  explore  the  integration  of  offline  and  online
data  to  enhance  these  methods  against  disturbances  and
noises.  

Appendix

{xk} xk+1 = (1−ak)xk +bk k ≥ 0 ak ∈ [0,1)∑∞
k=1 bk <∞ limk→∞ xk = 0

∑∞
k=1 ak =∞

∀x0 , 0

Lemma 4 ([23]): Let  a  real  non-negative  number  sequence
 satisfy , ,  where  and

. Then,  if and only if ,
.

rk ≜ Yr −Yd − zk =Yr −Yd − zk
GT (Yr −Yd) = 0 k ≥ 0

Proof of Lemma 3: We denote 
and  remind  that .  For ,  by  Step  5  in
Algorithm 2,
 

rk+1 = Yr −Yd − zk +
ZIs Z

T
Is

∥ZIs∥2F
zk

= rk +G
XIs XT

Is

∥ZIs∥2F
GT (zk − (Yr −Yd))

= rk −G
XIs XT

Is

∥ZIs∥2F
GT rk. (17)

Taking  the  Euclidean  norm  and  conditional  expectation
gives
 

E[∥rk+1∥2|zk] = rT
k E


IqN −G

XIs XT
Is

∥ZIs∥2F
GT


2rk. (18)

rk E∥rk+1∥2 <
E∥rk∥2 rk

E[(IqN −G
XIs XT

Is
∥ZIs ∥2F

GT )2]

Next,  we  specify  the  contraction  of ,  i.e., 
. The key point here is to prove that  is orthogonal to

the  1-characteristic  subspace  of .  The
following are worth noting:
 

E
[
(IqN −G

XIs XT
Is

∥ZIs∥2F
GT )2

]
= IqN +E(G

XIs XT
Is

∥ZIs∥2F
GT )2−2E[G

XIs XT
Is

∥ZIs∥2F
GT ]. (19)

Based on the above, we claim that 
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Fig. 7.     Reaction temperature at the 1st, 20th, 40th, 60th, and 80th iterations
for EILC under incomplete data.
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Null(GGT ) = Null(E[G
XIs XT

Is

∥ZIs∥2F
GT ])

= Null(E(G
XIs XT

Is

∥ZIs∥2F
GT )2). (20)

E[
XIs XT

Is
∥ZIs ∥2F

]

∀0 , v (G
XIs XT

Is
∥ZIs ∥2F

GT )2v = 0 ⇔ G
XIs XT

Is
∥ZIs ∥2F

GT v = 0

The  first  equality  can  be  proved  similarly  to  Lemma  1  by

verifying  the  SPD .  Regarding  the  second  equality,

we note  that ,   .
Therefore, (20) must hold.

rk ∈ Range(G)
k = 0 r0 = Yr −Yd − z0 = −Yd ∈ Range(G)

k ≥ 0 rk+1 = rk −GXIs XT
Is

GT rk/∥ZIs∥2F ∈ Range(G)
Yr − zk = rk +Yd

We  claim  that ,  as  proven  by  the  induction
principle.  For , ;  for

, .  More-
over,  can be a realizable reference.

Range(M) = Null⊥(MT ) rk

Null(GT ) = Null(GGT ) rk

For  a  matrix M, .  Thus,  is  com-
pletely  contained  in  the  orthogonal  complementary  space  of

. It is true that  is orthogonal to the 1-
characteristic  subspace  of  the  left-hand  side  of  (19),  using
(20).

On  the  other  hand,  the  largest  eigenvalue  of  the  left-hand
side of (19) is not greater than one because this term is equal
to
 

E

(IqN −
GXIs (GXIs )

T

trace((GXIs )T (GXIs ))

)2
in which the sum of the eigenvalues of a symmetric matrix is
equal to its trace.

rk
0 ≤ ρ2 < 1

E[∥rk+1∥2|zk] ≤ρ2∥rk∥2
E∥rk+1∥2 ≤ ρ2E∥rk∥2

rk

In  short,  is  completely  within  the  contraction  space  of
(19). Hence, we denote  as the largest eigenvalue of
(19) that is less than 1, then (18) drives .
Retaking expectation gives , consequently
proving  the  monotonic  exponential  convergence  of  in  the
mean square sense. ■

δk = Uk −UdProof  of  Theorem  2: Recall  the  definition .
Subsequently, we can derive Step 6 of Algorithm 2 to obtain
 

δk+1 = Uk −Ud −αLΓk(Ek + zk+1)

= δk −αLΓk(GUk −GUd +Yd −Yr + zk+1)

= (IpN −αLΓkG)δk +αLΓkrk+1.

(IpN −αLΓkG)δk
LΓG

(LΓG)T Q+QLΓG = IpN

Next,  we  claim  the  contraction  of  in  the
expectation sense, noting that all eigenvalues of  are posi-
tive real numbers. By the Lyapunov stability theory, a unique
SPD Q satisfying  is  observed.  Still,
we check the following derivations:
 

δTk (IpN −αGTΓk LT )Q(IpN −αLΓkG)δk

= δTk Qδk +α2δTk GTΓk LT QLΓkGδk

−αδTk (GTΓk LT Q+QLΓkG)δk.

Γk
E[GTΓk LT Q+QLΓkG]= (LΓG)T Q+QLΓG

= IpN c3 c4
δTk E[GTΓk LT QLΓkG]δk ≤ c3δ

T
k Qδk

δTk E[GTΓk LT Q+QLΓkG]δk ≥ c4δ
T
k Qδk

E[δTk (IpN − αGTΓk LT )Q(IpN − αLΓkG)δk |xk] ≤ (1 +

Noting the independence of  with respect  to the iteration
label k,  we  have 

.  Therefore,  there  are  suitable  constants  and ,  such
that  the  inequalities  and

 hold.  As  a  result,  we
have 

α2c3−αc4)δTk Qδk
α < c4/c3 0 < c0 ≜ 1+α2c3 −

αc4 < 1

.  Provided  that  the  stepsize  is  sufficiently
small,  satisfying ,  we  have 

.
δk+1

∥δk+1∥2Q
∀ϵ > 0

Then, taking a weighted norm on  with respect to Q, i.e.,
, and applying the Cauchy-Schwartz inequality and the

Young’s inequality, we have, for ,
 

∥δk+1∥2Q = δ
T
k+1Qδk+1

= ∥(IpN −αLΓkG)δk∥2Q+ ∥αLΓkrk+1∥2Q
+2αrT

k+1Γk LT Q(IpN −αLΓkG)δk

≤ ∥(IpN −αLΓkG)δk∥2Q+ ∥αLΓkrk+1∥2Q
+2∥αLΓkrk+1∥Q∥(IpN −αLΓkG)δk∥Q

≤ (1+ ϵ)∥(IpN −αLΓkG)δk∥2Q

+
1+ ϵ
ϵ
∥αLΓkrk+1∥2Q.

Subsequently, taking conditional expectation gives
 

E[∥δk+1∥2Q|xk,zk]

≤ (1+ ϵ)E[∥(IpN −αLΓkG)δk∥2Q|xk,zk]

+
1+ ϵ
ϵ
E[∥αLΓkrk+1∥2Q|xk,zk]

≤ (1+ ϵ)c0∥δk∥2Q+
1+ ϵ
ϵ
α2c5E[∥rk+1∥2|xk,zk]

≤ (1+ ϵ)c0∥δk∥2Q+
1+ ϵ
ϵ
α2c5ρ2∥rk∥2

c5where  is a positive constant. Retaking expectation gives
 

E[∥δk+1∥2Q] ≤ (1+ ϵ)c0E[∥δk∥2Q]+
1+ ϵ
ϵ
α2c5ρ2E[∥rk∥2].

ϵ

(1+ ϵ)c0 = 1−ρ1 < 1
As  a  result,  we  fix  appropriate α and  in  place,  such  that

. Then, we can apply Lemma 4 on
 

E[∥δk+1∥2Q] ≤ (1−ρ1)E[∥δk∥2Q]+
1+ ϵ
ϵ
α2c5ρ2E[∥rk∥2].

Note that
 

∞∑
k=1

1+ ϵ
ϵ
α2c5ρ2E∥rk∥2 =

1+ ϵ
ϵ
α2c5ρ2

∞∑
k=1

E∥rk∥2

≤ 1+ ϵ
ϵ
α2c5∥r0∥2

∞∑
k=1

ρk+1
2

ρ2 < 1 E∥δk+1∥2Q→
0
is convergent because of  by Lemma 3. Thus, 
 by Lemma 4 holds. ■

rk = Yr −Yd −µkzkProof of Corollary 1: First, we redefine ,
which  is  still  convergent  to  zero  in  the  mean  square  sense.
Next,  the  expression  below  is  produced  using  the  Cauchy-
Schwartz and Young’s inequalities:
 

∥rk∥2 = ∥Yr −Yd − zk∥2+ (1−µk)2∥zk∥22
+2(1−µk)zT

k (Yr −Yd − zk)

≤ 2∥Yr −Yd − zk∥2+2(1−µk)2∥zk∥22

 216 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024



and then,
 

E[∥rk∥2] ≤ 2E[∥Yr −Yd − zk∥2]+2(1−µk)2E[∥zk∥22].

E[∥zk∥22]
We observed that the two terms on the right-hand side of the

above  inequality  tend  to  zero  because  is  bounded.
Then, the rest of the proof can be completed similar to Theo-
rem 2. ■
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